ON ASYMPTOTICALLY WIJSMAN LACUNARY σ-STATISTICAL CONVERGENCE OF SET SEQUENCES

BIPAN HAZARIKA, AYHAN ESI, N. L. BRAHA

Abstract. In this paper we present three definitions which is a natural combination of the definition of asymptotic equivalence, statistical convergence, lacunary statistical convergence, σ-statistical convergence and Wijsman convergence. In addition, we also present asymptotically equivalent sequences of sets in sense of Wijsman and study some properties of this concept.

1. Introduction

Marouf in [20], presented definitions for asymptotically equivalent and asymptotic regular matrices. Pobyvanct in [28], introduced the concepts of asymptotically regular matrices, which preserve the asymptotic equivalence of two nonnegative numbers sequences. Patterson in [26], extend these concepts by presenting an asymptotically statistical equivalent analog of these definitions and natural regularity conditions for nonnegative summability matrices. Patterson and Savas in [27], introduced the concepts of an asymptotically lacunary statistical equivalent sequences of real numbers. The concepts of σ-asymptotically lacunary statistical equivalent sequences introduced by Patterson and Savas in [32]. Braha, in [7] introduced the concepts of asymptotically Δ^m-lacunary statistical equivalent sequences of real numbers.

The concept of convergence of sequences of points has been extended by several authors to convergence of sequences of sets. The one of these such extensions considered in this paper is the concept of Wijsman convergence. The concept of Wijsman statistical convergence which is implementation of the concept of statistical convergence to sequences of sets presented by Nuray and Rhoades in [25]. Similar to the concept, the concept of Wijsman lacunary statistical convergence presented ulusu and Nuray in [35]. Hazarika and Esi in [14], introduced the notion asymptotically Wijsman generalized statistical convergence of sequences of sets. For more works on convergence of sequences of sets, we refer to ([1], [2], [3], [4], [5], [30], [37], [38]).

The idea of statistical convergence was formerly given under the name “almost convergence” by Zygmund in the first edition of his celebrated monograph published in Warsaw in 1935 [39]. The concept was formally introduced by Steinhaus [34] and

2010 Mathematics Subject Classification. 40A35, 40G15.

Key words and phrases. Asymptotic equivalence; statistical convergence; lacunary statistical convergence; strongly σ-convergence; Wijsman convergence.

©2013 Iliras Publications, Prishtine, Kosovë.
Fast [9] and later was introduced by Schoenberg [33], and also independently by Buck [6]. A lot of developments have been made in this area after the works of Šalát [29] and Fridy [11]. Over the years and under different names statistical convergence has been discussed in the theory of Fourier analysis, ergodic theory and number theory. Fridy and Orhan [12] introduced the concept of lacunary statistical convergence. Mursaleen and Mohiuddine in [24], introduced the concept of lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. For details related to lacunary statistical convergence, we refer to ([8], [12], [13], [15], [17], [21]).

By a lacunary sequence $\theta = (k_r)$, where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers with $k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $J_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be defined by q_r (see [10]).

In this paper we define asymptotically lacunary σ-statistical equivalent sequences of sets in sense of Wijsman and establish some basic results regarding the notions asymptotically lacunary σ-statistical equivalent sequences of sets in sense of Wijsman and asymptotically Wijsman lacunary statistical equivalent sequences of sets.

Now we recall the definitions of statistical convergence, lacunary statistical convergence, σ-statistical convergence and Wijsman convergence.

Definition 1.1. A real or complex number sequence $x = (x_k)$ is said to be statistically convergent to L if for every $\varepsilon > 0$

$$\lim_{n \to \infty} \frac{1}{n} \left| \{k \leq n : |x_k - L| \geq \varepsilon \} \right| = 0.$$

In this case, we write $S^{-}\lim x = L$ or $x_k \to L$ (S-)

S denotes the set of all statistically convergent sequences.

Definition 1.2. ([12]) A sequence $x = (x_k)$ is said to be lacunary statistically convergent to the number L if for every $\varepsilon > 0$

$$\lim_{r \to \infty} \frac{1}{h_r} \left| \{k \in J_r : |x_k - L| \geq \varepsilon \} \right| = 0.$$

Let S_θ denotes the set of all lacunary statistically convergent sequences. If $\theta = (2^r)$, then S_θ is the same as S.

Let σ be a one-to-one mapping from the set of natural numbers into itself. A continuous linear functional ϕ on ℓ_∞ is said to be an invariant mean or a σ-mean if and only if

1. $\phi(x) \geq 0$ when the sequence $x = (x_k)$ is such that $x_k \geq 0$ for all k,
2. $\phi(e) = 1$ where $e = (1, 1, 1, \ldots)$, and
3. $\phi(x) = \phi(x_{\sigma(k)})$ for all $x \in \ell_\infty$.

Throughout this paper we shall consider the mapping σ has having on finite orbits, that is, $\sigma^m(k) \neq k$ for all nonnegative integers with $m \geq 1$, where $\sigma^m(k)$ is the m-th iterate of σ at k. We denote V_σ is the set of bounded sequences all of whose σ-mean are equal. If $\sigma(k) = k + 1$, then it is the set of almost convergent sequences in [18].

If $x = (x_k)$, the set $Tx = (Tx_k) = (x_{\sigma(k)})$. Savas [30], introduced the following notion.

$$V_\sigma = \left\{ x = (x_k) : \lim_{n} t_{nk}(x) = L \text{ uniformly in } k, L = \sigma - \lim x \right\},$$
where \(t_{nk}(x) = \frac{(x_k + T_{x_k} + \ldots + T^n x_k)}{n+1} \).

Definition 1.3. \((31)\) A sequence \(x = (x_k) \) is said to be \(\sigma \)-statistically convergent to the number \(L \) if for every \(\varepsilon > 0 \)

\[
\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \leq n : \left| x_{\sigma^k(m)} - L \right| \geq \varepsilon \right\} \right| = 0, \text{ uniformly on } m.
\]

Let \(S_\sigma \) denotes the set of all \(\sigma \)-statistically convergent sequences.

Definition 1.4. \((30, \ 32)\) A sequence \(x = (x_k) \) is said to be strongly \(\sigma \)-convergent to the number \(L \) if

\[
\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in J_r} \left| x_{\sigma^k(m)} - L \right| = 0, \text{ uniformly on } m.
\]

Let \(S_{\sigma, \sigma} \) denotes the set of all \(\sigma \)-statistically convergent sequences. If \(\theta = (2^2) \), then \(S_{\theta, \sigma} \) is the same as \(S_\sigma \).

Let \((X, \rho) \) be a metric space. For any point \(x \in X \) and any non-empty subset \(A \subset X \), the distance from \(x \) to \(A \) is defined by

\[
d(x, A) = \inf_{y \in A} \rho(x, y).
\]

Definition 1.6. \((2)\) Let \((X, \rho) \) be a metric space. For any non-empty closed subsets \(A, A_k \subset X \) \((k \in \mathbb{N})\), we say that the sequence \((A_k) \) is Wijsman convergent to \(A \) if \(\lim_k d(x, A_k) = d(x, A) \) for each \(x \in X \). In this case we write \(W - \lim A_k = A \).

2. Definitions and Notations

Definition 2.1. \((20)\) Two nonnegative sequences \(x = (x_k) \) and \(y = (y_k) \) are said to be asymptotically equivalent if

\[
\lim_{k} \frac{x_k}{y_k} = 1,
\]

denoted by \(x \sim y \).

Definition 2.2. \((20)\) Two nonnegative sequences \(x = (x_k) \) and \(y = (y_k) \) are said to be asymptotically statistical equivalent of multiple \(L \) provided that for every \(\varepsilon > 0 \)

\[
\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \leq n : \left| \frac{x_k}{y_k} - L \right| \geq \varepsilon \right\} \right| = 0,
\]

denoted by \(x \sim^{SL} y \) and simply asymptotically statistical equivalent if \(L = 1 \).

Savas and Nuray in \((31)\), defined the asymptotically \(\sigma \)-statistical equivalent and strongly asymptotically \(\sigma \)-statistical equivalent sequences as follows:

Definition 2.3. Two nonnegative sequences \(x = (x_k) \) and \(y = (y_k) \) are said to be asymptotically \(\sigma \)-statistical equivalent of multiple \(L \) provided that for every \(\varepsilon > 0 \)

\[
\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \leq n : \left| x_{\sigma^k(m)} - L \right| \geq \varepsilon \right\} \right| = 0, \text{ uniformly on } m,
\]

denoted by \(x \sim^{SL} y \) and simply asymptotically \(\sigma \)-statistical equivalent if \(L = 1 \).
Definition 2.4. Two nonnegative sequences \(x = (x_k) \) and \(y = (y_k) \) are said to be strongly asymptotically \(\sigma \)-statistical equivalent of multiple \(L \) provided that

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left| \frac{x_{\sigma_k(m)}}{y_{\sigma_k(m)}} - L \right| = 0, \text{ uniformly on } m,
\]

denoted by \(x \sim^{[V_z]} L y \) and simply strongly asymptotically \(\sigma \)-statistical equivalent if \(L = 1 \).

The concepts of Wijsman statistical convergence and boundedness for the sequence \((A_k)\) were given by Nuray and Rhoades \cite{25} as follows:

Definition 2.5. \cite{25} Let \((X, \rho)\) be a metric space. For any non-empty closed subsets \(A, A_k \subseteq X \) \((k \in \mathbb{N})\), we say that the sequence \((A_k)\) is Wijsman statistical convergent to \(A \) if the sequence \((d(x, A_k))\) is statistically convergent to \(d(x, A) \), i.e., for \(\varepsilon > 0 \) and for each \(x \in X \)

\[
\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \leq n : \left| d(x, A_k) - d(x, A) \right| \geq \varepsilon \right\} \right| = 0.
\]

In this case, we write \(st \lim_k A_k = A \) or \(A_k \to A \) (WS). The sequence \((A_k)\) is bounded if \(\sup_k d(x, A_k) < \infty \) for each \(x \in X \). The set of all bounded sequences of sets denoted by \(L_\infty \).

Ulusu and Nuray in \cite{36}, defined asymptotically equivalent and asymptotically statistical equivalent sequences of sets as follows:

Definition 2.6. Let \((X, \rho)\) be a metric space. For any non-empty closed subsets \(A_k, B_k \subseteq X \) such that \(d(x, A_k) > 0 \) and \(d(x, B_k) > 0 \) for each \(x \in X \). We say that the sequences \((A_k)\) and \((B_k)\) are asymptotically equivalent (Wijsman sense) if for each \(x \in X \),

\[
\lim_{k} \frac{d(x, A_k)}{d(x, B_k)} = 1,
\]

denoted by \((A_k) \sim (B_k)\).

Definition 2.7. Let \((X, \rho)\) be a metric space. For any non-empty closed subsets \(A_k, B_k \subseteq X \) such that \(d(x, A_k) > 0 \) and \(d(x, B_k) > 0 \) for each \(x \in X \). We say that the sequences \((A_k)\) and \((B_k)\) are asymptotically statistical equivalent (Wijsman sense) if for every \(\varepsilon > 0 \) and for each \(x \in X \),

\[
\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \leq n : \left| \frac{d(x, A_k)}{d(x, B_k)} - L \right| \geq \varepsilon \right\} \right| = 0
\]

denoted by \((A_k) \sim^{WS_L} (B_k)\) and simply asymptotically statistical equivalent (Wijsman sense) if \(L = 1 \).

3. ASYMPTOTICALLY WIJSMA\(N\) LACUNARY \(\sigma \)-STATISTICAL EQUIVALENT SEQUENCES

In this section, we define asymptotically Wijsman \(\sigma \)-statistical and asymptotically Wijsman lacunary \(\sigma \)-statistical equivalent sequences of sets and proved some interesting results.
Definition 3.1. Let \((X, \rho)\) be a metric space. For any non-empty closed subsets \(A_k, B_k \subseteq X\) such that \(d(x, A_k) > 0\) and \(d(x, B_k) > 0\) for each \(x \in X\). Two sequences \((A_k)\) and \((B_k)\) are said to be asymptotically Wijsman \(\sigma\)-statistical equivalent of multiple \(L\) provided that for every \(\varepsilon > 0\)
\[
\lim \frac{1}{n} \sum_{k=1}^{n} \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| = 0, \text{ uniformly on } m,
\]
denoted by \(A_k \sim^{WS_{\sigma}^L} B_k\) and simply asymptotically Wijsman \(\sigma\)-statistical equivalent if \(L = 1\).

Definition 3.2. Let \((X, \rho)\) be a metric space. For any non-empty closed subsets \(A_k, B_k \subseteq X\) such that \(d(x, A_k) > 0\) and \(d(x, B_k) > 0\) for each \(x \in X\). Two sequences \((A_k)\) and \((B_k)\) are said to be strongly asymptotically Wijsman \(\sigma\)-statistical equivalent of multiple \(L\) provided that
\[
\lim \frac{1}{n} \sum_{k=1}^{n} \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| = 0, \text{ uniformly on } m,
\]
denoted by \(A_k \sim^{WS_{\sigma}^L} B_k\) and simply strongly asymptotically Wijsman \(\sigma\)-statistical equivalent if \(L = 1\).

Definition 3.3. Let \((X, \rho)\) be a metric space. For any non-empty closed subsets \(A_k, B_k \subseteq X\) such that \(d(x, A_k) > 0\) and \(d(x, B_k) > 0\) for each \(x \in X\). We say that the sequences \((A_k)\) and \((B_k)\) are asymptotically Wijsman lacunary \(\sigma\)-equivalent if for each \(x \in X\),
\[
\lim_{r} \frac{1}{h_r} \sum_{k \in J_r} \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| = 0, \text{ uniformly in } m
\]
denoted by \((A_k) \sim^{WS_{\sigma}^L} (B_k)\) and simply asymptotically Wijsman lacunary \(\sigma\)-equivalent if \(L = 1\).

Definition 3.4. Let \((X, \rho)\) be a metric space. For any non-empty closed subsets \(A_k, B_k \subseteq X\) such that \(d(x, A_k) > 0\) and \(d(x, B_k) > 0\) for each \(x \in X\). We say that the sequences \((A_k)\) and \((B_k)\) are strongly asymptotically Wijsman lacunary \(\sigma\)-statistical equivalent if for every \(\varepsilon > 0\) and for each \(x \in X\),
\[
\lim_{r} \frac{1}{h_r} \sum_{k \in J_r} \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| = 0 \text{ uniformly in } m
\]
denoted by \((A_k) \sim^{WS_{\sigma}^L} (B_k)\) and simply strongly asymptotically Wijsman lacunary \(\sigma\)-equivalent if \(L = 1\).

Definition 3.5. Let \((X, \rho)\) be a metric space. For any non-empty closed subsets \(A_k, B_k \subseteq X\) such that \(d(x, A_k) > 0\) and \(d(x, B_k) > 0\) for each \(x \in X\). We say that the sequences \((A_k)\) and \((B_k)\) are asymptotically Wijsman lacunary \(\sigma\)-statistical equivalent if for every \(\varepsilon > 0\) and for each \(x \in X\),
\[
\lim_{r} \frac{1}{h_r} \sum_{k \in J_r} \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| = 0 \text{ uniformly in } m
\]
denoted by \((A_k) \sim^{WS_{\sigma}^L} (B_k)\) and simply asymptotically Wijsman lacunary \(\sigma\)-statistical equivalent if \(L = 1\).
Theorem 3.6. Let \((X, \rho)\) be a metric space and \(A_k, B_k\) be non-empty closed subsets \(X (k \in \mathbb{N}).\) Then

(a) \((A_k) \sim^{W[\mathcal{L}_\sigma]^L} (B_k) \Rightarrow (A_k) \sim^{WS_{\sigma, \sigma}^L} (B_k).\)

(b) \(W[\mathcal{L}_\sigma]^L\) is a proper subset of \(WS_{\sigma, \sigma}^L.\)

(c) Let \((A_k) \in L_\infty\) and \((A_k) \sim^{WS_{\sigma, \sigma}^L} (B_k),\) then \((A_k) \sim^{W[\mathcal{L}_\sigma]^L} (B_k).\)

(d) \(WS_{\sigma, \sigma}^L \cap L_\infty = W[\mathcal{L}_\sigma]^L \cap L_\infty.\)

Proof. (a) Let \(\varepsilon > 0\) and \((A_k) \sim^{W[\mathcal{L}_\sigma]^L} (B_k).\) Then we can write

\[
\sum_{k \in J_r} \left| \frac{d(x, A_k)}{d(x, B_k)} - L \right| \geq \sum_{k \in J_r} \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \\geq \varepsilon \left\{ k \in J_r : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\}
\]

which gives the result.

(b) Suppose that \(W[\mathcal{L}_\sigma]^L \subset WS_{\sigma, \sigma}^L.\) Let \((A_k)\) and \((B_k)\) be two sequences defined as follows:

\[
A_k = \begin{cases}
 \{ k \}, & \text{if } k_{r-1} < k \leq k_{r-1} + \lfloor \sqrt{r} \rfloor, r = 1, 2, 3, \ldots; \\
 \{ 0 \}, & \text{otherwise}
\end{cases}
\]

and

\[
B_k = \{ 0 \} \text{ for all } k \in \mathbb{N}.
\]

It is clear that \((A_k) \notin L_\infty\) and for \(\varepsilon > 0\) and for each \(x \in X,\)

\[
\lim_{r \to \infty} \frac{1}{r} \left| \left\{ k \in J_r : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - 1 \right| \geq \varepsilon \right\} \right| = \lim_{r \to \infty} \frac{\lfloor \sqrt{r} \rfloor}{r} = 0.
\]

So \((A_k) \sim^{WS_{\sigma, \sigma}^L} (B_k),\) but

\[
\lim_{r \to \infty} \frac{1}{r} \sum_{k \in J_r} \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \neq 0.
\]

Therefore \((A_k) \notin^{W[\mathcal{L}_\sigma]^L} (B_k).\)

(c) Suppose that \((A_k) \sim^{WS_{\sigma, \sigma}^L} (B_k)\) and \((A_k) \in L_\infty.\) We assume that

\[
\left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \leq M \text{ for each } x \in X \text{ and for all } k \in \mathbb{N}.
\]

Given \(\varepsilon > 0,\) we get

\[
\frac{1}{r} \sum_{k \in J_r} \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| = \frac{1}{r} \sum_{k \in J_r} \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| + \frac{1}{r} \sum_{k \in J_r} \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \\leq \frac{M}{r} \left\{ k \in J_r : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} + \varepsilon,
\]

from which the result follows.

(d) It follows from (a), (b) and (c). \qed
Theorem 3.7. Suppose for given \(\eta_1 > 0 \) and every \(\varepsilon > 0 \) there exist \(n_0 \) and \(m_0 \) such that
\[
\frac{1}{n} \left| \left\{ 0 \leq k \leq n - 1 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \right| < \eta_1
\]
for all \(n \geq n_0 \) and \(m \geq m_0 \), then \((A_k) \sim W^{S_{\sigma}^L} (B_k) \).

Proof. Let \(\eta_1 \) be given. For every \(\varepsilon > 0 \), choose \(n_1 \) and \(m_0 \) such that
\[
\frac{1}{n} \left| \left\{ 0 \leq k \leq n - 1 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \right| < \frac{\eta_1}{2}, \text{ for all } n \geq n_1; m \geq m_0.
\]
(3.1)

It is sufficient to show that there exists \(n_2 \) such that for \(n \geq n_1 \) and \(0 \leq m \leq m_0 \)
\[
\frac{1}{n} \left| \left\{ 0 \leq k \leq n - 1 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \right| < \eta_1.
\]
(3.2)

Let \(n_0 = \max\{n_1, n_2\} \). The relation (3.2) will be true for \(n > n_0 \) and for all \(m \). If \(m_0 \) chosen fixed, then we get
\[
\left| \left\{ 0 \leq k \leq m_0 - 1 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \right| = M.
\]

Now for \(0 \leq m \leq m_0 \) and \(n > m_0 \) we have
\[
\frac{1}{n} \left| \left\{ 0 \leq k \leq n - 1 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \right| \leq \frac{1}{n} \left| \left\{ 0 \leq k \leq m_0 - 1 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \right| + \frac{1}{n} \left| \left\{ m_0 \leq k \leq n - 1 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \right|
\leq \frac{M}{n} + \frac{1}{n} \left| \left\{ m_0 \leq k \leq n - 1 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \right| \leq \frac{M}{n} + \frac{\eta_1}{2}.
\]
Thus for sufficiently large \(n \)
\[
\frac{1}{n} \left| \left\{ n_0 \leq k \leq n - 1 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \right| \leq \frac{M}{n} + \frac{\eta_1}{2} < \eta_1.
\]
This established the result. \(\Box \)

Theorem 3.8. For every lacunary sequence \(\theta \), \(W^{S_{\sigma,\theta}} = W^S_{\sigma} \).

Proof. Let \((A_k) \in W^{S_{\sigma,\theta}} \), then for given \(\eta_1 > 0 \) there exist \(\varepsilon > 0 \) and \(L \) such that
\[
\frac{1}{h_r} \left\{ k \in J_r : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} < \eta_1,
\]
for \(r \geq r_0 \) and \(m = k_{r-1} + v \) where \(v \geq 0 \).

Let \(n \geq h_r \) and write \(n = sh_r + u \) with \(0 \leq u \leq h_r \) and \(s \) an integer. Since \(n \geq h_r \) and \(s \geq 0 \). We have
\[
\frac{1}{n} \left| \left\{ 0 \leq k \leq n - 1 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \right|
\leq \frac{1}{n} \left| \left\{ 0 \leq k \leq (s+1)h_r - 1 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \right|
\]
\[
= \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{ih_r - k \leq (i + 1)h_r - 1}{d(x, B_{\sigma^k(m)})} - L \geq \varepsilon \right\}
\leq \frac{(s + h_r)\eta_1}{n} \leq \frac{2sh_r\eta_1}{n} \text{ for } s \geq 1.
\]

For \(\frac{h_r}{n} \leq 1\), since \(\frac{nh_r}{n} \leq 1\). Therefore
\[
\frac{1}{n} \left\{ 0 \leq k \leq n - 1 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \leq 2\eta_1.
\]

Hence by Theorem 3.7, we have \(WS_{\theta,\sigma} \subseteq WS_{\theta,\sigma}\). Also \(WS_\theta \subseteq WS_{\theta,\sigma}\) for every lacunary sequence \(\theta\). This completes the proof of the theorem. \(\square\)

Theorem 3.9. Let \((X, \rho)\) be a metric space and \(A_k, B_k\) be non-empty closed subsets \(X (k \in \mathbb{N})\). Let \(\theta = (k_r)\) be a lacunary sequence with \(\liminf q_r > 1\). Then \((A_k) \sim^{WS_{\theta,\sigma}} (B_k) \Rightarrow (A_k) \sim^{WS_{\theta,\sigma}} (B_k)\).

Proof. Suppose that \(\liminf q_r > 1\), then there exists a \(\alpha > 0\) such that \(q_r \geq 1 + \alpha\) for sufficiently large \(r\). Then we have
\[
\frac{h_r}{k_r} \geq \frac{\alpha}{1 + \alpha}.
\]

If \((A_k) \sim^{WS_{\theta,\sigma}} (B_k)\), then for every \(\varepsilon > 0\) and for sufficiently large \(r\) we have
\[
\frac{1}{k_r} \left\{ \frac{h_r - k_r \leq (i + 1)h_r - 1}{d(x, A_{\sigma^k(m)})} - L \geq \varepsilon \right\} \geq \frac{1}{k_r} \left\{ \frac{h_r - k_r \leq (i + 1)h_r - 1}{d(x, B_{\sigma^k(m)})} - L \geq \varepsilon \right\} \geq \alpha \frac{1}{1 + \alpha} \frac{1}{h_r} \left\{ \frac{h_r - k_r \leq (i + 1)h_r - 1}{d(x, A_{\sigma^k(m)})} - L \geq \varepsilon \right\}.
\]

This completes the proof. \(\square\)

Theorem 3.10. Let \((X, \rho)\) be a metric space and \(A_k, B_k\) be non-empty closed subsets \(X (k \in \mathbb{N})\). Let \(\theta = (k_r)\) be a lacunary sequence with \(\limsup q_r < \infty\). Then \((A_k) \sim^{WS_{\theta,\sigma}} (B_k) \Rightarrow (A_k) \sim^{WS_{\theta,\sigma}} (B_k)\).

Proof. If \(\limsup q_r < \infty\). Then there exists an \(K > 0\) such that \(q_r < K\) for all \(r \geq 1\). Let \((A_k) \sim^{WS_{\theta,\sigma}} (B_k)\) and \(\eta_1 > 0\). Then there exists \(B > 0\) and \(\varepsilon > 0\) such that for every \(j \geq B\)
\[
M_j = \frac{1}{h_j} \left\{ \frac{h_j - k_j \leq (i + 1)h_j - 1}{d(x, A_{\sigma^k(m)})} - L \geq \varepsilon \right\} \leq \eta_1 \text{ for all } m.
\]

Also we can find \(A > 0\) such that \(M_j < A\) for all \(j = 1, 2, 3, \ldots\). Now let \(i\) be an integer with satisfying \(k_{r+1} < i \leq k_r\), where \(r > B\). Then we can write
\[
\frac{1}{n} \left\{ \frac{h_r - k_r \leq (i + 1)h_r - 1}{d(x, A_{\sigma^k(m)})} - L \geq \varepsilon \right\} \leq \frac{1}{k_r - 1} \left\{ \frac{h_r - k_r \leq (i + 1)h_r - 1}{d(x, B_{\sigma^k(m)})} - L \geq \varepsilon \right\} \leq \frac{1}{h_r - 1} \left\{ \frac{h_r - k_r \leq (i + 1)h_r - 1}{d(x, A_{\sigma^k(m)})} - L \geq \varepsilon \right\}.
\]
ON ASYMPTOTICALLY WIJSMAN LACUNARY σ-STATISTICAL...

\[
\begin{align*}
&+ \frac{1}{k_{r-1}} \left\{ k \in J_2 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \\
&+ \ldots + \frac{1}{k_{r-1}} \left\{ k \in J_r : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \\
&= \frac{k_1}{k_{r-1}k_1} \left\{ k \in J_1 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \\
&+ \frac{k_2 - k_1}{k_{r-1}(k_2 - k_1)} \left\{ k \in J_2 : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \\
&+ \ldots + \frac{k_B - k_{B-1}}{k_{r-1}(k_B - k_{B-1})} \left\{ k \in J_B : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq \varepsilon \right\} \\
&= \frac{k_1}{k_{r-1}M_1} + \frac{k_2 - k_1}{k_{r-1}} M_2 + \ldots + \frac{k_B - k_{B-1}}{k_{r-1}} M_B \\
&+ \frac{k_{B+1} - k_B}{k_{r-1}} M_{B+1} + \ldots + \frac{k_r - k_{r-1}}{k_{r-1}} M_r \\
&\leq \left\{ \sup_{i \geq 1} M_i \right\} \frac{k_B}{k_{r-1}} + \left\{ \sup_{i \geq B} M_i \right\} \frac{k_r - k_B}{k_{r-1}} \leq A \frac{k_B}{k_{r-1}} + \eta_1 K.
\end{align*}
\]

This completes the proof of the theorem.

\[\square\]

Theorem 3.11. Let \((X, \rho)\) be a metric space and \(A_k, B_k\) be non-empty closed subsets \(X (k \in \mathbb{N})\). Let \(\theta = (k_r)\) be a lacunary sequence with \(1 < \lim \inf r, q_r \leq \lim \sup r, q_r < \infty\). Then \((A_k) \sim WS_{\theta, \rho}^L (B_k) \iff (A_k) \sim WS_{\theta}^L (B_k)\).

Proof. The result is an immediate consequence of Theorem 3.9 and Theorem 3.10.

\[\square\]

Definition 3.12. Let \(p \in (0, \infty)\). Let \((X, \rho)\) be a metric space. For any non-empty closed subsets \(A_k, B_k \subseteq X\) such that \(d(x, A_k) > 0\) and \(d(x, B_k) > 0\) for each \(x \in X\). We say that the sequences \((A_k)\) and \((B_k)\) are strongly asymptotically Wijsman lacunary \(\sigma_p\)-statistical equivalent if for every \(\varepsilon > 0\) and for each \(x \in X\),

\[
\lim_{r} \frac{1}{h_r} \sum_{k \in J_r} \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right|^p = 0 \text{ uniformly in } m
\]

denoted by \((A_k) \sim WS_{\theta, \rho}^{L, p} (B_k)\) and simply strongly asymptotically Wijsman lacunary \(\sigma\)-equivalent if \(L = 1\).

Definition 3.13. Let \(p \in (0, \infty)\). Let \((X, \rho)\) be a metric space. For any non-empty closed subsets \(A_k, B_k \subseteq X\) such that \(d(x, A_k) > 0\) and \(d(x, B_k) > 0\) for each \(x \in X\). We say that the sequences \((A_k)\) and \((B_k)\) are asymptotically Wijsman lacunary \(\sigma_p\)-statistical equivalent if for every \(\varepsilon > 0\) and for each \(x \in X\),

\[
\lim_{r} \frac{1}{h_r} \left\{ k \in J_r : \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right|^p \geq \varepsilon \right\} = 0 \text{ uniformly in } m
\]

denoted by \((A_k) \sim WS_{\theta, \rho}^{L, p} (B_k)\) and simply asymptotically Wijsman lacunary \(\sigma\)-statistical equivalent if \(L = 1\).
The proof of the following theorem follows from Theorem 3.6.

Theorem 3.14. Let \((X, \rho)\) be a metric space and \(A_k, B_k\) be non-empty closed subsets \(X (k \in \mathbb{N})\). Then

(a) \((A_k) \sim_{\overline{W}[L^p]} (B_k) \Rightarrow (A_k) \sim_{WS_{\theta, \sigma_p}} (B_k)\).

(b) \(W[L_0]^p\) is a proper subset of \(WS_{\theta, \sigma_p}\).

(c) Let \((A_k) \in L_\infty\) and \((A_k) \sim_{WS_{\theta, \sigma_p}} (B_k)\), then \((A_k) \sim_{W[L_\infty]^p} (B_k)\).

(d) \(WS_{\theta, \sigma_p} \cap L_\infty = W[L_\infty]^p \cap L_\infty\).

4. **ORLICZ ASYMPTOTICALLY WIJSMAN LACUNARY \(\sigma\)-STATIONAL EQUIVALENCE**

In this section we define the notion of Orlicz asymptotically Wijsman lacunary \(\sigma\)-statistical equivalence sequences of sets. An Orlicz function is a function \(M : [0, \infty) \to [0, \infty)\) which is continuous, nondecreasing and convex with \(M(0) = 0\), \(M(x) > 0\) for \(x > 0\) and \(M(x) \to \infty\) as \(x \to \infty\). An Orlicz function \(M\) is said to satisfy the \(\Delta_2\) condition for all values of \(u\), if there exists a constant \(K > 0\) such that \(M(2u) \leq KM(u), u \geq 0\). Note that, if \(0 < \lambda < 1\) then \(M(\lambda x) \leq \lambda M(x), x \geq 0\) for all \(x \geq 0\) (see [16]).

Also we will introduce Cesaro Orlicz asymptotically Wijsman \(\sigma\)-statistical equivalence between two sequences.

Definition 4.1. Let \((X, \rho)\) be a metric space. For any non-empty closed subsets \(A_k, B_k \subseteq X\) such that \(d(x, A_k) > 0\) and \(d(x, B_k) > 0\) for each \(x \in X\). Two sequences \((A_k)\) and \((B_k)\) are said to be \(M\)-strongly Cesaro Orlicz asymptotically Wijsman \(\sigma\)-statistical equivalent of multiple \(L\) provided that for every

\[
\lim_{n} \frac{1}{n} \sum_{k=1}^{n} M \left(\frac{d(x, A_{\sigma^{k}(m)})}{d(x, B_{\sigma^{k}(m)})} - L \right) = 0,
\]

(denoted by \(A_k \sim_{[M]} B_k\)), and simply \(W M\)-strongly Cesaro Orlicz asymptotically Wijsman \(\sigma\)-equivalent if \(L = 1\).

Definition 4.2. Let \((X, \rho)\) be a metric space. For any non-empty closed subsets \(A_k, B_k \subseteq X\) such that \(d(x, A_k) > 0\) and \(d(x, B_k) > 0\) for each \(x \in X\). Two sequences \((A_k)\) and \((B_k)\) are said to be \(M\)-lacunary strongly Cesaro Orlicz asymptotically Wijsman \(\sigma\)-statistical equivalent of multiple \(L\) provided that for every

\[
\lim_{r} \frac{1}{h_r} \sum_{k \in J_r} M \left(\frac{d(x, A_{\sigma^{k}(m)})}{d(x, B_{\sigma^{k}(m)})} - L \right) = 0,
\]

(denoted by \(A_k \sim_{[LM]} B_k\)), and simply \(LM\)-strongly Cesaro Orlicz asymptotically Wijsman \(\sigma\)-equivalent if \(L = 1\).

Theorem 4.3. Let \((X, \rho)\) be a metric space and \(A_k, B_k\) be non-empty closed subsets of \(X, (k \in \mathbb{N})\). \(M\) be an Orlicz function which satisfies the \(\Delta_2\) conditions and \(M(1) = 1\). Then for two sequences \((A_n)\) and \((B_n)\) are said to be \(A_k \sim_{[WSM]} B_k\) of multiple \(L\) provided that for every \(\epsilon > 0\),

\[
\lim_{r} \frac{1}{h_r} \left\{ \text{the number of } k \in J_r: M \left(\frac{d(x, A_{\sigma^{k}(m)})}{d(x, B_{\sigma^{k}(m)})} - L \right) \geq \epsilon \right\} = 0.
\]
If \(\lim_{r} \inf q_{r} > 1 \), then \(A_{k}^{W_{\sigma},s_{r}} B_{k} \) implies \(x^{W_{\sigma},s_{r}} B_{k} \).

Proof. Suppose that \(\lim_{r} \inf q_{r} > 1 \), then there exists a \(\delta > 0 \), such that \(q_{r} \geq 1 + \alpha \) for sufficiently large. Then we have

\[
\frac{h_{r}}{k_{r}} \geq \frac{\alpha}{1 + \alpha}.
\]

If \(A_{k}^{W_{\sigma},s_{r}} B_{k} \), then for every \(\epsilon > 0 \) and for sufficiently large \(r \), we have

\[
\frac{1}{k_{r}} \left\{ \text{the number of } k \in J_{r} : M \left(\left\lfloor \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right\rfloor \geq \epsilon \right) \right\} =
\frac{k_{r}}{h_{r}} \frac{1}{k_{r}} \left\{ \text{the number of } k \in J_{r} : M \left(\left\lfloor \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right\rfloor \geq \epsilon \right) \right\} \leq \frac{1 + \alpha}{\alpha} \frac{1}{k_{r}} \left\{ \text{the number of } k \in J_{r} : M \left(\left\lfloor \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right\rfloor \geq \epsilon \right) \right\}. \tag{4.1}
\]

In other side from fact that \(M \) satisfies the \(\Delta_{2} \) conditions it follows that

\[
M \left(\left\lfloor \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right\rfloor \right) \leq K \cdot \left\lfloor \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right\rfloor,
\]

for some constant \(K > 0 \), in both cases where \(\left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \leq 1 \) and \(\left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| \geq 1 \). Really in first case it follows directly from definition of the Orlicz function. In second case we have

\[
\left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right| = 2 \cdot L(1) = 2^{2} \cdot L(2) = \cdots = 2^{s} \cdot L(s),
\]

such that \(L(s) \leq 1 \). Now taking into consideration \(\Delta_{2} \) conditions of Orlicz functions, we get the following estimation:

\[
M \left(\left\lfloor \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right\rfloor \right) \leq T \cdot L(s) \cdot M(1) = K \cdot \left| \frac{d(x, A_{\sigma^k(m)})}{d(x, B_{\sigma^k(m)})} - L \right|, \tag{4.2}
\]

where \(T \) and \(K \) are constants. Now proof of Theorem follows from relations (4.1) and (4.2). \[\square \]

Theorem 4.4. Let \((X, \rho) \) be a metric space and \(A_{k}, B_{k} \) be non-empty closed subsets of \(X \), for any \(k \in \mathbb{N} \) and \(M \) be an Orlicz function. If \(\lim_{r} \sup q_{r} < \infty \), then from \(A_{k}^{W_{\sigma},s_{r}} B_{k} \) implies \(x^{W_{\sigma},s_{r}} B_{k} \).

Proof. Proof of the theorem is similar to Theorem 3.10 so we omit them. \[\square \]

The proof of the following results we omit, because they are similar to the fact which we have prove above.

Theorem 4.5. Let \((X, \rho) \) be a metric space and \(A_{k}, B_{k} \) be non-empty closed subsets of \(X \), for any \(k \in \mathbb{N} \) and \(M \) be an Orlicz function. The following relations are valid:

(i): If \(\lim_{r} \inf q_{r} > 1 \), then \(A_{k}^{\sigma_{1}^{W_{M}},s_{r}} B_{k} \Rightarrow A_{k}^{\sigma_{1}^{LW_{M}},s_{r}} B_{k} \).

(ii): If \(\lim_{r} \sup q_{r} < \infty \), then \(A_{k}^{\sigma_{1}^{LW_{M}},s_{r}} B_{k} \Rightarrow A_{k}^{\sigma_{1}^{W_{M}},s_{r}} B_{k} \).
(iii): If \(1 < \liminf \eta, q_r \leq \limsup \eta, q_r < \infty \), then \(A_k |_{\sigma_1 |^{LWM}} \sim B_k \iff A_k |_{\sigma_1 |^{WM}} \sim B_k \).

Theorem 4.6. Let \((X, \rho)\) be a metric space and \(A_k, B_k\) be non-empty closed subsets of \(X\), for any \(k \in \mathbb{N}\) and \(M\) be an Orlicz function. Then

1. (a) If \(A_k |_{\sigma_1 |^{WM}} \sim B_k \) then \(A_k |_{\sigma_1 |^{WM}} \sim B_k \).

 \(\therefore \) \(WS^L_{\sigma} \) is a proper subset of \(|\sigma_1 |^{WM} \).

2. If \(M\) satisfies the \(\Delta_2 \) condition and \(A_k \in l_\infty(|\sigma_1 |^{WM}) \) such that \(A_k |_{\sigma_1 |^{WM}} \sim B_k \), then \(A_k |_{\sigma_1 |^{WM}} \sim B_k \).

3. If \(M\) satisfies the \(\Delta_2 \) condition, then \(SW^L_{\sigma} \cap l_\infty(|\sigma_1 |^{WM}) = (|\sigma_1 |^{WM}) \cap l_\infty(|\sigma_1 |^{WM}) \), where \(l_\infty(|\sigma_1 |^{WM}) = \{ (A_k : M(d(x, A_{s^k(m)})) \in l_\infty, x \in X \} \).

Proof.

1. (a) If \(\epsilon > 0 \) and \(A_k |_{\sigma_1 |^{WM}} B_k \), then

\[
\frac{\epsilon}{n} \left\{ \text{the number of } k \leq n : \left| \frac{d(x, A_{s^k(m)})}{d(x, B_{s^k(m)})} - L \right| \geq \epsilon \right\} \leq \epsilon \frac{1}{n} \left\{ \text{the number of } k \leq n : \left(\frac{d(x, A_{s^k(m)})}{d(x, B_{s^k(m)})} - L \right) \geq M(\epsilon) \right\}
\]

\[
\leq \frac{1}{n} \sum_{k=1}^{n} M \left(\frac{d(x, A_{s^k(m)})}{d(x, B_{s^k(m)})} - L \right) \leq \frac{1}{n} \sum_{k=1}^{n} M \left(\frac{d(x, A_{s^k(m)})}{d(x, B_{s^k(m)})} - L \right)
\]

\[
M \left(\frac{d(x, A_{s^k(m)})}{d(x, B_{s^k(m)})} - L \right) \geq M(\epsilon)
\]

(b) To prove this fact it is enough to find a sequence of sets \((A_k)\) such that \(A_k \in WS^L_{\sigma} \) and \(A_k \notin |\sigma_1 |^{WM} \). Let \(L = 1 \) and \(M = x \). We define \(d(x, A_{s^k(m)}) \) to be

\[1, 2, \ldots, [\sqrt{n}] \]

for \(k = i \), for \(i \in \{1, 2, \cdots, [\sqrt{n}]\} \), and \(d(x, A_{s^k(m)}) = 1 \) otherwise. \(d(x, B_{s^k(m)}) = 1 \) for all \(k \). It seems that \((A_k) \) is not \(d\)–metric bounded. In what follows we will prove that \(A_k \in WS^L_{\sigma} \) and \(A_k \notin |\sigma_1 |^{WM} \).

Let \(\epsilon > 0 \) be given, then we have:

\[
\frac{1}{n} \left\{ \text{the number of } k \leq n : \left| \frac{d(x, A_{s^k(m)})}{d(x, B_{s^k(m)})} - L \right| \geq \epsilon \right\} = \frac{\sqrt{n}}{n} \rightarrow 0,
\]

when \(n \rightarrow \infty \), hence \(A_k \in WS^L_{\sigma} \). On the other hand

\[
\frac{1}{n} \sum_{k=1}^{n} M \left(\frac{d(x, A_{s^k(m)})}{d(x, B_{s^k(m)})} - L \right) = 0 + 1 + 2 + \cdots + ([\sqrt{n}] - 1) = \frac{[\sqrt{n}] ([\sqrt{n}] - 1)}{2n},
\]

from which follows that \(A_k \notin |\sigma_1 |^{WM} \).

2. Proof of this part is similar to proof of the above Theorems.

3. Proof follows from part 1 and 2.

Theorem 4.7. Let \(M \) be an Orlicz function and sup \(q_r < \infty \). Then

1. (a) If \(A_k |_{\sigma_1 |^{LWM}} \sim B_k \) then \(A_k |_{\sigma_1 |^{WM}} \sim B_k \).

 \(\therefore \) \(S^L_{\sigma, \sigma} \) is a proper subset of \(|\sigma_1 |^{LWM} \).

2. If \(M\) satisfies the \(\Delta_2 \) condition and \(A_k \in l_\infty(|\sigma_1 |^{LWM}) \), such that \(A_k |_{\sigma_1 |^{LWM}} \sim B_k \), then \(A_k |_{\sigma_1 |^{LWM}} \sim B_k \).
3: If \(M \) satisfies the \(\Delta_2 \) condition, then \(S^{L_{\theta,\sigma}}_b \cap l_\infty(|\sigma_1|LWM) = |\sigma_1|LWM \cap l_\infty(|\sigma_1|LWM) \).

REFERENCES

[34] H. Steinhaus, Sr la convergence ordinate et la convergence asymptotique, Colloq. Math., 2 (1951) 73-84.

BIPAN HAZARIKA
DEPARTMENT OF MATHEMATICS, RAJIV GANDHI UNIVERSITY, RONO HILLS, DOIMUKH 791112, ARUNACHAL PRADESH, INDIA.
E-mail address: bh_rggu@yahoo.co.in

AYHAN ESI
ADYAMAN UNIVERSITY, SCIENCE AND ART FACULTY, DEPARTMENT OF MATHEMATICS, 02040, ADYAMAN, TURKEY.
E-mail address: aesi23@hotmail.com

N. L. BRAHA
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, AVENUE "MOTHER THERESA", 5, PRISHTINE, 10000, KOSOVA.
E-mail address: nbraha@yahoo.com