ESSENTIAL NORM AND ESSENTIAL NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS

AKRAM MANSOORI, MOHSEN ERFANIAN OMIDVAR*

Abstract. We obtain some sharp inequalities for essential numerical radius \(w_e(\cdot) \) of operators. Moreover, we give some applications of our results in estimation of essential norm, and compare our results with some usual norm known results. In particular, we obtain under suitable conditions if \(T \in \mathcal{B}(\mathcal{H}) \), then

\[
\sup_{\|x\|=1} |\langle Tx, x \rangle| \leq \|T\| \leq \sup_{\|x\|=1} \|Tx\|.
\]

1. Introduction

Let \(\mathcal{B}(\mathcal{H}) \) denote the \(C^* \)-algebra of all bounded linear operators on a complex Hilbert space \(\mathcal{H} \) with inner product \(\langle \cdot, \cdot \rangle \). For \(T \in \mathcal{B}(\mathcal{H}) \)

\[
w(T) = \sup \{ |\langle Tx, x \rangle| : \|x\| = 1 \}, \]
\[
\|T\| = \sup \{ \|Tx\| : \|x\| = 1 \},
\]
\[
|T| = (T^*T)^{\frac{1}{2}},
\]

denote the numerical radius, the usual operator norm and the absolute value of \(T \), respectively. It is well known that, \(w(\cdot) \) defines a norm on \(\mathcal{B}(\mathcal{H}) \). This norm is equivalent to the operator norm. In fact, the following more precise result holds:

\[
\frac{1}{2} \|T\| \leq w(T) \leq \|T\|. \tag{1.1}
\]

for any \(T \in \mathcal{B}(\mathcal{H}) \). For basic properties and applications of the numerical radius, we refer to [3,6,7,8,10].

The inequalities in (1.1) have been improved considerably by in [9,11,14,15], it has been shown that if \(T \in \mathcal{B}(\mathcal{H}) \), then

\[
w(T) \leq \frac{1}{2} \|(|T| + |T^*|)\| \leq \frac{1}{2} (\|T\| + \|T^2\|^{\frac{1}{2}}) \leq \|T\|, \tag{1.2}
\]

\[
\frac{1}{4} \|T^*T + TT^*\| \leq w(T) \leq \frac{1}{2} \|T^*T + TT^*\|. \tag{1.3}
\]

2000 Mathematics Subject Classification. Primary 47A12, secondary 47A05, 47B15.

Key words and phrases. Essential norm, Essential numerical radius, Essential numerical range, Norm inequality.

©2017 Ilirias Research Institute, Prishtinë, Kosovë.

Communicated by S.S. Dragomir.
Moreover if T is invertible, then
\[\|T\| \leq \sqrt{2} w(T). \]
If $T = A + iB$ is the cartesian decomposition of T, then A and B are self-adjoint and $T^*T - TT^* = 2(A^2 + B^2)$. Thus, the inequality in (1.3) can be written as
\[\frac{1}{2} \| A^2 + B^2 \| \leq w^2(T) \leq \| A^2 + B^2 \|. \]

Let $T \in \mathcal{B}(\mathcal{H})$, the essential norm of T is defined by
\[\| T \|_e = \| T + \mathcal{K}(\mathcal{H}) \| = \| \pi(T) \| = \inf\{ \| T + K \| ; K \in \mathcal{K}(\mathcal{H}) \} \tag{1.4} \]
where $\mathcal{K}(\mathcal{H})$ is the set of compact operators on complex Hilbert space \mathcal{H}.

The essential numerical range $W_e(T)$ of an operator T on \mathcal{H} is given by
\[W_e(T) = \bigcap_{K \in \mathcal{K}(\mathcal{H})} W(T + K), \]
and note that the most important properties of the essential numerical range are that it is convex and its closure contains the spectrum of the operator (see [4]).

The following properties of $W_e(T)$ are also well known:
\begin{enumerate}
 \item[(I)] $W_e(T + K) = W_e(T)$ for all $K \in \mathcal{K}(\mathcal{H})$.
 \item[(II)] $W_e(T^*) = W_e(T)$.
 \item[(III)] If $a, b \in \mathbb{C}$, $W_e(aT + bI_H) = aW_e(T) + b$.
 \item[(IV)] If $U \in \mathcal{B}(\mathcal{H})$ is a unitary, then $W_e(UTU^*) = W_e(T)$.
\end{enumerate}

The essential numerical radius of T is defined by
\[w_e(T) = \sup\{ |\lambda| ; \lambda \in W_e(T) \} \]
hence $w_e(\cdot)$ defines a norm on the Calkin algebra.

The purpose of this paper is to establish some essential norm inequalities. We also define a new concept for essential numerical radius. Based on this, we obtain some related inequalities. Essential norm inequalities and a related essential numerical radius inequality for the sum of two operators are also given.

2. Essential norm

Recently, Kriete and Moorhouse in [13] showed the following definition of the essential norm. We state it for the sake of convenience.

Definition 2.1. Let $T \in \mathcal{B}(\mathcal{H})$, then
\[\| T \|_e = \sup \left(\limsup_{n \to \infty} \| Tf_n \| \right) \tag{2.1} \]

where E is the collection of all sequences $\{f_n\}$ of unit vector in \mathcal{H} which tend to zero weakly.

Remark. Since \mathcal{H} is reflexive, so for every $T \in \mathcal{B}(\mathcal{H})$, $\| T \|_e = \| T^* \|_e$ (see [2]).

To prove our generalized inequality, we need the following basic lemma.

Lemma 2.1. Let $T, S \in \mathcal{B}(\mathcal{H})$, then
\begin{enumerate}
 \item[(i)] $\| TS \|_e \leq \| T \|_e \| S \|_e$.
 \item[(ii)] If $0 \leq S \leq T$, then $\| S \|_e \leq \| T \|_e$.
 \item[(iii)] $\| T \|_e^2 = \| T^*T \|_e$.
\end{enumerate}
(iv) \[\|T\|_e^3 = \|TT^*T\|_e. \]

(v) If \(T \) is a normal operator, then \[\|T\|^2 = \|T^2\|_e. \]

Proof. (i) For \(K_1, K_2 \in \mathcal{K} (\mathcal{H}) \), we have
\[\|TS\|_e \leq \|TS + TK_2 + K_1S + K_1K_2\| \quad \text{(by (1.4))} \]
\[\leq \|T + K_1\| \|S + K_2\|. \]
Take infimum on \(K_1, K_2 \), we get
\[\|TS\|_e \leq \|T\|_e \|S\|_e. \]

(ii) Let \(T - S \geq 0 \), then \(T - S = C^*C \) for some \(C \in \mathcal{B} (\mathcal{H}) \), therefore
\[T - S + \mathcal{K} (\mathcal{H}) = C^*C + \mathcal{K} (\mathcal{H}) \]
\[= (C^* + \mathcal{K} (\mathcal{H})) (C + \mathcal{K} (\mathcal{H})) \]
\[= (C + \mathcal{K} (\mathcal{H}))^* (C + \mathcal{K} (\mathcal{H})) \geq 0. \]
Which gives the inequality
\[\|S\|_e \leq \|T\|_e. \]

(iii) Let \(\{f_n\} \) be unit vector in \(\mathcal{H} \) which tend to zero weakly, then
\[\|Tf_n\|^2 = \langle Tf_n, Tf_n \rangle = \langle T^*Tf_n, f_n \rangle \leq \|(T^*T) f_n\|. \]
By taking \(\sup_{\{f_n\} \in \mathcal{E}} \left(\lim_{n \to \infty} \sup \right) \) on both sides of the inequality we have
\[\|T\|^2 \leq \|T^*T\|_e. \]
We can also state that
\[\|T^*T\|_e \leq \|T\|_e^2 \quad \text{(by Lemma 2.1 (i) and Remark 2.1)} \]
The proof is complete. (iv) It is not hard to see that
\[\|TT^*T\|_e \leq \|T\|^3 \quad \text{(by Lemma 2.1 (i) and Remark 2.1)} \]
On the other hand
\[\|T\|^4 = \left(\|T\|^2 \right)^2 = \|T^*T\|^2 \]
\[= \|TT^*T\|_e \quad \text{(by Lemma 2.1 (iii))} \]
\[\leq \|T^*\|_e \|TT^*\|_e \quad \text{(by Lemma 2.1 (i))} \]
\[= \|T\|_e \|TT^*T\|_e \quad \text{(by Remark 2.1)} \]
which is exactly the desired result.

(v) Let \(\{f_n\} \) be unit vector in \(\mathcal{H} \) which tend to zero weakly. Then by using normality of the operator \(T \)
\[\|T^2 f_n\| = \|T (T f_n)\| = \|T^* (T f_n)\| \geq \langle T^*T f_n, f_n \rangle = \langle T f_n, T f_n \rangle = \|T f_n\|^2 \]
by taking \(\sup_{\{f_n\} \in \mathcal{E}} \left(\lim_{n \to \infty} \sup \right) \) on both sides of inequality we get
\[\|T^2\|_e \geq \|T\|_e^2. \]
On the other hand by this Lemma (i)
\[\|T^2\|_e \leq \|T\|_e^2 \]
\[\|T^2\|_e \leq \|T\|_e^2 \]
The proof is complete. \(\square \)
Remark. When T is non normal, the inequality in Lemma 2.1(v) is not true, this can be seen from the example $T = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

3. Essential numerical radius

We will often use the following well-known lemma later.

Lemma 3.1. (see [4, corollary 5.2]). Each of the following conditions is necessary and sufficient in order that

(i) $\lambda \in \mathcal{W}_e(T)$;
(ii) $\langle Tf_n, f_n \rangle \to \lambda$ for some sequence $\{f_n\}$ of unit vectors such that $f_n \to 0$ weakly;
(iii) $\langle Tf_n, f_n \rangle \to \lambda$ for some orthonormal sequence $\{f_n\}$.

To achieve our main results, we state for easy reference the following definition of essential numerical radius, that will be applied below.

Definition 3.1. Let $T \in \mathcal{B}(\mathcal{H})$ and E is the collection of all sequences $\{f_n\}$ of unit vector in \mathcal{H} which tend to zero weakly then the essential numerical radius of T is defined by

$$w_e(T) = \sup_{\{f_n\} \in E} \left\{ \limsup_{n \to \infty} |\langle Tf_n, f_n \rangle| \right\}.$$

Proposition 3.2. Let $T \in \mathcal{B}(\mathcal{H})$, then

(i) $w_e(T^2) \leq w_e(T)$.
(ii) If T is a self-adjoint operator on \mathcal{H}, then $\|T\|_e = w_e(T)$.

Proof. (i) Let $T \in \mathcal{B}(\mathcal{H})$ and $\{f_n\}, \{g_n\}$ be unit vector in \mathcal{H} which tend to zero weakly we verify (with the help of parallelogram identity) the following inequality

$$|2 \langle (Tf_n, g_n) + \langle Tg_n, f_n \rangle \rangle | = | \langle T(f_n + g_n), f_n + g_n \rangle - \langle T(f_n - g_n), f_n - g_n \rangle |$$

$$\leq w_e(T) \left(\|f_n + g_n\|^2 + \|f_n - g_n\|^2 \right)$$

$$= 2w_e(T) \left(\|f_n\|^2 + \|g_n\|^2 \right)$$

$$= 4w_e(T).$$

Taking $Tf_n \neq 0$ and $g_n = \|Tf_n\|^{-1}Tf_n$ we conclude that

$$\|Tf_n\|^2 + \langle T^2f_n, f_n \rangle \leq 2w_e(T)\|Tf_n\|$$

Then

$$0 \leq 2w_e(T)\|Tf_n\| - \|Tf_n\|^2 - |\langle T^2f_n, f_n \rangle |$$

$$= - (w_e(T) - \|Tf_n\|^2 + w_e^2(T) - |\langle T^2f_n, f_n \rangle |$$

$$\leq w_e^2(T) - |\langle T^2f_n, f_n \rangle |$$

Hence

$$|\langle T^2f_n, f_n \rangle | \leq w_e(T)$$

by taking $\sup_{\{f_n\} \in E} \left(\limsup_{n \to \infty} \right)$ on both sides of inequality we have

$$w_e(T^2) \leq w_e^2(T).$$
(ii) Due to the fact that $|\langle Tf_n, f_n \rangle| \leq \|Tf_n\|\|f_n\|$ and $\|f_n\| = 1$, we deduce
\[w_e(T) \leq \|T\|_e. \]

On the other hand, let $M = \sup_{\{f_n\} \in E} \left\{ \limsup_{n \to \infty} |\langle Tf_n, f_n \rangle| \right\}$, where $f_n, g_n \in \mathcal{H}$, then
\[
\langle T(f_n + g_n), f_n + g_n \rangle - \langle T(f_n - g_n), f_n - g_n \rangle \\
= 4 \Re \langle Tf_n, g_n \rangle.
\]
Therefore,
\[
\Re \langle Tf_n, g_n \rangle \leq \frac{M}{4} \left(|f_n + g_n|^2 + |f_n - g_n|^2 \right) \\
= \frac{M}{2} \left(\|f_n\|^2 + \|g_n\|^2 \right).
\]
Now, suppose $\|f_n\| = 1$ and $Tf_n \neq 0$, if we get $g_n = \frac{Tf_n}{\|Tf_n\|}$, then
\[
\Re \langle Tf_n, g_n \rangle = \Re \left(Tf_n, \frac{Tf_n}{\|Tf_n\|} \right) = \|Tf_n\|
\]
and by
\[
\Re \langle Tf_n, g_n \rangle \leq \frac{M}{2} (\|f_n\|^2 + \|Tf_n\|^2) = M.
\]
Consequently, $\|T\|_e \leq w_e(T)$. \hfill \qed

As a consequence of this result we get

Corollary 3.3. Let $T, S \in B(\mathcal{H})$, then

(i) $w_e(TS) \leq 4 w_e(T)w_e(S)$.

(ii) If $T, S \in B(\mathcal{H})$ and $TS = ST$. Then $w_e(TS) \leq 2 w_e(T)w_e(S)$.

Proof. (i) It is not hard to see that
\[
w_e(TS) \leq \|TS\|_e \leq \|T\|_e\|S\|_e \leq 4 w_e(T)w_e(S).
\]

(ii) First, we may assume that $w_e(T) = w_e(S) = 1$ and show that $w_e(TS) \leq 2$. Since the essential numerical radius is a norm, by triangle inequality and sub additivity of w_e we have
\[
w_e(TS) = w_e \left(\frac{1}{4} \left[(T + S)^2 - (T - S)^2 \right] \right) \\
\leq \frac{1}{4} \left[w_e(T + S)^2 + w_e(T - S)^2 \right] \\
\leq \frac{1}{4} \left[(w_e(T + S))^2 + (w_e(T - S))^2 \right] \quad \text{(by Proposition 3.1(i))} \\
\leq \frac{1}{4} \left[(w_e(T) + w_e(S))^2 + (w_e(T) - w_e(S))^2 \right] \\
= 2. \hfill \qed
We will need the following observation. If S is a subset of the complex plane let $\text{co}(S)$ denote the convex hull of S.

Lemma 3.4. If $T = A \oplus B$ on $\mathcal{H} \oplus \mathcal{H}$, then $W_e(T) = \text{co}(W_e(A) \cup W_e(B))$.

With the above lemma of essential numerical range in [1], we obtain the result of essential numerical radius.

Theorem 3.5. If $T = A \oplus B$ on $\mathcal{H} \oplus \mathcal{H}$, then $w_e(T) = \max \{w_e(A), w_e(B)\}$.

Proof. Since $W_e(A) \subseteq W_e(A \oplus B)$ and $W_e(B) \subseteq W_e(A \oplus B)$, we have $w_e(A) \leq w_e(A \oplus B)$ and $w_e(B) \leq w_e(A \oplus B)$, and therefore

\[
\max \{w_e(A), w_e(B)\} \leq w_e(A \oplus B).
\]

On the other hand

\[
w_e(A \oplus B) = \sup \{|\lambda| : \lambda \in W_e(A \oplus B)\}
\]

\[
= \sup \left\{ |t_1 x_1 + t_2 x_2| : t_1 + t_2 = 1, x_1 \in W_e(A), x_2 \in W_e(B) \right\}
\]

\[
\leq \sup \left\{ |t_1 x_1 + t_2 x_2| : t_1 + t_2 = 1, x_1 \in W_e(A), x_2 \in W_e(B) \right\}
\]

\[
\leq \max \{w_e(A), w_e(B)\}.
\]

\[\square\]

Utilizing the Cartesian decomposition for operators and same strategies used in [12], one can obtain the following inequality.

Theorem 3.6. Let $T \in \mathcal{B}(\mathcal{H})$. Then

\[
\frac{1}{4} \|T^* T + TT^*\|_e \leq w_e^2(T) \leq \frac{1}{2} \|T^* T + TT^*\|_e.
\]

As a particular case of interest, we can state that:

Corollary 3.7. Let $T \in \mathcal{B}(\mathcal{H})$. Then

\[
\frac{1}{2} \|T\|_e \leq w_e(T) \leq \|T\|_e.
\]

Proof. The desired result follows from the chain of the inequalities

\[
\frac{1}{4} \|T\|^2_e \leq \frac{1}{4} \|T^* T + TT^*\|_e \leq w_e^2(T) \leq \frac{1}{2} \|T^* T + TT^*\|_e \leq \|T\|^2_e.
\]

The first inequality in (3.1) follows from the fact that $0 \leq T^* T \leq T^* T + TT^*$ and lemma(2.1(ii)), and the last inequality in (3.1) follows by the triangle inequality essential norm in Calkin algebra and lemma(2.1(iii))

\[\square\]

Corollary 3.8. Let $T \in \mathcal{B}(\mathcal{H})$ with the Cartesian decomposition $T = A + iB$, then

\[
\frac{1}{2} \|A^2 + B^2\|_e \leq w_e^2(T) \leq \|A^2 + B^2\|_e.
\]

(3.2)
Remark

Finally in this section, we obtain the relation between essential norm and numerical radius. In general the inequality \(w(T) \leq \|T\|_e \) is not true. For example if \(T = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \), then \(\|T\|_e = 0 \). In the following we show that \(w(T) \leq \|T\|_e \) is true under suitable conditions.

We need the next lemma, which will be very crucial for our purpose. For the reader’s convenience, we state it again (see [5, lemma 2.1]).

Lemma 3.9. Let \(T \in B(\mathcal{H}) \), then there exists an orthonormal sequence \(\{f_n\} \) such that \(\|Tf_n\| \to \|T\|_e \). Furthermore, if \(P \) is an infinite rank projection and \(TP = T \), then we can choose \(f_n \) so that the additional condition \(Pf_n = f_n \) for all \(n \) is satisfied.

Theorem 3.10. Let \(T \in B(\mathcal{H}) \), if there exists an infinite rank projection \(P \) such that \(TP = T \), then \(w(T) \leq \|T\|_e \).

Proof. As shown in the proof of Lemma 4.4, there exists an orthonormal sequence \(\{f_n\} \) such that \(\|Tf_n\| \leq \|T\|_e \) for all \(n \), then for \(x = \sum_{n=1}^{\infty} \langle x, f_n \rangle f_n \) we have

\[
|\langle Tx, x \rangle| = \left| \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \langle x, f_n \rangle \langle x, f_m \rangle \langle Tf_n, f_m \rangle \right| \\
\leq \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} |\langle x, f_n \rangle| |\langle x, f_m \rangle| |\langle Tf_n, f_m \rangle| \\
\leq \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} |\langle x, f_n \rangle| |\langle x, f_m \rangle| |Tf_n| \\
\leq \|T\|_e \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} |\langle x, f_n \rangle| |\langle x, f_m \rangle| \\
\leq \|T\|_e \left(\sum_{n=1}^{\infty} |\langle x, f_n \rangle|^2 \right)^{\frac{1}{2}} \left(\sum_{m=1}^{\infty} |\langle x, f_m \rangle|^2 \right)^{\frac{1}{2}} \\
= \|T\|_e \|x\|^2.
\]

(by the Cauchy-Schwarz inequality)

(by the Parseval equation)

Now the result follows by taking the supremum over all unit vectors in \(\mathcal{H} \).

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

Akram Mansoori
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
E-mail address: aram777@yahoo.com

Mohsen Erfanian Omidvar
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
E-mail address: erfanian@mshdiau.ac.ir