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A NEW LOMAX DISTRIBUTION FOR MODELING SURVIVAL
TIMES AND TAXES REVENUE DATA SETS

HISHAM A. H. ELSAYED1 AND HAITHAM M. YOUSOF2

Abstract. In this work, a new compound extension of the Lomax distribution
is introduced and studied. The new extension is derived based on a well
known compound family called exponentiated generalized G Poisson family of
distributions. Some of its properties are derived as well as a numerical analysis
for the model variance, skewness and kurtosis is introduced. The new density
is expressed as a linear combination of the Lomax densities. Two applications
are provided along with some important plots to illustrate the importance
and the �exibility of the new Lomax distribution. The method of maximum
likelihood is used to estimate the unknown parameters as well as a Monte
Carlo simulation study is conducted. The new model provided an adequate �t
compared to other related models with smallest values for AIC, BIC, CAIC
and HQIC. The new model is much better than many other useful well-known
Lomax extensions.

1. Introduction

[21] pioneered the Lomax (Lx) or Pareto II (Pa II) or the shifted Pa II (SPaII)
distribution for modeling failure time data in business. The Lx distribution has
found wide application in various �elds such as engineering, actuarial science, size
of cities, medical and biological sciences, income and inequality of wealth, lifetime
and reliability modeling. The cumulative distribution function (CDF) of the one
parameter Lx model is given as

H�(x) = 1� (1 + x)�� ; (1)

where � is the shape parameter. The Lx model in (1) is a special case from the
well known Burr type XII (BXII) (see [9]). The relationship between the Burr
distribution and the various other distributions, namely, the Lx, the Compound
Weibull (CW), the Weibull-Exponential (WE), the logistic (Lc), the log logistic
(LLc), the Weibull (W) and the Kappa family (Ka) of distributions is summarized
in many articles (see [9], [10] and [11], [12] and [29]). The corresponding probability
density function (PDF) of (1) is given by

h�(x) = � (1 + x)
�(1+�)

: (2)
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2 ELSAYED AND YOUSOF (2019)

A random variable (rv) X is said to have the BXII distribution if its CDF is given
as

Ha;�(x) = a�x
a�1 (1 + xa)

�(1+�)
;

where both a and b are shape parameters. For a = 1, we have the Lx model in
(2) . Recentely, [6] introduced and studied a new compound family of distributions
called exponentiated generalized G Poisson (EGGP) family of distributions. The
CDF and PDF of the EGGP family given by

F�;�;�;� (x) =
1

�(�)

�
1� exp

�
��

n
1�

h
1�H� (x)

i�o���
; (3)

where �(�) = 1 � exp (��) and the two additional shape parameters are both
greater than zero. The CDF in (3) is called the EGGP family of distributions. The
corresponding PDF is

f�;�;�;� (x) = ���
h� (x)

h
1�H� (x)

i��1 n
1�

h
1�H� (x)

i�o��1
�(�) exp

�
�
n
1�

h
1�H� (x)

i�o�� : (4)

For � = 1 we have EGP class of distribution and for � = 1 we have GGP class of
distribution both of which are embedded in EGGP class. In this paper, we propose
and study a new compound extension of Lx distribution using the EGGP family
of distributions. Due to Aryal and Yousof (2017), the CDF of the exponentiated
generalized Lomax Poisson (EGLxP) distribution can be derived as

F�;�;�;� (x) =
1

�(�)

�
1� exp

�
��

h
1� (1 + x)���

i���
: (5)

The corresponding PDF can be derived as

f�;�;�;� (x) = ����
(1 + x)

����1
h
1� (1 + x)���

i��1
�(�) exp

�
��

h
1� (1 + x)���

i�� : (6)

The hazard rate function (HRF) can be calculated by f�;�;�;� (x) = [1� F�;�;�;� (x)] :
For � = 1; we have the exponentiated Lomax Poisson (ELxP) distribution. For
� = 1; we have the generalized Lomax Poisson (GLxP) distribution. The EGLxP
density may be unimodal and right-skewed (see Figure 1) whereas the EGLxP HRF
can be upside down then upside down or increasing or decreasing (see Figure 2).

Figure 1: Plots of the new PDF for selected parameter values.
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A NEW LOMAX DISTRIBUTION 3

Figure 2: Plots of the new HRF for selected parameter values.

Using the power series expansion of exp(x) =
1P
m=0

xm

m! and the series expansion

(1� �)a�1 =
1X
w=0

(�1)w � (a)
w! � (a� w) �

w;

the PDF in (6) can be expressed as

f�;�;�;� (x) =

1X
r=0

�r g�(1+r)(x); (7)

where

�r = ��

1X
k=0

(�1)r � (k + 1)
r! � (k + 1� r)

1X
i;j=0

(�1)i+j+k

i!��i�1�(�) (1 + r)

�
� (1 + i)� 1

j

��
� (1 + j)� 1

k

�
and

g�(1+r)(x) = a [� (1 + r)] (1 + x)
�[�(1+r)]�1

;

is the BXII density with parameter � (1 + r). By integrating (6), we obtain the
mixture representation of f�;�;�;� (x) as

F�;�;�;� (x) =
1X
r=0

�r G�(1+r)(x); (8)

where

G�(1+r)(x) = 1� (1 + x)��(1+r)

is the CDF of the BXII model with parameter � (1 + r). Equation (7) reveals that
the EGLxP density function is a linear combination of BXII densities. Thus, some
structural properties of the new model such as the ordinary, incomplete moments
and generating function can be immediately obtained from well-established prop-
erties of the Lx distribution. The properties of Lx distribution have been studied
by many authors in recent years, see [8], [17], [23], [3], [24], [30], [20], [4], [18], [16],
[31] and [19], among others.
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4 ELSAYED AND YOUSOF (2019)

2. Mathematical properties

2.1. Ordinary and incomplete moments. The nth ordinary moment of X is
given by

�0n = E(X
n) =

Z 1

�1
xn f (x) dx:

Using (7), we obtain

�0n = �
1X
r=0

�k (1 + r) B ((1 + r) � � n; 1 + n) j[n<(�+r�)]: (9)

Setting r = 1 in (9), we have the mean of X

E(X) = �01 = �

1X
r=0

�k (1 + r)B ((1 + r) � � 1; 2) j[1<(�+r�)]:

The expression in (9) can be computed numerically 8 n < (� + r�). The variance
(V(X)) skewness (S(X)) and kurtosis (K(X)) can be calculated from the ordinary
moments using the well-known relationships (see Table 1).

The sth incomplete moments, say Is (t), is given by

Is (t) =

Z t

�1
xsf (x) dx:

Using Equation (7), we obtain

Is (t) = �
1X
r=0

�k (1 + r) B (t; (1 + r) � � s; 1 + s) j[s<(�+r�)]; (10)

where

B(#1; #2) =

Z 1

0

z#1�1 (1 + z)�(#1+#2)dz

and

B(�;#1; #2) =

Z �

0

z#1�1 (1 + z)�(#1+#2)dz

are the beta and the incomplete beta functions of the second type, respectively. The
�rst incomplete moment of the EGLxP model, I1 (t), can be obtained by setting
s = 1 in (10). Another application of the �rst incomplete moment which is related
to mean residual life and mean waiting time given by

m1 (t) =
1� I1 (t)

1� F�;�;�;� (t)
� t and M1 (t) = t�

I1 (t)

F�;�;�;� (t)
;

respectively. The amount of scatteredness in a population is evidently measured
to some extent by the totality of deviations from the mean and median. The mean
deviations about the mean is

[�� (X) = E(jX � �
0

1j) =
Z 1

0

�
jX � �

0

1j
�
f�;�;�;� (x) dx = 2�

0

1F (�
0

1)� 2I1(�
0

1)
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A NEW LOMAX DISTRIBUTION 5

and about the median is

�� (X) = E

�����X �Q
�
1

2

������
=

Z 1

0

�����X �Q
�
1

2

������ f�;�;�;� (x) dx
= �

0

1 � 2I1
�
Q

�
1

2

��
;

where �
0

1 = E (X) comes from (9), F (�
0

1) is simply calculated, I1(�
0

1) is the �rst
incomplete moments and Q

�
1
2

�
is the median of X, Median(X) = Q

�
1
2

�
is the

median, F (�01) is easily calculated from (5) and I1 (t) is the �rst incomplete moment
given by (10) with s = 1. The main application of the �rst incomplete moment refers
to the Bonferroni and Lorenz curves. These curves are very useful in economics,
demography, insurance, reliability and medicine. The answers to many important
questions in economics require more than just knowing the mean of the distribution,
but its shape as well. This is obvious not only in the study of econometrics but in
other areas as well.

The nth central moment of X, say Mn, follows as

�n = E(X � �)n =
nX
h=0

(�1)h (�01)n �0n�h
�
n

h

�
:

The cumulants (�n) of X follow recursively from

�n = �
0
n �

n�1X
r=0

�r �
0
n�r

�
n� 1
r � 1

�
;

where

�1 = �01;

�2 = �02 � (�01)
2
;

and

�3 = �
0
3 � 3�02�01 + (�01)

3
:

3. Numerical analysis of the E(X); V(X), S(X) and K(X)

Numerical analysis of the E(X); V(X), S(X) and K(X) are calculated in Table
1. Based on Table 1 we note that:
1-The mean of the EGLxP distribution increases as � increases
2-The mean of the EGLxP distribution decreases as �; � and � increases.
3- The skewness of the EGLxP distribution is can positive and negative.
4- The kurtosis of the EGLxP distribution can be more than 3 and less than 3.
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6 ELSAYED AND YOUSOF (2019)

Table 1: E(X), V(X), S(X) and K(X) of the EGLxP distribution.

� � � � E(X) Var(X) Ske(X) Ku(X)

5 1.25 �5 0.95 0.7283911 0.34054330 3.813461 63.8957
10 0.3003911 0.03737399 1.948094 11.40112
15 0.1887069 0.01298946 1.619420 8.403845
20 0.1374980 0.00648934 1.479558 7.376173
50 0.0522785 0.00084427 1.258053 6.013938
100 0.0257100 0.00019736 1.307164 4.947075
250 0.0101832 3.03421�e�5 1.832651 �1.739131
450 0.0063489 8.15736�e�6 8.486452 �10.24382

20 0.25 �3 1.5 0.02797689 0.001173043 2.389037 11.9058
0.5 0.04315835 0.001611938 1.858937 8.680563
1 0.06194953 0.002016842 1.518852 7.091069
5 0.1149673 0.00267980 1.172759 5.892333
10 0.1402637 0.002877628 1.122265 5.755609
50 0.2024511 0.003270011 1.08043 5.650053
100 0.2304725 0.003433577 1.075108 5.637130
500 0.2982161 0.003830452 1.070836 5.626837
1000 0.3285513 0.004012657 1.0703 5.625555
2000 0.3596000 0.004202981 1.070033 5.624902
5000 0.4017641 0.004468082 1.070149 5.619422

50 3 �100 0.5 0.2871793 0.004657163 1.393612 6.826510
�75 0.2723970 0.004556759 1.391273 6.817779
�50 0.2518173 0.004422224 1.386519 6.800162
�25 0.2172592 0.004215819 1.371593 6.745989
�5 0.1392291 0.003944029 1.253189 6.329854
5 0.0342396 0.0005141585 2.792818 21.41780
25 0.0152548 4.640241�e�5 �3.279599 28.07781
40 0.01253917 2.887997�e�5 �2.395407 7.631431
50 0.01145958 2.338039�e�5 2.066845 �23.20995
100 0.00874408 1.262219�e�5 17.61696 �101.7821

5 10 5 0.5 0.2053520 0.007693594 1.79618 39.37493
1 0.0971905 0.00152511 1.254992 10.31887
3 0.0312584 0.0001459914 2.096629 �4.176897
5 0.0186228 5.103575�e�5 �4.252254 51.4869
8 0.0115931 1.961035�e�5 8.721583 �66.49622
10 0.0092623 1.248213�e�5 16.10603 �97.92557

3.1. The moment generating function (MGF). The MGF of of X, say MX (t) =
E
�
etX

�
; is given by

MX (t) =
1X
r=0

tr

r!
�
0

r =
1X

k;r=0

tr

r!
�k (1 + r) � B ((1 + r) � � n; 1 + n) j[n<(�+r�)]:
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A NEW LOMAX DISTRIBUTION 7

3.2. Probability weighted moments (PWMs). The PWMs are expectations
of certain functions of a random variable and they can be de�ned for any random
variable whose ordinary moments exist. The PWM method can generally be used
for estimating parameters of a distribution whose inverse form cannot be expressed
explicitly. The (s; r)th PWM of X following the EGLxP model, say �s;r, is formally
de�ned by

�s;r = E (X
s F (X)r) =

Z 1

�1
xs F (x)r f (x) dx:

Using equations (5) and (6), we can write

f (x) F (x)r =
1X
h=0

�h h�(1+h)(x)

where

�h = ��
1X
k=0

(�1)h � (k + 1)
h! � (k + 1� h)

1X
w;i;j=0

(�1)w+i+j+k (1 + w)i

i!��i�1 �1+r(�)

�
�
r

w

��
� (1 + i)� 1

j

��
� (1 + j)� 1

k

�
:

Then, the (s; r)th PWM of X can be expressed as

�s;r = �

1X
h=0

�h (1 + h) � B ((1 + h) � � s; 1 + s) j[s<(�+h�)]:

3.3. Entropies. The Rényi entropy of a random variable X represents a measure
of variation of the uncertainty. This entropy is de�ned by

I� (X) = (1� �)�1 log
Z 1

�1
f (x)

�
dxj(�>0 and � 6=1):

Using the power series expansion, the PDF in (5) can be expressed as

f�;�;�;� (x)
�
=

1X
k=0

�k (�)
�
(1 + x)

��(1+�)
[1� (1 + x)��]k;

where

�k =

�
��

�(�))

�� 1X
i;j=0

(�1)i+j+k

i!����i��i

�
�
� (i+ �)� �

j

��
� (j + �)� �

k

�
j(�>0 and � 6=1):

Therefore, the Rényi entropy of the EGLxP model is given by

I� (X) =
log
hP1

k=0�kI
(�)
(0;1)

i
1� � ;

where

I
(�)
(0;1) =

Z 1

0

�� (1 + x)
��(1+�)

[1� (1 + x)��]kdx:

The q-entropy, say Hq (X), can be obtained as
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Hq (X) = (q � 1)�1 log
(
1�

" 1X
k=0

�Fk I
(q)
(0;1)

#)
;

where

�Fk =

�
��

�(�)

�q 1X
i;j=0

(�1)i+j+k

i!��q�iq�i

�
�
� (i+ q)� q

j

��
� (j + q)� q

k

�
j(q>0 and q 6=1);

and

I
(q)
(0;1) =

Z 1

0

(�)
q
(1 + x)

�q(1+�)
[1� (1 + x)��]kdx

The Shannon entropy of a random variable X, say SH (X), is de�ned by

SH (X) = E f� [log f�;�;�;� (x)]g :
It is the special case of the Rényi entropy when � " 1:

3.4. Reversed residual life and mean inactivity time. The nth moment of
the reversed residual life, say

Mn(t) = E [(t�X)n] j(X�t; t>0 and n=1;2;:::)
uniquely determines F (x). We obtain

Mn(t) =

R t
0
(t� x)ndF�;�;�;� (x)

F�;�;�;� (t)
:

Then, the nth moment of the reversed residual life of X becomes

Mn(t) =
�

F (t)

1X
h=0

�Fh (1 + h)B (t; (1 + h) � � n; 1 + n) j[n<(�+h�)]; (11)

where

�Fh = �h
Xn

r=0
(�1)r

�
n

r

�
tn�r:

The mean inactivity time (MIT) or mean waiting time (MWT) also called the mean
reversed residual life function is given by

M1(t) = E(t�X) j(X�t; t>0 and n=1);
and it represents the waiting time elapsed since the failure of an item on condition
had occurred in (0; t). The MIT of the EGLxP distribution can be obtained easily
by setting n = 1 in (11) .

4. Stress-strength reliability model

The stress-strength model is the most widely used approach for reliability esti-
mation. This model is used in many applications of physics and engineering, such
as strength failure and system collapse. In stress-strength modeling,

R (X1; X2jX2<X1
) = Pr(X2 < X1) =

Z 1

0

f (x1)F (x2) dx

is a measure of reliability of a system when it is subjected to random stress X2
and has strength X1. The system fails if and only if the applied stress is greater
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than its strength and the component will function satisfactorily whenever X1 > X2.
R (X1; X2jX2<X1) can be considered as a measure of system performance and nat-
urally arises in electrical and electronic systems. Other interpretation can be that,
the reliability, say R (X1; X2jX2<X1

), is the probability that the system is strong
enough to overcome the stress imposed on it. Let X1 and X2 be two independent
rvs with EGLxP (x1;�1; �1; �1; �) and EGLxP (x2;�2; �2; �2; �) distributions. The
reliability R (X1; X2jX2<X1) is given by

R (X1; X2jX2<X1
) =

Z 1

0

f
(1)
�1;�1;�1;�

(x)F
(2)
�2;�2;�2;�

(x) dx:

Then

R (X1; X2jX2<X1) =
1X

k;w=0

�k;w;

where

�k;w = �1�2�1�
�1
2 ��1(�1)�

�1
(�2)

(�1)k+w
1X

i;j;m;h=0

�i+11 �m+12

(�1)i+j+m+h

i!m!

�
�
(1 + i)�1 � 1

j

��
(1 + j)�1 � 1

k

��
(m+ 1)�2 � 1

h

��
(1 + h)�2 � 1

w

�
;

and ��1(�i) = 1= [1� exp (��i)] 8 i = 1; 2:

5. Order statistics

Let X1; : : : ; Xn be a random sample (rs) from the EGLxP distribution and let
X(1); : : : ; X(n) be the corresponding order statistics. The PDF of the ith order
statistic, say Xi:n, can be written as

fi:n (x) =
f (x)

B (i; n� i+ 1)

n�iX
j=0

(�1)j
�
n� i
j

�
F j+i�1 (x) ; (12)

where B(�; �) is the beta function. Substituting (5) and (12) in equation (12) , we
get

f (x) F (x)j+i�1 =
1X
p=0

#p h�(1+p)(x);

where

#p = ��
1X
k=0

(�1)p � (k + 1)
p!� (k + 1� p)

1X
w;m;h=0

(�1)w+m+h+k (1 + w)m

m!��m�1(�) �j+i(�)

�
�
(m+ 1)� � 1

h

��
(1 + h)�� 1

k

��
j + i� 1

w

�
:

Moreover, the PDF of Xi:n can be expressed as

fi:n (x) =
n�iX
j=0

(�1)j
�
n�i
j

�
B (i; n� i+ 1)

1X
p=0

#p h�(1+p)(x);
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therefore

E (X�
i:n) = �

n�iX
j=0

(�1)j
�
n�i
j

�
B (i; n� i+ 1)

1X
p=0

#p (1 + p) B ((1 + p) � � � ; 1 + �) j[�<(�+p�)]:

(13)
The L-moments are analogous to the ordinary moments but can be estimated by
linear combinations of order statistics. They exist whenever the mean of the distri-
bution exists, even though some higher moments may not exist, and are relatively
robust to the e¤ects of outliers. Based upon the moments in equation (13) , we can
derive explicit expressions for the L-moments of X. They are linear functions of
expected order statistics de�ned by

�(r) =
1

r

r�1X
d=0

(�1)d
�
r � 1
d

�
E (Xr�d:r) ; r � 1:

The �rst four L-moments are given by:

�(1) = E (X1:1) ; �(2) =
1

2
E (X2:2 �X1:2) ;

�(3) =
1

3
E (X3:3 � 2X2:3 +X1:3) ;

and
�(4) =

1

4
E (X4:4 � 3X3:4 + 3X2:4 �X1:4) :

6. Estimation

Let X1; : : : ; Xn be a random sample from the EGLxP distribution with parame-
ters �; �; � and �. Let	 = (�; �; �; �)| be a 4�1 parameter vector. For determining
the MLE of 	, we have the log-likelihood function

` (	) = n log�+ n log � + n log �+ n log �

�n log [1� exp(��)]� (�� + 1)
nX
i=1

(1 + xi)

+ (� � 1)
nX
i=1

h
1� (1 + xi)���

i
� �

nX
i=1

h
1� (1 + xi)���

i�
:

The components of the score vector

U	j[	=(�;�;�;�)|] =
@

@	
` (	)

=

�
U� =

@` (	)

@�
;U� =

@` (	)

@�
;U� =

@` (	)

@�
;U� =

@` (	)

@�

�|
;

are easily to be derived. Setting the nonlinear system of equations U� = U� =

U� = U� = 0 and solving them simultaneously yields the MLE b	 = (b�; b�; b�;b�)|.
To solve these equations, it is usually and more convenient to use nonlinear opti-
mization methods such as the quasi-Newton algorithm to numerically maximize `.
For interval estimation of the parameters, we obtain the 4�4 observed information
matrix J (	) = f @2`

@r @sg (for r; s = �; �; �; �), whose elements can be computed nu-
merically. Under standard regularity conditions when n ! 1, the distribution of�b	� can be approximated by a multivariate normal N5(0;J�b	��1) distribution
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to construct approximate con�dence intervals for the parameters. Here, J
�b	� is

the total observed information matrix evaluated at J
�b	�. The method of the re-

sampling bootstrap can be used for correcting the biases of the MLEs of the model
parameters. Good interval estimates may also be obtained using the bootstrap
percentile method. The elements of J(	) are easily to be derived.

7. Simulation results

To assess the performance of the maximum likelihood estimation, the EGLxP
model is simulated via taking n = 50; 100; 250; 500 and 1; 000: For each sample size,
the ML method is used to evaluate the parameters of the new distribution using
the optim function of the R software. Then, we repeat this process N = 1000 times
and compute the averages of the estimates (AEs) and mean squared errors (MSEs).
Table 2 gives all simulation results. The values in Table 2 indicate that the MSEs of
estimators b�; b�; b� and b� decay toward zero when n increases for all settings of �; �;
�; and � as expected. This fact supports that the asymptotic normal distribution
provides an adequate approximation to the �nite sample distribution of the MLEs.
Table 2 shows the AEs and MSEs based on N = 1000 simulations where the true
parameter values are I : � = 5; � = 2; � = 3 and � = 2: II : � = 3; � = 4; � = �10
and � = 4:
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Table 2: AEs and MSE based on N = 1000 simulations.

n 	 AEs MSEs

I
50 5 5.84403323 0.69436011

2 2.28163710 0.81909395
3 3.56557123 0.49168712
2 2.40355912 0.84609418

100 5 5.59411403 0.39804399
2 2.23288039 0.52353585
3 3.50863271 0.39988276
2 2.35311438 0.51143248

250 5 5.21055377 0.12107023
2 2.10986940 0.24312424
3 3.40628724 0.18692885
2 2.11621181 0.39823036

500 5 5.04934358 0.08617319
2 2.04143102 0.10541143
3 3.05185511 0.11233384
2 2.06063187 0.18355114

1000 5 5.00433691 0.00063563
2 2.00661126 0.00112410
3 3.00822481 0.00210283
2 2.00123235 0.00511023
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Table 3: Bias and MSE based on N = 1000 simulations.

n 	 AEs MSEs

II
50 3 3.60554113 2.40659868

4 4.57040399 0.99864321
�10 �10.81995431 1.41688652
4 4.71435066 0.63666524

100 3 3.51659323 1.67786037
4 4.44318761 0.40081991
�10 �10.61773233 0.81642610
4 4.55435511 0.32710983

250 3 3.31655985 1.10306561
4 4.14354240 0.21959917
�10 �10.11808771 0.43987633
4 4.18605676 0.17710983

500 3 3.10434442 0.38118071
4 4.05040869 0.03633921
�10 �10.01033678 0.10053533
4 4.02113651 0.0077198

1000 3 3.00110565 0.01009398
4 4.00102304 0.00062334
�10 �10.00231168 0.00398648
4 4.00058318 0.00008542

8. Modeling real data

Two real data applications are provided to illustrate the importance, potential-
ity and �exibility of the EGLxP model. According to these data, we compare the
EGLxP distribution with BXII, Marshall-Olkin BXII (MOBXII) ([5]), Topp Leone
BXII (TLBXII) ([31]), Zografos-Balakrishnan BXII (ZBBXII) ([4]), Beta BXII
([27]), Beta exponentiated BXII (BEBXII) ([22]), Kumaraswamy BXII (KwBXII)
([26]), BXIIBXII ([13]), Burr-Hatke BXII (BHBXII) ([30]), Burr-Hatke exponenti-
ated BXII (BHEBXII) ([28]), Five parameters Beta BXII (FBBXII) (Paranaiba et
al. (2011)), Five parameters (FKwBXII) distribution ([26]), Weibull Generalized
BXII (WGBXII) ([2]), Weibull Generalized Lx (WGLx) ([14]) and Five parameters
Weibull generalized-BXII (FWGBXII) ([15]) distributions.

Data set I (survival times in days of 72 guinea pigs infected with virulent tubercle
bacilli, originally observed and reported by [7]): {0.1, 0.33, 1.08, 1.08, 1.08, 0.44,
0.56, 0.59, 0.72, 0.74, 0.77, 2.54, 2.78, 2.93, 3.27, 3.42, 0.92, 0.93, 0.96, 1, 1, 1.02,
1.05, 1.07, 07, 1.09, 1.12, 1.13, 1.15, 1.36, 1.39, 1.44, 1.83, 1.95, 1.96, 1.97, 2.02,
1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 2.13, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68,
1.71, 1.72, 1.76, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 3.47, 3.61,
4.02, 4.32, 4.58, 5.55}. Data set II (called taxes revenue data or the actual taxes
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revenue data (in 1000 million Egyptian pounds)): {5.9, 20.4, 13.3, 8.5, 21.6, 14.9,
16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 18.5, 5.1,6.7, 17, 9.2, 26.2, 21.9,16.7, 21.3, 35.4,
14.3, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 8, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7,
18.1, 16.5, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 11.9, 7, 8.6,12.5, 10.3, 11.2, 6.1, 8.9, 7.1,
10.8}. This data set was used by [25] and [31].

The total time test plot (TTT) (see [1]) for the two real data sets is presented in
Figure 3.

Survival Times Taxes Revenue
Figure 3: TTT plots for the survival times data set.

These plots indicates that the empirical HRF for the two data sets is increasing.
We consider the goodness-of-�t statistics of the Akaike information criterion (AIC),
Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC)
and consistent Akaike information criterion (CAIC), where

AIC = 2
h
m� `

�b	�i ;
BIC = 2

�
1

2
m log (n)� `

�b	�� ;
HQIC = 2

n
m log [log (n)]� `

�b	�o ;
and

CAIC = 2
�

mn

n�m� 1 � `
�b	�� ;
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where m is the number of parameters, n is the sample size and �2`
�b	� is the

maximized log-likelihood. Generally, the smaller these statistics indicate better �t.
Based on the values in Tables 5 and 7 and Figures 4-8, the EGLxP model provides
the best �t compared to other extensions of the Lx models with smallest values for
BIC, AIC, CAIC and HQIC.
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Table 4: MLEs, standard errors, con�dence interval for survival times data set.

Model Estimates

BXII(�; �) 3.102, 0.465
(0.538), (0.077)

(2.05,4.16), (0.31,0.62)

MOBXII(�; �; 
) 2.259,1.533, 6.760
(0.864), (0.907), (4.587)

(0.57,3.95), (0,3.31), (0, 15.75)

BHBXII(�; a; b) 9.22, 1.96, 0.01
(6.82), (1.5), (0.01)

(0, 22.8), (0, 4.96), (0, 0.03)

WGLx(�; �; b) 2.027, 0.752, 0.82,
0.18, 3.88, 4.25

(1.7,2.4), (0,8.4), (0,9.4)

BHEBXII(�; �; a; b) 7.95, 7.945, 0.085, 72.75
(4.51), (0.00), (0.00), (34.4)
(0, 16.9), �, �, (3.95, 141.55)

TLBXII(�; �; 
) 2.393,0.458,1.796
(0.907), (0.244),(0.915)

(0.62,4.17),(0, 0.94),(0.002,3.59)

KwBXII (�; �; �; �) 14.105,7.424, 0.525, 2.274
(10.805), (11.850), (0.279),(0.990)

(0, 35.28), (0.30.65), (0, 1.07),(0.33, 4.21)

BBXII(�; �; �; �) 2.555, 6.058,1.800,0.294,
(1.859), (10.391), (0.955),(0.466)

(0, 6.28), (0, 26.42), (0, 3.67),(0, 1.21)

WGBXII(
; �; a; b) 12.91, 1.798, 2.61, 0.052
(19.4), (1.05), (1.1), (0.08)

(0, 51.7), (0, 3.8), (0.4, 4.8), (0, 21)

BEBXII(�; �; �; �; 
) 1.876,2.991, 1.780, 1.341, 0.572
(0.094), (1.731), (0.702), (0.816), (0.325)

(1.7,2.06), (0, 6.4), (0.40, 3.2), (0, 2.9), (0, 1.21)

BXIIBXII(�; �; a; b; c) 99.99, 84.82, 0.016, 1.023, 257.75
(9.89�e1), (4.089�e2), (1.17�e�3), (3.55�e�2), (0.00)

(46.2, 153.8), (24.2, 145.4), (5, 0.135), (0, 1.9), �

FWGBXII(�; �; a; b; c) 6.98, 0.07, 0.22, 20.196, 12.26
(0.00), (0.00), (0.00), (0.00), (0.00),

EGBXIIP(�; �; �; a; b) 1.45, 3.07, �4.265, 1.166, 2.047
(0.000), (0.000), (1.6), (0.000), (0.000),

�, �, (�7.5, �1.1), �, �

EGLxP(�; �; �; �) 16.72, 3.36, �5.44, 0.21
(0.00), (1.6), (1.88), (0.00)

�, (0.16, 6.56), (�9.2, �1.68), �
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Table 5: AIC, BIC, CAIC and HQIC values for the survival times data.

Model AIC, BIC, CAIC, HQIC

BHBXII 1103.2, 1110, 1103.5, 1105.8

BHEBXII 872.7, 881.85, 873.34, 876.37

BXII 209.60, 214.15, 209.77, 211.40

MOBXII 209.74, 216.56, 210.09, 212.44

TLBXII 211.80, 218.63, 212.15, 214.52

KwBXII 208.76, 217.86, 209.36, 212.38

BBXII 210.44, 219.54, 211.03, 214.06

BEBXII 212.10, 223.50, 213.00, 216.60

BXIIBXII 228.12, 239.50, 229.03, 232.65

WGBXII 213.88, 222.98, 214.5, 217.5

FWGBXII 215.76, 216.7, 227.14, 220.29

EGBXIIP 207.23, 18.61, 208.14, 211.76

WGLx 208.80, 215.70, 209.21, 211.6

EGLxP 205.41, 214.52, 206.01, 209.04
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Table 6: MLEs, standard errors, con�dence interval for taxes revenue data set.

Model Estimates

BXII(�; �) 5.615, 0.072
(15.048), (0.194)
(0, 35.11), (0, 0.45)

MOBXII(�; �; 
) 8.017, 0.419, 70.359
(22.083), (0.312), (63.831)

(0, 51.29), (0, 1.03), (0, 195.47)

TLBXII(�; �; 
) 91.320, 0.012, 141.073
(15.071), (0.002), (70.028)

(61.78,120.86), (0.008, 0.02), (3.82,278.33)

WGLx(�; �; b) 3.97, 1.927, 0.1299
(0.386), (0.00), (0.00)

(3.2, 4.7), �, �

BHBXII(�; a; b) 33.93, 5.3, 0.0022
(4.197�e1), (6.4), 2.6�e�4
(11.1, 56.7), (0, 18.1), (0, 09)

KwBXII (�; �; �; �) 18.130, 6.857, 10.694, 0.081
(3.689), (1.035), (1.166), (0.012)

(10.89,25.36), (4.83,8.89), (8.41,12.98), (0.06,0.10)

BBXII(�; �; �; �) 26.725, 9.756, 27.364, 0.020
(9.465), (2.781), (12.351), (0.007)

(8.17,45.27), (4.31,15.21), (3.16,51.57), (0.006,0.03)

BEBXII(�; �; �; �; 
) 2.924, 2.911, 3.270, 12.486, 0.371
(0.564), (0.549), (1.251), (6.938), (0.788)

(1.82,4.03), (1.83,3.99), (0.82,5.72), (0, 26.08), (0, 1.92)

FBBXII(�; �; �; �; 
) 30.441, 0.584, 1.089, 5.166, 7.862
(91.745), (1.064), (1.021), (8.268), (15.036)

(0, 210.26), (0, 2.67), (0, 3.09), (0, 21.37), (0, 37.33)

FKwBXII(�; �; �; �; 
) 12.878, 1.225, 1.665, 1.411, 3.732
(3.442), (0.131), (0.034), (0.088), (1.172)

(6.13,19.62), (0.97,1.48), (1.56,1.73), (1.24,1.58), (1.43,6.03)

EGLxP(�; �; �; �) 7.86, 30.16, �15.05, 0.332
(0.00), (89.61), (33.002), (0.00)
�, (0, 209.4), (�81.05, 50, 95), �
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Table 7: AIC, BIC, CAIC and HQIC values for the taxes revenue data set.
Model AIC, BIC, CAIC, HQIC

BXII 518.46, 522.62, 518.67, 520.08

BHBXII 520.51, 526.74, 520.94, 522.94

WGLx 395.08, 401.32, 395.52, 397.52

MOBXII 387.22, 389.38, 387.66, 389.68

TLBXII 385.94, 392.18, 386.38, 388.40

KwBXII 385.58, 393.90, 386.32, 388.86

BBXII 385.56, 394.10, 386.30, 389.10

BEBXII 387.04, 397.42, 388.17, 391.09

FBBXII 386.74, 397.14, 387.87, 390.84

FKwBXII 386.96, 397.36, 388.09, 391.06

EGLxP 385.1, 393.41, 385.84, 388.34
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Survival Times Taxes Revenue
Figure 4: Estimated PDFs.

Survival Times Taxes Revenue
Figure 5: Estimated HRFs.
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Survival Times Taxes Revenue
Figure 6: Estimated CDFs.

Survival Times Taxes Revenue
Figure 7: P-P plots.
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Survival Times Taxes Revenue
Figure 8: Kaplan-Meier survival plots.

9. Conclusions

In this work, a new compound extension of the Lomax distribution is introduced.
Some of its properties are derived. The skewness of the new extension can be right-
skewed, left-skewed, unimodal and symmetric. The kurtosis of the new distribution
can be more than 3 or less than 3. The hazard rate function of the new distribution
can be upside down, increasing or decreasing. The new density is expressed as a
linear combination of the Lomax densities. The method of maximum likelihood
is used to estimate the unknown parameters as well as a Monte Carlo simulation
study is conducted. Two applications is provided along with some important plots
to illustrate the importance and the �exibility of the new Lomax distribution. The
new model relatively provided an adequate �t compared to other related models
with the smallest values for AIC, BIC, CAIC and HQIC. The new model is much
better than many other useful well-known Lomax extensions.
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