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THE EXTENDED GENERALIZED INVERSE WEIBULL
DISTRIBUTION AND ITS APPLICATIONS

MOHAMED ABORAYA

Abstract. We propose a new model called the odd log-logistic exponenti-
ated inverse Weibull distribution which generalizes the exponentiated inverse
Weibull distribution and other ten known and unknown lifetime models. Var-
ious properties of the new model are explored. The maximum likelihood
method is used to estimate the model parameters. We compare the �exi-
bility of the proposed model with other related distributions by means of two
real data sets.

1. Introduction

A random variable (rv) Z has the generalized Inverse Weibull (GIW) distribution
with three parameters � (power parameter), a and b if it has probability density
function (pdf) and cdf given by

�(�;a;b)(z)j(z�0)(�;a;b>0) = �ba
bz�(b+1)e��(

a
z )

b

; (1)

and

�(�;a;b)(z) j(z�0)(�;a;b>0) = e
��( az )

b

; (2)

respectively, where a is a scale parameter, � and b is a shape parameters. For � = 1
we have the standard IW model also known as complementary Weibull or reciprocal
Weibull (see [5] and [13]). For � = 1 and b = 2 we have the Inverse Rayleigh (IR).
For � = 1 and b = 1 we have Inverse exponential (IE) and for b = 2 we have GIR
and for b = 1 we have GIE (for more details about the GIW model see [8] and for
more details about the IW distribution and its applications, see [11], [9], [15], [14],
[16], [21], [3], [12], [2]).

[7] de�ned the cdf of the odd log logistic (OLL) family by

F(�; )(x) j(x>0)(�>0) =
� (x)

�

� (x)� +� (x)�
; (3)
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the corresponding pdf becomes

f(�; )(x) j(x>0)(�>0) = �
� (x)

�
� (x)�(x; )

��1+��
� (x)� +� (x)�

�2 ; (4)

where � is the shape parameter and  is the parameters vector of the baseline model.
To this end, we use equations (1), (2), (3) and (4) to obtain the four parameter
OLLGIW density in (5). A rv X is said to have the OLLGIW distribution if its
cdf and pdf are given by

F(�;�;a;b)(x)j(x�0)(�;�;a;b>0) =
e���(

a
x )

b

e���(
a
x )

b

+
h
1� e��( ax )

bi� (5)

and

f(�;�;a;b)(x)j(x�0)(�;�;a;b>0) = ��babx�(b+1)e��(
a
x )

b

�
n
e��(

a
x )

b h
1� e��( ax )

bio�1+�
�
�
e���(

a
x )

b

+
h
1� e��( ax )

bi���2
; (6)

respectively. Table 1 proves that our OLLGIW model generalizes eleven known and
unknown lifetime models.

Table 1: Submodels of the OLLGIW distribution.

� � a b Reduced model Author

� � a 1 OLLGIE New

� � a 2 OLLGIR New

� 1 a b OLLIW [19]

� 1 a 1 OLLIE [19]

� 1 a 2 OLLIR [19]

1 � a b GIW [8]

1 � a 1 GIE [15]

1 � a 2 GIR [15]

1 1 a b IW [6]

1 1 a 1 IE [10]

1 1 a 2 IR [18]
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Figure 1: Plots of the OLLGIW pdf.

Figure 2: Plots of the OLLGIW hrf.

The main justi�cation for the practicability of OLLGIW model is based on intro-
ducing a new �exible extensions of GIW distribution with four parameters, we are
motivated to introduce the OLLGIW distribution because it contains a number
aforementioned of known lifetime sub models like OLLEIE, OLLEIR, OLLIW, OL-
LIE, OLLIR, GIW, IW, EIE, EIR, IE and IR (see Table 1). Also it exhibits the
increasing, upside-down and decreasing hrfs (see Figure 2). The OLLGIW distrib-
ution can be expressed as a double linear mixture of IW density (see the mixture
representation). The OLLGIW distribution can be viewed as a good model for
�tting the symmetric, right-skewed and unimodal data. The OLLGIW distribution
outperforms several of the well known distributions with respect to two real data
applications (see Section 4).

The rest of the paper is organized as follows: In Section 2, we introduce some of
mathematical properties for the new model. In Section 3, the maximum likelihood
method is discussed to estimate the model parameters. Two applications to real
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data sets prove empirically the importance of the new model in Section 4. Finally,
some conclusions are given in Section 5.

2. Mathematical Properties

2.1. Useful representation. We provide a very useful linear representation for
the OLLGIW density function. First, we use a power series for the quantityh

e��(
a
x )

bi�
j(�>0 real)

given by h
e��(

a
x )

bi�
=

1X
k=0

ak

h
e��(

a
x )

bik
; (7)

where

ak =

1X
j=k

(�1)k+j
�
�

j

��
j

k

�
:

For any real � > 0, we consider the generalized binomial expansionh
1� e��( ax )

bi�
=

1X
k=0

(�1)k
�
�

k

�h
e��(

a
x )

bik
: (8)

Inserting (7) and (8) in equation (5), we obtain

F (x) =

1P
k=0

ak

h
e��(

a
x )

bik
1P
k=0

bk

h
e��(

a
x )

bik ;
where

bk = ak + (�1)k
�
�

k

�
;

the ratio of the two power series can be expressed as

F (x) =
1X
k=0

�k

h
e��(

a
x )

bik
=

1X
k=0

�k�(k�;a;b)(x); (9)

where
�(k�;a;b)(x) =

�
�(�;a;b)(x)

�k
= e�k�(

a
z )

b

is the IW cdf with scale parameter a (k�)
1
b and shape parameter b, and the coe¢ -

cients �k�s (for k � 0) are determined from the recurrence equation

�k =
1

b0

 
ak +

1

b0

kX
r=1

br �k�r

!
:

By di¤erentiating (9), the pdf of X can be expressed as

f(x) =
1X
k=0

�1+k�((1+k)�;a;b)(x); (10)

where
�((1+k)�;a;b)(x) = (1 + k)�ba

bz�(b+1)e�(1+k)�(
a
z )

b
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is the IW density with scale parameter a [(1 + k)�]
1
b and shape parameter b. Thus,

the OLLGIW density can be expressed as a double linear mixture of IW density.
Then, several of its structural properties can be obtained from Equation (10) and
those properties of the IW distribution.

2.2. Moments. The nth ordinary moment of X is given by

�0n = E(X
r) =

1X
k=0

�1+k

Z 1

�1
xn �((1+k)�;a;b)(x)dx;

then we obtain

�0n =

1X
k=0

�1+ka
n [(1 + k)�]

n
b �
�
1� n

b

�
j(n<b); (11)

where

� (1 + �) j(�2R+) = �! =
��1Y
w=0

(� � w) :

by setting r = 1 in (11), we get the mean of X. The skewness (Ske(X)) and
kurtosis (Kur(X)) measures can be calculated using (11) using and the well-known
relationships. The mean (E (X)), variance (Var(X)), skewness and kurtosis of the
new distribution are computed numerically for some selected values of parameter
�; �; a and b using the R software:
1-The skewness of the OLLGIW distribution can range in the interval (�671:68; 2:9).
2-The kurtosis of the OLLGIW distribution varies in the interval (�86; 56:38).
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Table 2: Mean, variance, skewness and kurtosis of the OLLGIW distribution.

� � a b E (X) Var(X) Ske(X) Kur(X)

100 1 1 1 1.442856 0.000357 0.0821314 4.21690
80 1.442947 0.0005573 0.1027041 4.22650
60 1.443143 0.0009916 0.1370542 4.247268
50 1.443341 0.0014290 0.1646038 4.26833
40 1.443704 0.0022363 0.2060811 4.30716
20 1.446741 0.0090596 0.4176729 4.644949
10 1.459027 0.0381571 0.8833694 6.293185
5 1.510446 0.1899747 2.347414 27.1085
4.5 1.527314 0.2523226 2.935822 56.3756

5 0.01 1.5 1.25 0.05209 0.000136 1.730015 �86.00897
0.1 0.32871 0.005427 1.730015 13.64197
0.5 1.191212 0.071275 1.730015 13.64197
1 2.07402 0.2160653 1.730015 13.64197
5 7.516038 2.837508 1.730015 13.64197
10 13.08618 8.601714 1.730015 13.64196
20 22.78437 26.07552 1.730015 13.64197
40 39.66989 79.0462 1.730015 13.64197
50 47.42299 112.9632 1.730015 13.64196
100 82.56823 342.4404 1.730015 13.64197
200 143.7596 1038.085 1.730015 13.64197
500 299.2189 4497.146 1.730015 13.64197
1000 520.9703 13632.8 1.730015 13.64197

10 1.25 0.001 1.25 2.76692�e�5 1.61537�e�6 1.619803 2.694399
0.01 0.01615 2.95362�e�6 �671.681 18323.93
0.1 0.1615 0.0002954 0.7300936 5.589085
1 1.615 0.0295353 0.7300817 5.589259
5 8.075002 0.7383819 0.730082 5.589256
10 16.15 2.953528 0.730082 5.589256
20 32.30001 11.81411 0.730082 5.589255
50 80.75002 73.83819 0.730082 5.589256
100 161.5 295.3528 0.730082 5.589256
500 807.5002 7383.819 0.730082 5.589256

4.5 2.25 2 1 6.872914 5.109533 2.93582 56.37563
2 3.665635 0.308949 1.244699 8.321656
5 2.541821 0.022395 0.7009007 5.260133
10 2.253732 0.004336 0.5477181 4.752984
20 2.122854 0.00095544 0.4745802 4.556885
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2.3. Moment generating function. Here, we provide two formulae for the mo-
ment generating function (mgf) MX (t) = E

�
etX

�
of X. Clearly, the �rst one can

be derived from using (11) as

MX (t) =
1X
k=0

�1+kM1+k (t)

=
1X

k;n=0

�1+k
tnan

n!
[(1 + k)�]

n
b �
�
1� n

b

�
j(n<b);

As for the second formula for MX (t), setting y = x�1 in (1), we can write this mgf
as

M(t; a; b) = bab
Z 1

0

e
t
y y(b�1) e�(ay)

b

:

By expanding the �rst exponential and calculating the integral, we have

M(t; a; b) = bab
Z 1

0

1X
m=0

tm

m!
e
t
y yb�m�1 e�(ay)

b

=
1X
m=0

am tm

m!
�

�
b�m
b

�
;

where the gamma function is well-de�ned for any non-integer b. Consider the
Wright generalized hypergeometric function (Wright (1935)) de�ned by

p	q

� �
�1; A1

�
; : : : ;

�
�p; Ap

��
�1; B1

�
; : : : ;

�
�q; Bq

� ; x� = 1X
n=0

pY
j=1

� (�j +Aj n)

qY
j=1

�
�
�j +Bj n

� x
n

n!
:

Then, we have

M(t; a; b) = 1	0

� �
1;� 1

b

�
� ; a t

�
: (12)

Combining expressions (10) and (12), we obtain the mgf of X, say M(t), as

M(t) =
1X
k=0

�1+k 1	0

� �
1;� 1

b

�
� ; at [(1 + k)�]

1
b

�
:

2.4. Incomplete moment. The sth incomplete moment, say Is (t), of X can be
expressed from (10), for n < b, as

In (t) =
1X
k=0

�1+k

Z t

�1
xn �1+k (x) dx

=
1X
k=0

�1+ka
n [(1 + k)�]

n
b 

�
1� n

b
; (1 + k)

�a
t

�b�
j(n<b):



8 MOHAMED ABORAYA (2018)

where

 (�; p) =

Z p

0

t��1e�tdt =
�
[1]F[1] [�; � + 1;�p]

	 p�
�

=
1X
k=0

(�1)k p�+k
k! (� + k)

j(� 6=0:�1;�2;:::);

denotes the complementary lower incomplete gamma function and [1]F[1] [�] is a
con�uent hypergeometric function which can be evaluated by statistical software
like R.

The mean deviations about the mean

m1 = E(jX �E (X) j) = 2�
0

1F (E (X))� 2I1(E (X))
and about the median

m2 = E

�����X �Q
�
1

2

������ = E (X)� 2I1�Q�12
��

where Q
�
1
2

�
=Median(X) is the median, F (E (X)) is easily calculated from (5)

and I1 (t) is the �rst incomplete moment given by the last Equation with n = 1.
The general formula for I1 (t) can be obtained from Is (t) as

I1 (t) =
1X
k=0

�1+ka [(1 + k)�]
1
b 

�
1� 1

b
; [(1 + k)�]

�a
t

�b�
:

2.5. The nth moment of the residual life. The nth moment of the residual life
is given by

mn(t) j(n=1;2;:::)(X>t) = E[(X � t)n] ;

the nth moment of the residual life of X can be expressed as

mn(t) j(n=1;2;:::)(X>t) =
1

1� F (t)

Z 1

t

(x� t)ndF (x);

therefore

mn(t) =
an

1� F (t)

1X
k=0

�
(mn)
1+k [(1 + k)�]

n
b �

�
1� n

b
; [(1 + k)�]

�a
t

�b�
j( n<b);

where

�
(mn)
1+k = �1+k

nX
r=0

�
n

r

�
(�t)n�r;

and

� (�; p) j(p>0) =

Z p

0

t��1e�tdt = � (�)�  (�; p)

� p��1

ep

�
1 +

� � 1
p

+
(� � 1) (� � 2)

p2
+ :::

�
;

denotes the complementary upper incomplete gamma function.
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2.6. The nth moment of the reversed residual life. The nth moment of the
reversed residual life can be expressed as

Mn(t) j(n=1;2;:::)(X�t; t>0)= E [(t�X)
n] :

We obtain

Mn(t) j(n=1;2;:::)(X�t; t>0)=
1

F (t)

Z t

0

(t� x)ndF (x):

Then, the nth moment of the reversed residual life of X becomes

Mn(t) =
an

F (t)

1X
k=0

�
(Mn)
1+k [(1 + k)�]

n
b 

�
1� n

b
; [(1 + k)�]

�a
t

�b�
j(n<b);

where

�
(Mn)
1+k = �1+k

nX
r=0

(�1)r
�
n

r

�
tn�r:

3. Estimation

IfX follows the OLLGIW distribution with vector of parameters� = (�; �; a; b)T ,
the log-likelihood for � from a single observation x of X is given by

`(�) = log (�) + log (�) + log (b) + b log (a)� (b+ 1) log (x) + log s

+(�1 + �) log [s (�s+ 1)]� 2 log
h
s� + (�s+ 1)�

i
;

where s = e��(
a
x )

b

: The components of the unit score vector

I = I(�) = (@�=@`; @�=@`; @a=@`; @b=@`)
T
=
�
I(�); I(�); I(a); I(b)

�T
are given by

I(�) =
1

�
+ log [s (�s+ 1)]� 2s

� log (s) + (�s+ 1)� log (�s+ 1)
s� + (�s+ 1)�

;

I(�) =
1

�
+
p

s
� (�1 + �) sp

s (�s+ 1) � 2
�ps�1+� � �p (�s+ 1)�1+�

s� + (�s+ 1)�

I(a) =
b

a
+
w

s
+ (�1 + �) w � 2ws

s (�s+ 1) � 2
�ws�1+� � �w (�s+ 1)�1+�

s� + (�s+ 1)�

and

I(b) =
1

b
+log (a)� log (x)+ q

s
+(�1 + �) q � 2qs

s (�s+ 1)�2
�qs�1+� � �q (�s+ 1)�1+�

s� + (�s+ 1)�
;

where

w = ��bab�1x�be��( ax )
b

;

q = �
�a
x

�b
e�(

a
x )

b

log
�a
x

�
;

and

p = �
�a
x

�b
e��(

a
x )

b

:
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For a random sample x = (x1; :::; xn)
T of size n from X, the total log-likelihood is

`n(�) =
nX
i=0

`(i)(�);

where `(i)(�) is the log-likelihood for the ith observation. The total score function
is

In =
nX
i=0

I(i);

where I(i) has the form given before. Maximization of `(�) (or `n(�)) can be
easily performed using well-established routines such as the nlm or optimize in
the R statistical package. Setting these equations to zero, U(�) = 0, and solving
them simultaneously gives the MLE b� b of �. These equations cannot be solved
analytically and statistical software can be used to evaluate them numerically using
iterative techniques such as the Newton-Raphson algorithm.

4. Applications

In this section we provide two applications of the OLLGIW distribution using
two real data sets. For the 1st application we shall compare the OLLGIW distribu-
tion with related models namely: the Marshall-Olkin IW (MOIW), Kumaraswamy
IW (KwIW), beta IW (BIW), Kumaraswamy Marshall-Olkin Inverse exponential
(KwMOIE), Kumaraswamy Marshall-Olkin Inverse Rayleigh (KwMOIR) and IW
distributions. For the 2nd application we shall compare the OLLGIW distribution
with related models namely: the MOIW, BIW, KwMOIR and IW distributions.

The �rst data set from [4] which consists of 72 observations of survival times guinea
pigs injected with di¤erent doses of tubercle bacilli: 12, 15, 22, 24, 24, 32, 32, 33,
34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62,
63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99,
109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297,
341, 341, 376. The total time test (TTT) plot (see [1]) for the1st real data sets is
presented in Figure 3. This plot indicates that the empirical HRF of 1st data sets
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is upside down then increasing.

Figure 3: TTT plot for the 1st real data.

The second data set is obtained from [17]. The data are the strengths of 1:5 cm glass
�bres, measured at the National Physical Laboratory, England. Unfortunately, the
units of measurement are not given in the paper. The data set consisting of 63
observations are: 0.55, 0.93,1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81,
2 , 0.74, 1.04, 1.27, 1.39, 1.49, 1.53,1.59, 1. 61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77,
1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69,1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48,
1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63,
1.67, 1.7, 1.78, 1.89. TheTTT plot for the 2nd real data sets is presented in Figure
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4. This plot indicates that the empirical HRF of 2nd data is increasing.

Figure 4: TTT plot for the 2nd real data.

The 1st data were previously studied by Krishna et al. (2013) for MOIW, BIW,
and IW distributions. The 2nd data were previously studied by Barreto-Souza et.
al. (2011) for BIW and IW distributions. In order to compare the distributions,
we consider some criteria like �2b̀ (Maximized Log-likelihood), AIC (Akaike In-
formation Criterion), CAIC (the consistent Akaike Information Criterion), BIC
(Bayesian information criterion) and HQIC (Hannan-Quinn information) criterion
for the real data set. The model with minimum AIC or BIC or HQIC or CAIC
value is chosen as the best model to �t the data, where

AIC = 2
�
�b̀+ k� ;

BIC = 2

�
�b̀+ 1

2
k log (n)

�
;

HQIC = 2
n
�b̀+ k log [log (n)]o ;

and

CAIC = 2
h
�b̀+ kn= (n� k � 1)i :

where b̀ denotes the log-likelihood function evaluated at the maximum likelihood
estimates, k is the number of parameters and n is the sample size. Tables 3 and
5 list the MLEs and their corresponding standard errors (in parentheses) of the
model parameters, whilst the numerical values of �2b̀; AIC ; BIC ;HQIC and CAIC
are listed in Tables 4 and 6, respectively. These numerical results are obtained
using R software. Figure 5 and 6 gives the �tted pdf, cdf, P-P plot and estimated
hrf and for the two data sets respectively. These Figures indicates that the new
model gives the adequate �t to the used data sets.
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Table 3: MLEs and their standard errors (in parentheses) for the 1st data.

Model Estimatesb� b� b� ba bb
OLLGIW 4:7989 1:3108 13:990 0:38

(5:1585) (1:889) (55:23) (0:404)

KwIW 0:6207 0:7111 45:7326 8:2723
(0:003) (0:013) (0:092) (0:979)

BIW 0:322 24:5032 19:9786 20:1331
(0:00115) (0:087) (7:246) (7:26)

KwMOIE 8:8727 0:1758 68:1393 2:6258
(1:174) (0:000) (0:020) (0:512)

IW 1:4148 54:1888
(0:00271) (0:111)

MOIW 14:9816 1:7855 13:991
(4:6305) (0:193) (2:964)

KwMOIR 9:993 1:6788 58:4697 0:6389
(1:972) (0:001) (0:105) (0:098)

Table 4: �2b̀; AIC ; BIC ;HQIC and CAIC for the 1st data.
Model �2b̀ AIC BIC HQIC CAIC

OLLGIW 779.2 787.4 796.5 791 788

Kw-IW 780:5 788:5 797:6 792:1 789:1

BIW 780:6 788:6 797:7 792:3 789:2

KwMOIE 782:7 790:7 799:8 794:3 791:3

IW 791:3 795:3 799:9 797:1 795:5

MOIW 790:1 796:1 802:9 798:8 796:5

KwMOIR 800:2 808:2 817:3 811:8 808:8
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Figure 5: The �tted pdf, cdf, P-P plot and estimated hrf and for the �rst data set.
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Table 5: MLEs and their standard errors (in parentheses) for the 2nd data.

Model Estimatesb� b� b� ba bb
OLLGIW 28:31 0:604 3:068 0:197

(17:17) (0:201) (4:689) (0:118)

BF 0:685 1:331 19:591 30:411
(0:181) (1:085) (18:115) (18:238)

Kw-MOIR 1 2:7498 0:5971 5:7974
(0:192) (0:079) (0:034) (0:0082)

F 2:888 1:264
(0:234) (0:059)

MOF 0:4816 2:3876 1:5441
(0:252) (0:253) (0:226)

Table 6: �2b̀; AIC ; BIC ;HQIC and CAIC for 2nd data.

Model �2b̀ AIC BIC HQIC CAIC

OLLGIW 46.8 54.7 63.3 58.1 55.4

BIW 61:7 69:7 78:3 73:1 70:4

Kw-MOIR 67:3 75:3 83:9 78:7 76

IW 93:7 97:7 102 99:4 97:9

MOIW 95:7 101:7 108:2 104:2 102:1
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Figure 6: The �tted pdf, cdf, P-P plot and estimated hrf and for the second data set.

Tables 4 and 6 compares the OLLGIW model with other extensions of IW
distribution. We note that the OLLGIW model gives the lowest values for the
AIC ; BIC ;HQIC and CAIC statistics among all �tted models. So, the OLLGIW
model could be chosen as the best model.

5. Concluding remarks

We propose a new model called the odd log-logistic generalized Inverse Weibull
distribution which generalizes the generalized Inverse Weibull distribution and other
ten known and unknown lifetime models. Various properties of the new model are
explored. The maximum likelihood method is used to estimate the model parame-
ters. We compare the �exibility of the proposed model with other related distribu-
tions by means of two real data sets. The skewness of the OLLGIW distribution can
range in the interval (�671:68; 2:9) and the kurtosis of the OLLGIW distribution
varies in the interval (�86; 56:38) which indicates to the wide �exibility of the new
model.
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