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STATISTICAL EPI-CONVERGENCE IN SEQUENCES OF

FUNCTIONS

YURDAL SEVER, ÖZER TALO, ŞÜKRÜ TORTOP

Abstract. In this paper, statistical epi-limit is defined by using epigraphs in

order to increase sensitivity by eliminating outliers for mathematical problems.
Various characterizations of statistical epi-convergence and their relations are

given and it is compared with statistical convergence. Also, its connections

with level sets and monotone increasing or decreasing cases are studied. More-
over, statistical equi-lower semicontinuity and its relation with statistical epi-

limit is examined.

1. Introduction

In the late of 1960’s, epi-convergence is first studied by Wijsman [26, 27] where
it is called infimal convergence. After Wijsman’s initial contributions, it is stud-
ied by Mosco [16] on variational inequalities, by Joly [12] on topological structures
compatible with epi-convergence, by Salinetti and Wets [21] on equisemicontinu-
ous families of convex functions, by Attouch [2] on the relationship between the
epi-convergence of convex functions and the graphical convergence of their sub-
gradient mappings, and by McLinden and Bergstrom [15] on the preservation of
epi-convergence under various operations performed on convex functions. Further-
more, Dal Maso [14] called it Γ-convergence. The term epi-convergence is used
by Wets [25] in 1980 for the first time. Epi-convergence is needed to solve some
mathematical problems including stochastic optimization, variational problems and
partial differential equations.

Statistical convergence was first studied by Zygmund [28] in 1935 and then it was
introduced by Steinhaus [23] and Fast [6] and also Schoenberg [22] independently.
The definitions of pointwise and uniform statistical convergence of real-valued func-
tions were given by Gökhan and Güngör [10, 11] and by Duman and Orhan [4] in-
dependently. Statistical limit superior and statistical limit inferior were introduced
by Fridy and Orhan [8] and also statistical limit points and cluster points were
defined by Fridy [7, 9]. Furthermore statistical lower and upper limits of closed sets
were defined and characterized by Talo et al. [24].
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In this part, fundamental definitions and theorems will be given. First of all, let
(X, d) be a metric space and f , (fn) are functions defined on X with n ∈ N. If it
is not mentioned explicitly the symbol d stands for the metric on X.
Let K ⊆ N and if the limit δ(K) = limn→∞

1
n |{k ≤ n : k ∈ K}| exists then it is

called asymptotic density of K where |{k ≤ n : k ∈ K}| denotes the number of
elements of K not exceeding n (see [1, 17]).
If δ(K1) = δ(K2) = 1, then δ(K1 ∩K2) = δ(K1 ∪K2) = 1.
If δ(K1) = δ(K2) = 0, then δ(K1 ∩K2) = δ(K1 ∪K2) = 0.
Statistical convergence of a sequence of scalars was introduced by Fast [6]. Let
x = (xk) be a sequence of real or complex numbers. If for all ε > 0, there exists L
such that,

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0,

then the sequence (xk) is statistically convergent to L.
The concepts of statistical limit superior and statistical limit inferior were intro-
duced by Fridy and Orhan [8]. Let k be a positive integer and x be a real number
sequence. Define the sets Bx and Ax as

Bx := {b ∈ R : δ({n : xn > b}) 6= 0}, Ax := {a ∈ R : δ({n : xn < a}) 6= 0}.
Then statistical limit superior and statistical limit inferior of x is given by

st- lim supx :=

{
supBx if Bx 6= ∅,
−∞ if Bx = ∅.

st- lim inf x :=

{
inf Ax if Ax 6= ∅,
+∞ if Ax = ∅.

Lemma 1.1. [8] If β = st- lim supx is finite, then for every ε > 0,

δ({k ∈ N : xk > β − ε}) 6= 0 and δ({k ∈ N : xk > β + ε}) = 0 (1.1)

Conversely, if (1.1) holds for every ε > 0 then β = st- lim supx.

The dual statement for st- lim inf x is as follows:

Lemma 1.2. [8] If α = st- lim inf x is finite, then for every ε > 0,

δ({k ∈ N : xk < α+ ε}) 6= 0 and δ({k ∈ N : xk < α− ε}) = 0 (1.2)

Conversely, if (1.2) holds for every ε > 0 then α = st- lim inf x.

A point ξ ∈ X is called a statistical limit point of a sequence x = (xk) if there is a
set K = k1 < k2 < k3 < ... with δ(K) 6= 0 such that xkn → ξ as n → ∞. The set
of all statistical limit points of a sequence x will be denoted by Λx.
A point ξ ∈ X is called a statistical cluster point of x = (xk) if for any ε > 0,

δ({k ∈ N : d(xk, ξ) < ε}) 6= 0.

The set of all statistical cluster points of x will be denoted by Γx.
Let Lx denote the set of all limit points ξ (accumulation points) of the sequence x;
i.e. ξ ∈ Lx if there exists an infinite set K = k1 < k2 < k3 < ... such that xkn → ξ
as n→∞.
Obviously we have Λx ⊆ Γx ⊆ Lx.
In our study we will be interested much more on sequence of functions. Statistical
convergence on sequence of functions is defined by Gökhan and Güngör [10].
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Following definitions are statistical inner and outer limits on the concept of set
convergence which is fundamental to define statistical epi-limit using sets. In this
paper, we deal with Painlevé-Kuratowski [13] convergence and actually its statis-
tical version will be studied here which is defined by Sever and Talo [24]. In set
convergence, following collections of subsets of N play an important role for defining
statistical inner and outer limits on sequence of sets.

S := {N ⊂ N : δ(N) = 1},
S# := {N ⊂ N : δ(N) 6= 0}.

Let (X, d) be a metric space. The statistical inner limit and statistical outer
limit of a sequence (An) of closed subsets of X are defined as follows:

st- lim inf
n

An : = {x | ∀V ∈ N (x),∃N ∈ S,∀n ∈ N : An ∩ V 6= ∅},

st- lim sup
n

An : = {x | ∀V ∈ N (x),∃N ∈ S#,∀n ∈ N : An ∩ V 6= ∅}.

Proposition 1.3. [24] Let (X, d) be a metric space and (An) be a sequence of closed
subsets of X. Then

st- lim inf
n

An = {x | ∃N ∈ S,∀n ∈ N, ∃yn ∈ An : lim
n
yn = x}.

Proposition 1.4. [24] Let (X, d) be a metric space and (An) be a sequence of closed
subsets of X. Then

st- lim sup
n

An = {x | ∃N ∈ S#,∀n ∈ N, ∃yn ∈ An : x ∈ Γy}.

Let f be a function defined on X, the epigraph of f is the set epif := {(x, α) ∈
X × R | α ≥ f(x)} and its level set is defined by lev≤αf := {x ∈ X | f(x) ≤ α}.
Hence for functions f and g from X to R, if f ≤ g for all x ∈ X it is obvious that

epif ⊇ epig. (1.3)

For any sequence (fn) of functions on X, the lower epi-limit, e- lim infn fn, is the
function having as its epigraph the outer limit of the sequence of sets epifn:

epi(e- lim inf
n

fn) := lim sup
n

(epifn).

The upper epi-limit, e- lim supn fn, is the function having as its epigraph the inner
limit of the sequence of sets epifn:

epi(e- lim sup
n

fn) := lim inf
n

(epifn).

When these two functions equal to each other, we have e- limn fn = e- lim infn fn =
e- lim supn fn. Hence the functions fn are said to epi convergent to the function f .
It is symbolized by fn →e f . Moreover, the relation between set convergence and
convergence of sequence of functions appears in the following equality.

fn →e f ⇔ epifn → epif.

Following definition is a sequential characterication of epi-convergence.
Given a sequence (fn) on a metric space (X, d) is epi-convergent to f , provided

at each x ∈ X, if the following two conditions both hold:
(i) for all xn ∈ X whenever (xn) is convergent to x, we have f(x) ≤ lim infn fn(xn),
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(ii) there exists a sequence (xn) convergent to x such that f(x) = limn fn(xn).
For every function f : X → R the lower semicontinuous envelope sc−f of f is

defined for every x ∈ X by

(sc−f)(x) = sup
g∈G(f)

g(x),

where G(f) is the set of all lower semicontinuous functions g on X such that g(y) ≤
f(y) for every y ∈ X.

Proposition 1.5. [14] Let f : X → R be a function. Then

(sc−f)(x) = sup
V ∈N (x)

inf
y∈V

f(y)

for every x ∈ X where N (x) is the neighbourhood of x.

We also advise to look at [3, 5, 18, 20] for detailed information about new types of
convergence of sequences of real valued functions and statistical convergence.

2. Main Result

In this part, statistical epi-convergence is defined by the help of Kuratowski
convergence on sets. The functions will be taken lower semicontinuous in order to
use properties on closed sets since epigraphs of lower semicontinuous functions are
closed. Set properties will give a new characterization of statistical epi-convergence
by using neighbourhoods of the point x ∈ X in a metric space. After that neigh-
bourhoods will give another characterizations of statistical epi-convergence by using
sequences this time. Actually almost all definitions of statistical epi-convergence
will be achieved in this paper. Level sets which are important instruments in set the-
ory are also included in our calculations for lower and upper epi-limits. Moreover,
statistical epi-convergence and statistical pointwise convergence will be discussed
at the end.

Definition 2.1. Let (X, d) be a metric space and (fn) a sequence of lower semicon-
tinuous functions defined from X to R. The lower statistical epi-limit, est- lim infn fn
is defined by the help of the sequence of sets:

epi(est- lim inf
n

fn) := st- lim sup
n

(epifn).

Similarly, the upper statistical epi-limit est- lim supn fn is defined:

epi(est- lim sup
n

fn) := st- lim inf
n

(epifn).

When these two functions are equal, we get statistical epi-limit function:

f = est- lim
n
fn := est- lim sup

n
fn = est- lim inf

n
fn.

As defined in above and by (1.3) it is obvious that est- lim infn fn ≤ est- lim supn fn.

Here we use statistical Painlevé-Kuratowski convergence. Whenever (fn) is epi con-
vergent to f we can use the inclusion st- lim supn(epifn) ⊂ epif ⊂ st- lim infn(epifn).
Moreover, following comparisons with e-limit are valid for every function f : X → R.

e- lim inf
n

fn ≤ est- lim inf
n

fn , e- lim sup
n

fn ≤ est- lim sup
n

fn.

In the following example, the function is not epi-convergent whereas it has statistical
epi-limit.
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Example 2.2. Given a sequence fn : R→ R defined as

fn(x) =

{
nxenx if n is square,
nxe2nx if n is nonsquare.

e- lim inf
n

fn(x) =

 0 if x < 0,
− 1
e if x = 0,
∞ if x > 0.

e- lim sup
n

fn(x) =

 0 if x < 0,
− 1

2e if x = 0,
∞ if x > 0.

est- lim
n
fn(x) =

 0 if x < 0,
− 1

2e if x = 0,
∞ if x > 0.

In general, statistical epi-convergence is neither stronger nor weaker than statistical
pointwise convergence. The obvious difference between these convergence types is
obtaining minimums. Next example gives the difference between statistical epi limit
and statistical pointwise limit.

Example 2.3. Given a sequence fn : [−1, 1]→ R with (k ∈ N) defined as

fn(x) =

{
min{1, 1− x

2 , 3n|x+ 1
n | − 2} if n = k2,

min{1, 1− x, 2n|x+ 1
n | − 1} if n 6= k2.

Figure 1. the sequence (fn) when n 6= k2

In Figure 1, we see the graph of the sequence of (fn) when n 6= k2. Obviously, the
functions take their infimum at xn = − 1

n as −1.

In Figure 2, it is the graph of the same sequence (fn) when n = k2 and the functions
take their infimum at xn = − 1

n as −2.
It can be seen clearly that, when n→∞, the sequence (fn) has not a pointwise limit
but it converges statistically to the function f(x) = min{1, 1−x} for x ∈ [−1, 1]. It
takes all its values as bigger than 0. Actually infimum of the function f is f(1) = 0
whereas the sequence (fn) takes its infimum at xn = − 1

n 6= 0. We can see the
statistical limit function in Figure 3 for x ∈ [−1, 1].
On the other hand, it has no epi-limit function. Since e- lim infn fn(0) = −2 and
e- lim supn fn(0) = −1 are different on x = 0.
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Figure 2. the sequence (fn) when n = k2

Figure 3. statistical limit function (fn
st−→ f)

Moreover, it has statistical epi-limit function. If we take M ∈ N as a dense set, let
n ∈M and − 1

n → 0 we have fn(− 1
n )→ −1. In other words, st- limn fn(− 1

n ) = −1.
So the statistical epi-limit function of the sequence (fn) is written as,

h(x) =

 1, x ∈ [−1, 0),
−1, x = 0,

1− x, x ∈ (0, 1].

We say fn
est−→ h and we can see it in the following figure.

Figure 4. statistical epi-limit function (fn
est−→ h)

Lemma 2.4. Let (X, d) be a metric space and (fn) a sequence of lower semicon-
tinuous functions defined from X to R, for every x ∈ X, define g : X → R by

g(x) = sup
V ∈N (x)

st- lim inf
n

inf
y∈V

fn(y).
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Then st- lim supn(epifn) = epig.

Proof. We should establish the epigraphical inclusions of the sets st- lim supn(epifn) ⊂
epig and epig ⊂ st- lim supn(epifn). For the first inclusion, let (x, α) ∈ st- lim supn(epifn)
be arbitrary. Let V0 ∈ N (x) and ε > 0 be fixed. By definition of the statistical
upper limit, ∃N ∈ S# such that ∀n ∈ N we have

V0 × (−∞, α+ ε)
⋂
epifn 6= ∅.

As a result,

δ({n ∈ N : inf
y∈V0

fn(y) < α+ ε}) 6= 0

By Lemma 1.2 we have,

st- lim inf
n

inf
y∈V0

fn(y) ≤ α+ ε.

V0 and ε were arbitrary, we have g(x) ≤ α and hence (x, α) ∈ epig.
For the second inclusion let (x, α) ∈ epig, for all V0 ∈ N (x) and for all ε > 0 we
have,

α+ ε > g(x) ≥ st- lim inf
n

inf
y∈V0

fn(y).

Again by Lemma 1.2 we get δ({n ∈ N : infy∈V0
fn(y) < α + ε}) 6= 0. It means,

∃N ∈ S# such that ∀n ∈ N
V0 × (−∞, α+ ε)

⋂
epifn 6= ∅.

and as epigraphs lie in the vertical direction, we have

V0 × (α− ε, α+ ε)
⋂
epifn 6= ∅.

Hence (x, α) ∈ st- lim supn(epifn). �

Lemma 2.5. Let (X, d) be a metric space and (fn) a sequence of lower semicon-
tinuous functions defined from X to R, for every x ∈ X, define h : X → R by

h(x) = sup
V ∈N (x)

st- lim sup
n

inf
y∈V

fn(y).

Then st- lim infn(epifn) = epih.

Proof. We want to show st- lim infn(epifn) ⊂ epih and epih ⊂ st- lim infn(epifn).
For the first inclusion, let (x, α) ∈ st- lim infn(epifn) be arbitrary. Let V0 ∈ N (x)
and ε > 0 be fixed. By definition of the statistical lower limit, ∃N ∈ S such that
∀n ∈ N we have

V0 × (−∞, α+ ε)
⋂
epifn 6= ∅.

As a result,

δ({n ∈ N : inf
y∈V0

fn(y) > α+ ε}) = 0

By Lemma 1.1 we have,

st- lim sup
n

inf
y∈V0

fn(y) ≤ α+ ε.

V0 and ε was arbitrary, we have h(x) ≤ α and hence (x, α) ∈ epih.
For the second inclusion, fix (x, α) ∈ epih. Given V0 ∈ N (x) and ε > 0, ∃N ∈ S
such that ∀n ∈ N we have

st- lim sup
n

inf
y∈V0

fn(y) ≤ h(x) < α+ ε
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and it equals to the following equality

δ({n ∈ N : inf
y∈V0

fn(y) < α+ ε}) = 1.

Hence,

δ({n ∈ N : V0 × (−∞, α+ ε)
⋂
epifn 6= ∅}) = 1.

We conclude that

δ({n ∈ N : V0 × (α− ε, α+ ε)
⋂
epifn 6= ∅}) = 1.

It gives (x, α) ∈ st- lim infn(epifn) and concludes the proof. �

Next definition gives us a characterization of epi-limits with the help of Lemma 2.4
and Lemma 2.5.

Definition 2.6. Let (X, d) be a metric space and (fn) a sequence of lower semi-
continuous functions from X into R, for every x ∈ X, lower and upper statistical
epi-limit functions are defined by(

est- lim inf
n

fn

)
(x) := sup

V ∈N (x)

st- lim inf
n

inf
y∈V

fn(y)(
est- lim sup

n
fn

)
(x) := sup

V ∈N (x)

st- lim sup
n

inf
y∈V

fn(y)

If there exists a function f : X → R such that est- lim infn fn = est- lim supn fn = f ,
then we write f = est- limn fn and we say that (fn) is est-convergent to f on X.

Lemma 2.7. Let x = (xn) be a real sequence. Then

st- lim inf
n→∞

xn = inf
N∈S#

sup
n∈N

xn = sup
N∈S

inf
n∈N

xn

st- lim sup
n→∞

xn = sup
N∈S#

inf
n∈N

xn = inf
N∈S

sup
n∈N

xn

By lemma 2.7, the statistical epi-limit infimum can be expressed as follows:

(est- lim inf
n

fn)(x) = sup
V ∈Ω(x)

inf
N∈S#

sup
n∈N

inf
y∈V

fn(y) = sup
V ∈Ω(x)

sup
N∈S

inf
n∈N

inf
y∈V

fn(y).

Similarly, the statistical epi-limit supremum can be expressed as follows:

(est- lim sup
n

fn)(x) = sup
V ∈Ω(x)

sup
N∈S#

inf
n∈N

inf
y∈V

fn(y) = sup
V ∈Ω(x)

inf
N∈S

sup
n∈N

inf
y∈V

fn(y)

Remark. If the functions fn(x) are independent of x, for every n ∈ N there exists
a constant αn ∈ R such that fn(x) = αn for every x ∈ X,

est- lim inf
n

fn(x) = st- lim inf
n

αn, est- lim sup
n

fn(x) = st- lim sup
n

αn.

If the functions fn(x) are independent of n, there exists f : X → R such that
fn(x) = f(x) for every x ∈ X and for every n ∈ N,

est- lim inf
n

fn = est- lim sup
n

fn = sc−f.

Proposition 2.8. In a metric space (X, d) for every x ∈ X, the following inequal-
ities hold:

(est- lim inf
n

fn)(x) ≤ st- lim inf
n

fn(x) , (est- lim sup
n

fn)(x) ≤ st- lim sup
n

fn(x).
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Proof. ∀x ∈ X and ∀V ∈ N (x), ∃N ∈ S such that ∀n ∈ N we have

inf
y∈V

fn(y) ≤ fn(x) , infy∈V fn(y) ≤ fn(x).

Since by the choice of our index set (n ∈ N), we get the following inequalities,

st- lim inf
n

inf
y∈V

fn(y) ≤ st- lim inf
n

fn(x) , st- lim sup
n

infy∈V fn(y) ≤ st- lim sup
n

fn(x).

After taking the supremum over all V ∈ N (x) we get the desired conclusion. �

Theorem 2.9. Let (X, d) be a metric space and let (fn) be a sequence of lower
semicontinuous functions. Suppose that for each α ∈ R, ∃(αn) of reals statistically
convergent to α with lev≤αf = st- limn(lev≤αnfn), then f = est- limn fn.

Proof. The condition lev≤αf ⊂ st- lim infn(lev≤αnfn) valid for each α ∈ R and

for some sequence αn
st→ α. Let (x, α) ∈ epif there exists a sequence αn sta-

tistically convergent to α such that lev≤αf ⊂ st- lim infn(lev≤αn
fn). Hence x ∈

st- lim infn(lev≤αn
fn). It means there exists a sequence (xn) statistically con-

vergent to x such that xn ∈ (lev≤αnfn). Finally we get (xn, αn)
st→ (x, α) and

(x, α) ∈ st- lim inf epifn.
In order to get st- lim sup epifn ⊂ epif , suppose to the contrary that (x, β) ∈
st- lim sup epifn but that (x, β) /∈ epif . Then β < f(x). We can find N ∈ S#

such that ∀n ∈ N (xn, βn) ∈ epifn such that (x, β) ∈ Γ(xn,βn). Choose a scalar
α between β and f(x) and let (αn) be a sequence statistically convergent to α for
which lev≤αf ⊃ st- lim supn(lev≤αn

fn). We have δ(n : βn < αn) 6= 0 and (xn, βn) ∈
epifn. ∃N ∈ S#, ∀n ∈ N , xn ∈ lev≤αn

fn which means x ∈ st- lim supn levαn
fn.

By the inclusion st- lim supn lev≤αnfn ⊂ lev≤αf we get x ∈ lev≤αf and f(x) ≤ α
which is a contradiction. �

Theorem 2.10. The following properties hold for any sequence of lower semicon-
tinuous functions (fn) defined on X.
(i) The functions est- lim infn fn and est- lim supn fn are lower semicontinuous and
so too is est- limn fn when it exists.
(ii) If the sequence (fn) is monotone statistically decreasing, then est- limn fn exists
and equals sc−[infn fn].
(iii) If the sequence (fn) is monotone statistically increasing, then est- limn fn exists
and equals supn[sc−fn].

Proof. (i) Let U be a family of open subsets of X, α : U → R be an arbitrary
function and f : X → R be defined by f(x) = supU∈N(x) α(U). ∀U ⊆ X, ∀y ∈ U
and ∀U ∈ N(y) it is clear that f(y) ≥ α(U). Since the inequality is satisfied by for
all U ∈ N(x) we have

inf
y∈U

f(y) ≥ α(U)

Taking supremum of both sides

f(x) = sup
U∈N(x)

α(U) ≤ sup
U∈N(x)

inf
y∈U

f(y)

for every x ∈ X. Since the opposite inequality trivial we get

sup
U∈N(x)

α(U) = sup
U∈N(x)

inf
y∈U

f(y)
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If we write α(U) = st- lim infn infy∈U fn(y) we get the desired conclusion. The
proof is similar for functions est- lim supn fn and est- limn fn.
Now we will prove (ii), the proof of (iii) is similar. Since the sequence (fn) is
statistically decreasing, then there exists a subset K = {k1 < k2 < k3 < · · · } ⊆ N
such that δ(K) = 1 and fkn ≥ fkn+1

for all n ∈ N and its epigraph epifn will
statistically increase that is epifkn ⊆ epifkn+1

. In statistical set convergence theory,
we have

epi(sc−[inf
n
fn]) = cl

⋃
n∈N

epifnk
. (2.1)

Moreover, Theorem 2.13 in [24] makes clear the following equality for statistically
increasing sequences

st- lim
n

(epifn) = cl
⋃
n∈N

epifnk
. (2.2)

By using (2.1) and (2.2) combining with Definition 2.1,

st- lim
n

(epifn) = epi(sc−[inf
n
fn]) = epi(est- lim

n
fn).

Finally we get the desired equation sc−[infn fn] = est- limn fn. �

Definition 2.11. The sequence (fn) is called statistically equi-lower semicontinu-
ous at a point x if and only if for all ε > 0 there exists δ > 0 and N ⊂ S such that
for all y ∈ B(x, δ) we have,

fn(x)− fn(y) < ε

for each n ∈M .

Next theorem gives the basic condition for which statistical convergence and sta-
tistical epi-convergence coincide.

Theorem 2.12. (fn) and f are functions from X to R, let (fn) be statistically
equi-lower semicontinuous at x. (fn) is statistically epi-convergent to f at x if and
only if (fn) is statistically convergent to f at x.

Proof. Assuming (fn) is statistically equi-lower semicontinuous at x, we have that
for all ε > 0, there exists V ∈ N (x) and N ∈ S such that

fn(x)− ε < inf
y∈V

fn(y)

for all n ∈ N . This implies

st- lim inf
n

fn(x)− ε ≤ sup
V ∈N (x)

st- lim inf
n

inf
y∈V

fn(y)

for every ε > 0. Combining with Proposition 2.8 we get

st- lim inf
n

fn(x) = sup
V ∈N (x)

st- lim inf
n

inf
y∈V

fn(y)

which means,
st- lim inf

n
fn(x) = est- lim inf

n
fn(x).

In similar way, we get st- lim supn fn(x) = est- lim supn fn(x) and finally we reach
the desired equality as follows

st- lim
n
fn(x) = est- lim

n
fn(x).

�
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