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UNIFORM CONVERGENCE RESULTS FOR SINGULARLY

PERTURBED FREDHOLM INTEGRO-DIFFERENTIAL

EQUATION

GABIL M. AMIRALIYEV, MUHAMMET ENES DURMAZ, MUSTAFA KUDU

Abstract. The study deals with an initial-value problem for a singularly per-
turbed Fredholm integro-differential equation. Parameter explicit theoretical

bounds on the continuous solution and its derivative are derived. Parameter

uniform error estimates for the approximate solution are established. Numer-
ical results are given to illustrate the parameter-uniform convergence of the

numerical approximations.

1. Introduction

Fredholm integro-differential equations play a important role in physics, biology
and engineering applications. Some of the the applications are unsteady aero-
dynamics and aerolastic phenomena, fluid dynamics, electrodynamics of complex
medium, many models of population growth, neural network modeling, materials
with fading memory, mathematical modeling of the diffusion of discrete particles in
a turbulent fluid, theory of population dynamics, compartmental systems, nuclear
reactors, and mathematical modeling of hereditary phenomena, diffraction prob-
lems, scattering in quantum mechanics (see, e.g., [1, 6, 18, 20] and the references
therein). Over time, especially in recent years, there have been many efforts on
studying the solvability of these equations and their properties [4, 23].

Most of the integro-differential equations can not be solved by the well-known
exact methods. Hence, it is desirable to introduce numerical methods with high
accuracy to solve these equations numerically [7, 14, 17, 21, 24, 25].

We consider the following initial-value problem for a singularly perturbed Fred-
holm integro-differential equation (SPFIDE):

Lu := εu′ + a(x)u+ λ

l∫
0

K(x, s)u(s)ds = f(x), x ∈ [0, l], (1.1)

u(0) = A, (1.2)
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where ε ∈ (0, 1] is a perturbation parameter, λ is real parameter. We assume that
a(x) ≥ α > 0, f(x),

(
x ∈ [0, l]

)
,K(x, s)

(
(x, s) ∈ [0, l]x[0, l]

)
are the sufficiently

smooth functions satisfying certain regularity conditions to be specified. The solu-
tion u(x) has general initial layer at x = 0 for small values of ε.

Singularly perturbed differential equations are typically characterized by a small
parameter ε multiplying some or all of the highest order terms in the differential
equation. These equations play a significant role in applied mathematics. The so-
lutions of this type equations display multiscale phenomena. Within certain thin
subregions of the domain, the scale of some derivatives is significantly larger than
other derivatives. These thin regions of rapid change are called, boundary or interior
layers, as appropriate. Many mathematical models starting from fluid dynamics to
the problems in mathematical biology are modelled by singularly perturbed prob-
lems. Typical examples include high Reynold’s number flow in the fluid dynamics,
heat transport problem, etc. It is also a well known fact that, for small values of ε,
standard numerical methods for solving such problems are unstable and do not give
accurate results. Therefore, it is important to develop suitable numerical methods
for solving these problems, whose accuracy does not depend on the parameter value
ε, i.e., methods that are convergent ε-uniformly and reference therein. For more
details on singular perturbation problems and their numerical analysis, one may
refer to [3],[7]-[10],[15]-[19],[22]. Survey of some existence and uniqueness results of
singularly perturbed equations can be found in [5],[15],[16],[19].

In recent years, there has been a growing interest in the numerical solution of
Fredholm-Volterra integral equations and SPFIDEs. Zhao and Corless [25] studied
on sixth order compact finite difference formula for second order integro-differential
equations with different boundary conditions. The least squares approximation
method for the solution of Volterra-Fredholm integral equations is investigated in
[24]. Micula [14] studied a simple numerical method for approximating solutions
of Fredholm-Volterra integral equations of the second kind. By means of the idea
of kernel ε-support vector regression machine (ε-SVR), Xu and Fan builded an
optimization modeling for a class of Volterra-Fredholm integral equations and pro-
posed a new numerical method for solving them in [11]. Darania and Pishbin [8]
gave high-order collocation methods for nonlinear delay integral equation. Rohan-
inasab et al. [21] used the Legendre collocation spectral method for solving the
high-order linear Volterra-Fredholm integro-differential equations under the mixed
conditions.

The above mentioned papers, related to Fredholm integro-differential equations
were concerned only with the regular cases. A SPFIDEs also frequently arise
in many scientific applications. The workings for the numerical solution of SP-
FIDEs have not widespread yet. Various difference schemes for singularly per-
turbed Volterra integro-differential equations and problems with integral boundary
condition were investigated in [12],[13].

In this paper we propose a numerical method for the solution of singularly per-
turbed Fredholm integro-differential equation (1.1)-(1.2). The difference scheme
is constructed by the method of integral identities with the use exponential basis
functions and interpolating quadrature rules with the weight and remainder terms
in integral form [2],[12]. To approximate the integral part of (1.1), the composite
right-side rectangle rule with the remainder term in integral form is being used.
Section 2 contains results concerning the exact solutions of problem (1.1)-(1.2). In
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Section 3, we construct the finite difference discretization on a uniform mesh. The
stability and error analysis for the approximate solution are presented in Section 4.
Uniform convergence is proved in the discrete maximum norm. Numerical results
are given in Section 5 to support the predicted theory. The paper ends with a
summary of the main conclusions.

2. The Continuous Problem

Here we give useful asymptotic estimates of the exact solution of the problem
(1.1)-(1.2) that are needed in later sections.

Lemma 2.1. Let the following assumptions be fulfilled

a, f ∈ C1[0, l],
∂

∂x
K(x, s) ∈ [0, l]2 (2.1)

and
|λ| < α

max
0≤x≤l

l∫
0

|K(x, s)| ds

.

Then the solution u(x) of the problem (1.1)-(1.2) satisfies the following estimates

‖u‖∞ ≤ C, (2.2)

|u′(x)| ≤ C
{

1 +
1

ε
e−

αx
ε

}
, x ∈ [0, l]. (2.3)

Proof. According to the maximum principle for the operator

Lv := εv′ + av,

from (1.1)-(1.2) we have

‖u‖∞ ≤ |A|+ α−1 ‖f‖∞ + α−1 |λ| max
0≤x≤l

l∫
0

|K(x, s)| |u(s)| ds,

≤ |A|+ α−1 ‖f‖∞ + α−1 |λ| max
0≤x≤l

l∫
0

|K(x, s)| ds ‖u‖∞ ,

which implies validity of (2.2).
Further we estimate u′(0). From (1.1) we obtain

|u′(0)| = 1

ε

∣∣∣∣∣∣f(0)− a(0)A− λ
l∫

0

K(0, s)u(s)ds

∣∣∣∣∣∣ ,
which leads to

|u′(0)| ≤ C

ε
, (2.4)

by taking into consideration (2.1) and (2.2).
Next differentiating (1.1) we get

εv′ + a(x)v = F (x) (2.5)

with
v(x) = u′(x),
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F (x) = f ′(x)− a′(x)u(x)− λ
l∫

0

∂

∂x
K(x, s)u(s)ds.

By virtue of (2.1) and (2.2) evidently

|F (x)| ≤ C. (2.6)

Further, from (2.5) it follows that

u′(x) = u′(0)e
− 1
ε

x∫
0

a(s)ds
+

1

ε

x∫
0

F (ξ)e
− 1
ε

x∫
ξ

a(s)ds

dξ.

From which by using (2.4) and (2.6) we have

|u′(x)| ≤ C

ε
e−

αx
ε + ‖F‖∞

1

ε

l∫
0

e−
1
εα(x−ξ)ds

=
C

ε
e−

αx
ε + α−1 ‖F‖∞

(
1− e−αlε

)
,

which immediately leads to (2.3). �

3. The Mesh And Difference Scheme

In what follows, we denote by ωh the uniform mesh on [0, l]:

ωh = {xi : ih, i = 0, 1, 2, ..., N ; h = l/N} ,

To construct the difference scheme for the problem (1.1)-(1.2), we start with the
following identity

χ−1i h−1
xi∫

xi−1

Lu(x)ϕi(x)dx = χ−1i h−1
xi∫

xi−1

f(x)ϕi(x)dx, 1 ≤ i ≤ N, (3.1)

where

ϕi(x) = e−
ai(xi−x)

ε , i = 1, 2, ..., N,

χi = h−1
xi∫

xi−1

ϕi(x)dx =
1− e−aiρ

aiρ
, ρ =

h

ε
.

We note that the function ϕi(x) is the solution of the problem

−εϕ′(x) + aiϕ(x) = 0, xi−1 ≤ x ≤ xi,
ϕ(xi) = 1.
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If the method of exact difference schemes(see, e,g., [2],[12]) is applied to identity
(3.1), then we obtain the relation

χ−1i h−1
xi∫

xi−1

[εu′(x) + a(x)u(x)]ϕi(x)dx = χ−1i h−1
xi∫

xi−1

[εu′(x) + a(xi)u(x)]ϕi(x)dx

+ χ−1i h−1
xi∫

xi−1

[a(x)− a(xi)]u(x)ϕi(x)dx

= εθiux,i + aiui +R
(1)
i (3.2)

with

θi =
aiρ

1− e−aiρ
e−aiρ

and the remainder term

R
(1)
i = χ−1i h−1

xi∫
xi−1

[a(x)− a(xi)]u(x)ϕi(x)dx. (3.3)

Further for the right-side integral in (3.1) we use

χ−1i h−1
xi∫

xi−1

f(x)ϕi(x)dx = fi +R
(2)
i (3.4)

with remainder term

R
(2)
i = χ−1i h−1

xi∫
xi−1

[f(x)− f(xi)]ϕi(x)dx. (3.5)

For integral term involving kernel function, using right side rectangle rule, we have
from (3.1):

χ−1i h−1λ

xi∫
xi−1

dxϕi(x)

l∫
0

K(x, s)u(s)ds = λ

l∫
0

K(xi, s)u(s)ds+R
(3)
i

= λh

N∑
j=1

Kijuj +R
(3)
i +R

(4)
i (3.6)

with remainder terms

R
(3)
i = −χ−1i h−1λ

xi∫
xi−1

dxϕi(x)

xi∫
xi−1

T0(ξ − x)

( l∫
0

∂

∂ξ
K(ξ, s)u(s)ds

)
dξ, (3.7)

R
(4)
i = −λ

N∑
j=1

xj∫
xj−1

(ξ − xj−1)
∂

∂ξ

[
K(xi, ξ)u(ξ)

]
dξ. (3.8)
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By (3.1),(3.2),(3.4) and (3.6) from (3.1) we have the following exact relation for
u(xi)

εθiux,i + aiui + λh

N∑
j=1

Kijuj +Ri = fi, i = 1, 2, ..., N, (3.9)

with remainder term

Ri =

4∑
k=1

R
(k)
i ,

where R
(k)
i , (k = 1, 2, 3, 4) are defined by (3.3), (3.5), (3.7), (3.8) respectively.

Based on (3.9) we propose the following difference scheme for approximating
(1.1)-(1.2)

εθiyx,i + aiyi + λh

N∑
j=1

Kijyj = fi, i = 1, 2, ..., N, (3.10)

y0 = A. (3.11)

4. The Stability And Convergence

Lemma 4.1. If

|λ| < α

max
1≤i≤N

N∑
j=1

h |Kij |

, (4.1)

then for the solution of the difference problem (3.10)-(3.11) the following estimate
holds

‖y‖∞ ≤ c0
(
|A|+ ‖f‖∞

)
, (4.2)

where

c0 =
1

1− |λ| max
1≤i≤N

N∑
j=1

h |Kij |

.

Proof. By virtue of the maximum principle for the difference operator

Lvi := εθivx,i + aivi, 1 ≤ i ≤ N,

can be written

‖y‖∞ ≤ |A|+ α−1 ‖f‖∞ + α−1 |λ| max
1≤i≤N

N∑
j=1

h |Kij | ‖y‖∞ ,

which immediately leads to (4.2).
Let zi = yi−ui. Then for the error of the approximate the solution zi from (3.9)

and (3.10) we have

εθizx,i + aizi + λh

N∑
j=1

Kijzj = Ri, i = 1, 2, ..., N,

z0 = 0.
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Using now (4.2) with A = 0 and f = R we have the estimate for zi :

‖z‖∞ ≤ c0 ‖R‖∞ .

�

Lemma 4.2. Under the conditions of Lemma 2.1 and ∂K(x,s)
∂s ∈ [0, l]2 the trunca-

tion error Ri satisfies

‖R‖∞ ≤ Ch. (4.3)

Proof. We estimate R
(k)
i , (k = 1, 2, 3, 4) separately.

For R
(1)
i , by a ∈ C1[0, l] and (2.2) we get

∣∣∣R(1)
i

∣∣∣ ≤ χ−1i h−1
xi∫

xi−1

|a′(ξi)| |x− xi| |u(x)|ϕi(x)dx

≤ Cχ−1i h−1
xi∫

xi−1

ϕi(x)dx = Ch. (4.4)

Analogously we have: ∣∣∣R(2)
i

∣∣∣ ≤ Ch. (4.5)

For R
(3)
i , since

∣∣∣∂K∂ξ ∣∣∣ ≤ C, u(x) ≤ C it follows that

∣∣∣R(3)
i

∣∣∣ ≤ |λ|h l∫
0

∣∣∣∣ ∂∂ξK(ξ, s)u(s)

∣∣∣∣ ds ≤ Ch. (4.6)

Finally for R
(4)
i , we have the estimate

∣∣∣R(4)
i

∣∣∣ ≤ |λ| N∑
j=1

xj∫
xj−1

(ξ, xj−1)

∣∣∣∣ ∂∂ξK(xi, ξ)u(ξ)

∣∣∣∣ dξ
≤ |λ|h

l∫
0

∣∣∣∣ ∂∂ξK(xi, ξ)u(ξ)

∣∣∣∣ dξ
≤ |λ|h

l∫
0

{∣∣∣∣∂K(xi, ξ)

∂ξ

∣∣∣∣ |u(ξ)|+ |K(xi, ξ)| |u′(ξ)|
}
dξ.

From here using (2.3) it follows that

∣∣∣R(4)
i

∣∣∣ ≤ C |λ|h l∫
0

(
1 +

1

ε
e−

αξ
ε

)
dξ

= C |λ|
{
l + α−1

(
1− e−αlε

)}
≤ Ch. (4.7)
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Now the estimate (4.3) follows from

|Ri| ≤
N∑
i=1

∣∣∣R(k)
i

∣∣∣ ,
by using (4.4)-(4.7).

Now we can formulated the convergence result. �

Theorem 4.3. Let u be solution of (1.1)-(1.2) and yi the solution of (3.10)-(3.11).
Then under the smoothness conditions above and (4.1)

‖y − u‖∞,ωh ≤ Ch.

Proof. This follows immediately by combining Lemma 4.1 and Lemma 4.2. �

5. Numerical Results

In this section numerical results are given for the following Fredholm integro-
differential equation:

εu′ + u+
1

2

1∫
0

xu(s)ds = x+
1

2
x

(
1

2
− ε+ (1 + ε)ε

(
1− e− 1

ε

))
,

u(0) = 1,

whose exact solution is given by

u(x) = x− ε+ (1 + ε)e−
x
ε .

We define the exact error ehε and the computed ε-uniform maximum pointwise error
eh as follows:

ehε = ‖y − u‖∞ , eh = max
ε
ehε .

We also define the computed parameter-uniform rate of convergence to be

ph = ln

(
eh/eh/2

)
/ ln 2.

The resulting errors eh and the corresponding numbers ph for various values ε and
h are listed in Table 1.

Table 1 Exact errors ehε , computed ε-uniform errors eh and convergence rates
ph on ωh.

ε h = 1/32 h = 1/64 h = 1/128 h = 1/256 h = 1/512 h = 1/1024
1 0.0318009 0.0180134 0.0099936 0.0054302 0.0027340 0.0013576

0.82 0.85 0.88 0.99 1.01

2−4 0.0509429 0.0296675 0.0164591 0.0091313 0.0046616 0.0023308

0.78 0.85 0.85 0.97 1.00

2−8 0.0486047 0.0285027 0.0158129 0.0087728 0.0044786 0.0022706

0.77 0.85 0.85 0.97 0.98

2−12 0.0464832 0.0272586 0.0151227 0.0084482 0.0043429 0.0022171

0.77 0.85 0.84 0.96 0.97

2−16 0.0459176 0.0271142 0.0151472 0.0084619 0.0043499 0.0022207

0.76 0.84 0.84 0.96 0.97

eh 0.0509429 0.0296675 0.0164591 0.0091313 0.0046616 0.0021907

ph 0.78 0.85 0.85 0.97 1.00
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The obtained results show that the convergence rate of difference scheme is essen-
tially in accord with the theoretical analysis.

6. Conclusion

We have considered initial-value problem for a singularly perturbed Fredholm
integro-differential equation. For the numerical solution of this problem, we pro-
posed a fitted finite difference scheme on a uniform mesh. The difference scheme
is constructed by the method of integral identities with the use of exponential ba-
sis functions and interpolating quadrature rules with the weight and remainder
terms in integral form. It is shown that the method exhibits uniform convergent in
terms of parturbation parameter. The numerical results show that the presented
method is first-order uniformly accurate and hence can be strongly recommended
for singularly perturbed Fredholm integro-differential equations.
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