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ON EQUIVALENCE RESULTS FOR WELL-POSEDNESS OF

MIXED HEMIVARIATIONAL-LIKE INEQUALITIES IN BANACH

SPACES

LU-CHUAN CENG, JEN-CHIH YAO, YONGHONG YAO∗

Abstract. In this paper, we devoted to explore conditions of well-posedness

for mixed hemivariational-like inequalities in reflexive Banach spaces. By us-

ing some equivalent formulations of the mixed hemivariational-like inequality
under different η-monotonicity assumptions, we establish two kinds of condi-

tions under which the strong well-posedness and the weak well-posedness for

the mixed hemivariational-like inequality are equivalent to the existence and
uniqueness of its solution, respectively.

1. Introduction

Let X be a real reflexive Banach space with the dual space X∗. Let A : X → X∗

and η : X × X → X be two mappings and G : X → R ∪ {+∞} be a proper
functional. Let J : X → R be a locally Lipschitz functional and J◦(·, ·) stands for
its Clarke’s generalized directional derivative. Let f ∈ X∗ be some given element.
Now, we consider the following mixed hemivariational-like inequality (in short,
MHVLI(A, f, J, η,G)): Find x ∈ X such that

〈Ax− f, η(y, x)〉+ J◦(x, η(y, x)) +G(y)−G(x) ≥ 0, ∀y ∈ X. (1.1)

As an important subject in the theorem of optimization problems and their
related problems such as variational inequalities, fixed point problems and equi-
librium problems, well-posedness has been drawing more and more researchers’
attention. The classical concept of well-posedness for a global minimization prob-
lem was first introduced by Tykhonov [27]. For more literature, we refer the readers
to [6, 8, 10, 11], [14]-[19], [21], [33]-[45] and the references therein.

Hemivariational inequality was introduced by Panagiotopoulos [25] in 1983. In
1995, Goeleven and Mentagui [13] first introduced the well-posedness for a hemi-
variational inequality and presented some basic results concerning the well-posed
hemivariational inequality. Later, using the concept of approximating sequence,
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Xiao et al. [29, 30] defined a concept of well-posedness for a hemivariational in-
equality and a variational-hemivariational inequality. Very recently, Xiao, Yang
and Huang [31] studied the conditions of well-posedness for the hemivariational
inequality considered in [30]. By using some equivalent formulations of the hemi-
variational inequality considered under different monotonicity assumptions, they
established two kinds of conditions under which the strong well-posedness and the
weak well-posedness for the hemivariational inequality considered are equivalent to
the existence and uniqueness of its solution, respectively.

This article aims to explore some conditions of well-posedness for the mixed
hemivariational-like inequality in reflexive Banach spaces. The paper is structured
as follows. In Sect. 2, we recall briefly some preliminary material and introduce
the definitions of strong (resp. weak) well-posedness for the mixed hemivariational-
like inequality considered. Section 3 introduces a definition of strongly relaxed
η-monotonicity for a class of multivalued operators and presents some equivalent
formulations of the mixed hemivariational-like inequality considered under the as-
sumptions of strongly relaxed η-monotonicity and relaxed η-monotonicity for the
nonconvex and nonsmooth operator involved, respectively. In Sect. 4, we give some
conditions under which the strong well-posedness and the weak well-posedness for
the mixed hemivariational-like inequality are equivalent to the existence and unique-
ness of its solution, respectively. Finally, some concluding remarks are provided in
Sect. 5.

2. Preliminaries

Let x be a given point and y be a vector in X. The Clarke’s generalized di-
rectional derivative of J at x in the direction y, denoted by J◦(x, y), is defined
by

J◦(x, y) = lim sup
z→x λ↓0

J(z + λy)− J(z)

λ
.

Let G : X → R ∪ {+∞} be a proper, convex and lower semicontinuous functional.
We denote by ∂G(x) : X → 2X

∗ \ {∅} and ∂J(x) : X → 2X
∗ \ {∅} the subgradient

of convex functional G and the Clarke’s generalized gradient of a locally Lipschitz
functional J , respectively. That is,

∂G(x) = {% ∈ X∗ : G(y)−G(x) ≥ 〈%, y − x〉, ∀y ∈ X}

and

∂J(x) = {ξ ∈ X∗ : J◦(x, y) ≥ 〈ξ, y〉, ∀y ∈ X}.

Remark. ([1]). The Clarke’s generalized gradient of a locally Lipschitz functional
J : X → R at a point x is given by

∂J(x) = ∂(J◦(x, ·))(0).

Concerning the subgradient in the sense of convex analysis, the Clarke’s gen-
eralized directional derivative and the Clarke’s generalized gradient, we have the
following basic properties (see e.g., [1, 9, 22, 24, 26]).

Proposition 2.1. Let X be a Banach space and G : X → R ∪ {+∞} be a convex
and proper functional. Then we have

(i) ∂G(x) is convex and weak∗-closed;
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(ii) If G is continuous at x ∈ domG, then ∂G(x) is nonempty, convex, bounded,
and weak∗-compact;

(iii) If G is Gateaux differentiable at x ∈ domG, then ∂G(x) = {DG(x)}, where
DG(x) is the Gateaux derivative of G at x.

Proposition 2.2. Let X be a Banach space and G1, G2 : X → R ∪ {+∞} be
two convex functionals. If there is a point x0 ∈ domG1 ∩ domG2 at which G1 is
continuous, then the following equation holds:

∂(G1 +G2)(x) = ∂G1(x) + ∂G2(x), ∀x ∈ X.

Proposition 2.3. Let X be a Banach space, x, y ∈ X and J be a locally Lipschitz
functional defined on X. Then

(i) The function y 7→ J◦(x, y) is finite, positively homogeneous, subadditive
and then convex on X;

(ii) J◦(x, y) is upper semicontinuous as a function of (x, y), as a function of y
alone, is Lipschitz continuous on X;

(iii) J◦(x,−y) = (−J)◦(x, y);
(iv) ∂J(x) is a nonempty, convex, bounded and weak∗-compact subset of X∗;
(v) For every y ∈ X, one has

J◦(x, y) = max{〈ξ, y〉 : ξ ∈ ∂J(x)};
(vi) The graph of the Clarke’s generalized gradient ∂J(x) is closed in X × (w∗-

X∗) topology, where (w∗-X∗) denotes the space X∗ equipped with weak∗

topology, i.e., if {xn} ⊂ X and {x∗n} ⊂ X∗ are sequences such that x∗n ∈
∂J(xn), xn → x in X and x∗n → x∗ weakly∗ in X∗, then x∗ ∈ ∂J(x).

Let η : X × X → X and G : X → R ∪ {+∞}. A vector z∗ ∈ X∗ is called an
η-subgradient of G at x ∈ domG if

〈z∗, η(y, x)〉 ≤ G(y)−G(x), ∀y ∈ X.
Each G can be associated with the following η-subdifferential map ∂ηG defined by

∂ηG(x) =

{
{z∗ ∈ X∗ : 〈z∗, η(y, x)〉 ≤ G(y)−G(x), ∀y ∈ X}, x ∈ domG,

0, x 6∈ domG.

Let X be a real Banach space with its dual X∗, η : X ×X → X be a mapping
and T : X → X∗ be a single-valued operator.

Definition 2.4. T is said to be

(i) η-monotone, if

〈Tx− Ty, η(x, y)〉 ≥ 0, ∀x, y ∈ X;

(ii) strongly η-monotone with constant m > 0, if

〈Tx− Ty, η(x, y)〉 ≥ m‖x− y‖‖η(x, y)‖, ∀x, y ∈ X.

Definition 2.5. Let F : X → 2X
∗

be a multi-valued operator. F is said to be

(i) η-monotone, if

〈u− v, η(x, y)〉 ≥ 0, ∀x, y ∈ X,u ∈ F (x), v ∈ F (y);

(ii) strongly η-monotone with constant k > 0, if

〈u− v, η(x, y)〉 ≥ k‖x− y‖‖η(x, y)‖, ∀x, y ∈ X,u ∈ F (x), v ∈ F (y);
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(iii) relaxed η-monotone with constant c > 0, if

〈u− v, η(x, y)〉 ≥ −c‖x− y‖‖η(x, y)‖, ∀x, y ∈ X,u ∈ F (x), v ∈ F (y).

Definition 2.6. T is said to be η-hemicontinuous if, for any x, y ∈ X, the function
t 7→ 〈T (x+ tη(y, x)), η(y, x)〉 from [0, 1] into R = (−∞,∞) is continuous at 0+.

Remark. Clearly, whenever η(x, y) = x− y for all x, y ∈ X, then Definitions 2.4,
2.5 and 2.6 reduce to Definitions 2.1, 2.2 and 2.3 in Xiao, Yang and Huang [31],
respectively. In addition, continuity implies η-hemicontinuity, but the converse is
not true in general. For the usual concepts of monotonicity and hemicontinuity of
single-valued operators, we refer the readers to [43].

Definition 2.7. ([28]). The function G : X → R is said to be preinvex w.r.t. η iff,
for all x, y ∈ X and t ∈ [0, 1],

G(x+ tη(y, x)) ≤ (1− t)G(x) + tG(y).

In the sequel, we need to use the following condition introduced by Mohan and
Neogy [23].

Hypothesis (A). Let η(·, ·) : X ×X → X be a mapping. For for all x, y ∈ X
and t ∈ [0, 1], the following relations hold:

η(x, x+ tη(y, x)) = −tη(y, x) and η(y, x+ tη(y, x)) = (1− t)η(y, x).

Clearly, for t = 0, we have η(x, x) = 0, ∀x ∈ X. Yang et al. [25] have shown
that if η : X ×X → X satisfies Hypothesis (A), then

η(y + tη(x, y), y) = tη(x, y).

Theorem 2.8. ([12]). Let C ⊂ X be nonempty, closed and convex, C∗ ⊂ X∗ be
nonempty, closed, convex and bounded, ϕ : X → R ∪ {+∞} be proper, convex and
lower semicontinuous and y ∈ C be arbitrary. Assume that, for each x ∈ C, there
exists x∗(x) ∈ C∗ such that

〈x∗(x), x− y〉 ≥ ϕ(y)− ϕ(x).

Then, there exists y∗ ∈ C∗ such that

〈y∗, x− y〉 ≥ ϕ(y)− ϕ(x), ∀x ∈ C.

According to the above Theorem 2.8, we naturally introduce the following con-
dition, which will be used in the sequel.

Hypothesis (B). Let η : X ×X → X be a mapping. Let C ⊂ X be nonempty,
closed and convex, C∗ ⊂ X∗ be nonempty, closed, convex and bounded, ϕ : X →
R ∪ {+∞} be proper, preinvex w.r.t. η and lower semicontinuous and y ∈ C be
arbitrary. Assume that, for each x ∈ C, there exists x∗(x) ∈ C∗ such that

〈x∗(x), η(x, y)〉 ≥ ϕ(y)− ϕ(x).

Then, there exists y∗ ∈ C∗ such that

〈y∗, η(x, y)〉 ≥ ϕ(y)− ϕ(x), ∀x ∈ C.

Remark. If η(x, y) = x − y for all x, y ∈ X, then Hypothesis (B) reduces to
Theorem 2.8.

Based on some concepts of well-posedness in [2, 3, 4, 5, 7, 20, 30, 31], we now
introduce some definitions of well-posedness for the mixed hemivariational-like in-
equality MHVLI(A, f, J, η,G).
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Definition 2.9. A sequence {xn} ⊂ X is said to be an approximating sequence
for the mixed hemivariational-like inequality MHVLI(A, f, J, η,G) if there exists a
nonnegative sequence {εn} with εn → 0 as n→∞ such that

〈Axn−f, η(y, xn)〉+J◦(xn, η(y, xn))+G(y)−G(xn) ≥ −εn‖η(y, xn)‖, ∀y ∈ X, n ∈ N.

Definition 2.10. The mixed hemivariational-like inequality MHVLI(A, f, J, η,G)
is said to be strongly (resp. weakly) well-posed if it has a unique solution in X
and every approximating sequence converges strongly (resp. weakly) to the unique
solution.

Definition 2.11. The mixed hemivariational-like inequality MHVLI(A, f, J, η,G)
is said to be strongly (resp. weakly) in the generalized sense if it has a nonempty
solution set S in X and every approximating sequence has a subsequence which
converges strongly (resp. weakly) to some point of solution set S.

3. Strongly relaxed η-monotonicity

In this section, we present equivalent formulations of the mixed hemivariational-
like inequality MHVLI(A, f, J, η,G) under the assumptions of strongly relaxed η-
monotonicity and relaxed η-monotonicity for the nonconvex and nonsmooth map-
ping involved, respectively.

Definition 3.1. Let X be a real Banach space with its dual X∗, η : X ×X → X
be a mapping and F : X → 2X

∗
a nonempty multi-valued mapping. F is said to

satisfy the strongly relaxed η-monotonicity condition with constant c > 0 if, for all
x, y ∈ X and u ∈ F (x) (or v ∈ F (y)), there exists a v ∈ F (y) (or u ∈ F (x)) such
that

〈u− v, η(x, y)〉 ≥ −c‖x− y‖‖η(x, y)‖.

Lemma 3.2. Let A be a mapping from a real Banach space X to its dual X∗, η :
X×X → X be a mapping, J : X → R be a locally Lipschitz functional and G : X →
R∪{+∞} be a proper, preinvex w.r.t. η and lower semicontinuous functional with
the η-subdifferential map ∂ηG. Assume that Hypothesis (B) holds. Then, x ∈ X is
a solution to the mixed hemivariational-like inequality MHVLI(A, f, J, η,G) if and
only if x is a solution to the following inclusion problem:

IP(A, f, J, η,G) : Find x ∈ X such that f ∈ Ax+ ∂J(x) + ∂ηG(x). (3.1)

Proof. The lemma is easily proved by the definitions of the Clarke’s generalized
gradient for locally Lipschitz functional and the η-subgradient for preinvex func-
tional G w.r.t. η. To this end, let x ∈ X be a solution to the inclusion problem
IP(A, f, J, η,G). Then, there exist ξ ∈ ∂J(x) and % ∈ ∂ηG(x) such that

f = Ax+ ξ + %. (3.2)

For any y ∈ X, multiplying the above Eq. (3.2) by η(y, x), we can get by the
definitions of the Clarke’s generalized gradient for locally Lipschitz functional and
the η-subgradient for preinvex functional G w.r.t. η, that

langlef, η(y, x)〉 = 〈Ax, η(y, x)〉+ 〈ξ, η(y, x)〉+ 〈%, η(y, x)〉
≤ 〈Ax, η(y, x)〉+ J◦(x, η(y, x)) +G(y)−G(x), ∀y ∈ X.

Thus, x is a solution to the mixed hemivariational-like inequality MHVLI(A, f, J, η,G).
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On the other hand, let x is a solution to the mixed hemivariational-like inequality
MHVLI (A, f, J, η,G), which means

〈Ax− f, η(y, x)〉+ J◦(x, η(y, x)) +G(y)−G(x) ≥ 0, ∀y ∈ X. (3.3)

From the fact that

J◦(x, η(y, x)) = max{〈ξ, η(y, x)〉 : ξ ∈ ∂J(x)},

we get that there exists a ξ(x, y) ∈ ∂J(x) such that

〈Ax− f, η(y, x)〉+ 〈ξ(x, y), η(y, x)〉+G(y)−G(x) ≥ 0, ∀y ∈ X.

By virtue of Proposition 2.3 (iv), ∂J(x) is a nonempty, convex, bounded and weak∗-
compact subset in X∗, which implies that {Ax− f + ξ : ξ ∈ ∂J(x)} is a nonempty,
convex, bounded and weak∗-compact subset in X∗, and hence a nonempty, con-
vex, bounded and weakly closed subset in X∗ by virtue of the reflexivity of X.
Consequently, it is a nonempty, convex, bounded and closed subset in X∗. Since
G : X → R ∪ {+∞} is a proper, preinvex w.r.t. η and lower semicontinuous func-
tional, it follows from Hypothesis (B) with ϕ(·) = G(·) and the last inequality that
there exists ξ(x) ∈ ∂J(x) such that

〈Ax− f, η(y, x)〉+ 〈ξ(x), η(y, x)〉+G(y)−G(x) ≥ 0, ∀y ∈ X.

For the sake of simplicity, we denote ξ = ξ(x). Then, by the last inequality we have

G(y)−G(x) ≥ 〈−(Ax+ Tx− f + ξ), η(y, x)〉, ∀y ∈ X,

which together with the definition of the η-subdifferential map ∂ηG, implies that

−(Ax− f + ξ) ∈ ∂Gη(x). Thus, it follows from ξ ∈ ∂J(x) that

0 ∈ Ax− f + ∂J(x) + ∂ηG(x),

which implies that x is a solution to the inclusion problem IP(A, f, J, η,G). This
completes the proof. �

Lemma 3.3. Let η : X ×X → X satisfy Hypothesis (A). Let G : X → R∪ {+∞}
be a proper, preinvex w.r.t. η and lower semicontinuous functional with the η-
subdifferential map ∂ηG. Assume that operator A : X → X∗ is η-hemicontinuous
and strongly η-monotone with constant m > 0 on X and J : X → R is a locally
Lipschitz functional on X such that the Clarke’s generalized gradient ∂J(·) satisfies
the strongly relaxed η-monotonicity condition with constant c > 0. Assume that
Hypothesis (B) holds. If m ≥ c, then the following three statements are equivalent:

(i) x is a solution of the mixed hemivariational-like inequality MHVLI(A, f, J, η,G),
that is,

〈Ax− f, η(y, x)〉+ J◦(x, η(y, x)) +G(y)−G(x) ≥ 0, ∀y ∈ X;

(ii) x is a solution of the following associated mixed hemivariational-like in-
equality AMHVLI (A, f, J, η,G): Find x ∈ X such that

〈Ay − f, η(y, x)〉+ J◦(y, η(y, x)) +G(y)−G(x) ≥ 0, ∀y ∈ X;

(iii) x is a solution of the following multi-valued mixed variational-like inequality
MMVLI (A, f, J, η,G): Find x ∈ X such that, for all y ∈ X, there exists a
ζ ∈ ∂J(y) satisfying

〈Ay + ζ − f, η(y, x)〉+G(y)−G(x) ≥ 0, ∀y ∈ X.
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Proof. Firstly, we prove that (i) ⇔ (ii). To this end, let x ∈ X be a solution to the
mixed hemivariational-like inequality MHVLI(A, f, J, η,G), which means that

〈Ax− f, η(y, x)〉+ J◦(x, η(y, x)) +G(y)−G(x) ≥ 0, ∀y ∈ X.
By Lemma 3.2, x be a solution to the inclusion problem IP(A, f, J, η,G), and thus
there exist ξ ∈ ∂J(x) and % ∈ ∂ηG(x) such that

f = Ax+ ξ + %. (3.4)

For any y ∈ X, by the strongly relaxed η-monotonicity of ∂J(·) on X, there exists
a ζ ∈ ∂J(y) such that

〈ζ − ξ, η(y, x)〉 ≥ −c‖y − x‖‖η(y, x)‖. (3.5)

Note that for % ∈ ∂ηG(x) the definition of the η-subgradient of G at x leads to

G(y)−G(x) ≥ 〈%, η(y, x)〉,
which yields

G(y)−G(x)− 〈%, η(y, x)〉 ≥ 0.

Thus, it follows from the strong η-monotonicity of the operator A, (3.4), (3.5)
and the condition m ≥ c that

〈Ay + ζ − f, η(y, x)〉+G(y)−G(x)

= 〈Ay + ζ − (Ax+ ξ + %), η(y, x)〉+G(y)−G(x)

= 〈Ay −Ax, η(y, x)〉+ 〈ζ − ξ, η(y, x)〉 − 〈%, η(y, x)〉+G(y)−G(x)

≥ (m− c)‖y − x‖‖η(y, x)‖
≥ 0,

which together with the definition of the Clarke’s generalized gradient and ζ ∈
∂J(y), implies that

〈f −Ay, η(y, x)〉+G(x)−G(y) ≤ 〈ζ, η(y, x)〉 ≤ J◦(y, η(y, x)), ∀y ∈ X,
i.e., x is a solution to the associated mixed hemivariational-like inequality AMHVLI(A, f, J, η,G).
Therefore, (i) ⇒ (ii) holds.

On the other hand, utilizing Hypothesis (A), Yang et al. [32] have shown that

η(x+ tη(y, x), x) = tη(y, x)

for all x, y ∈ X and t ∈ [0, 1]. Let x be a solution to the associated mixed
hemivariational-like inequality AMHVLI(A, f, J, η,G), which means that

〈Ay − f, η(y, x)〉+ J◦(y, η(y, x)) +G(y)−G(x) ≥ 0, ∀y ∈ X. (3.6)

Given any y ∈ X we define yt = x+ tη(y, x) for all t ∈ (0, 1). Replacing y by yt
in the above inequality (3.6), we deduce from the preinvexity of G w.r.t. η and the
positive homogeneousness of the function y 7→ J◦(x, y) that

0 ≤ 〈Ayt − f, η(yt, x)〉+ J◦(yt, η(yt, x)) +G(yt)−G(x)

= 〈Ayt − f, η(x+ tη(y, x), x)〉+ J◦(yt, η(x+ tη(y, x), x)) +G(x+ tη(y, x))−G(x)

≤ 〈Ayt − f, tη(y, x)〉+ J◦(yt, tη(y, x)) + (1− t)G(x) + tG(y)−G(x)

= t[〈Ayt − f, η(y, x)〉+ J◦(yt, η(y, x)) +G(y)−G(x)],

which hence implies that for each t ∈ (0, 1),

〈Ayt − f, η(y, x)〉+ J◦(yt, η(y, x)) +G(y)−G(x) ≥ 0. (3.7)
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It is obvious that yt = x+ tη(y, x)→ x as t→ 0+ and the η-hemicontinuity of the
operator A on X implies that

lim
t→0+

〈Ayt−f, η(y, x)〉 = lim
t→0+

〈A(x+tη(y, x))−f, η(y, x)〉 = 〈Ax−f, η(y, x)〉. (3.8)

Moreover, by Proposition 2.3 (i), (ii), J◦(x, y) is positively homogeneous with re-
spect to y and upper semicontinuous with respect to (x, y). Thus, taking the limsup
as t→ 0+ at both sides of inequality (3.7), we obtain from (3.8) that

〈Ax− f, η(y, x)〉+ J◦(x, η(y, x)) +G(y)−G(x)

≥ lim sup
t→0+

{〈A(x+ tη(y, x))− f, η(y, x)〉+ J◦(x+ tη(y, x), η(y, x)) +G(y)−G(x)}

= lim sup
t→0+

{〈Ayt − f, η(y, x)〉+ J◦(yt, η(y, x)) +G(y)−G(x)}

≥ 0.

By the arbitrariness of y ∈ X, we conclude that x is a solution of the mixed
hemivariational-like inequality MHVLI(A, f, J, η,G). Therefore, (ii) ⇒ (i) holds.

Secondly, we prove that (i) ⇔ (iii). Indeed, let x be a solution to the mixed
hemivariational-like inequality MHVLI(A, f, J, η,G). By the same arguments as
in the proof of (i) ⇒ (ii), from the definition of the η-subgradient of G at x, the
strong η-monotonicity of the mapping A, the strongly relaxed η-monotonicity of
the Clarke’s generalized gradient ∂J(·), and the condition m ≥ c, we know that,
for any y ∈ X there exists a ζ ∈ ∂J(y) such that

〈Ay + ζ − f, η(y, x)〉+G(y)−G(x) ≥ 0, (3.9)

which actually implies that x is a solution to the multi-valued mixed variational-like
inequality MMVLI(A, f, J, η,G). Therefore, (i)⇒ (iii) holds. For (iii)⇒ (i), let x be
a solution to the multi-valued mixed variational-like inequality MMVLI(A, f, J, η,G),
which means that, for any y ∈ X, there exists a ζ ∈ ∂J(y) satisfying (3.9). Given
any y ∈ X we define yt = x + tη(y, x) for all t ∈ (0, 1). Replacing y by yt in the
left side of the above inequality (3.9), we deduce that there exists ζt ∈ ∂J(yt) such
that

〈Ayt + ζt − f, η(yt, x)〉+G(yt)−G(x) ≥ 0, (3.10)

which together with the definition of the Clarke’s generalized gradient and ζt ∈
∂J(yt), implies that 〈ζt, η(yt, x)〉 ≤ J◦(yt, η(yt, x)) and hence

〈Ayt − f, η(yt, x)〉+ J◦(yt, η(yt, x)) +G(yt)−G(x) ≥ 0.

By the same arguments as in the proof of (ii) ⇒ (i), from the preinvexity of G
w.r.t. η, the η-hemicontinuity of A on X, the positive homogeneousness of J◦(x, y)
w.r.t. y and the upper semicontinuity of J◦(x, y) w.r.t. (x, y), we can conclude that

〈Ax− f, η(y, x)〉+ J◦(x, η(y, x)) +G(y)−G(x) ≥ 0.

By the arbitrariness of y ∈ X, we know that x is a solution of the mixed hemivariational-
like inequality MHVLI(A, f, J, η,G). This completes the proof. �

4. Equivalence results for well-posedness

In this section, we give some conditions under which the strong well-posedness
and the weak well-posedness for the mixed hemivariational-like inequality MHVLI(A, f, J, η,G)
are equivalent to the existence and uniqueness of its solution, respectively.
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Theorem 4.1. Let η : X ×X → X be skew, i.e., η(x, y) + η(y, x) = 0, ∀x, y ∈ X.
Let A : X → X∗ be strongly η-monotone with constant m > 0, and J : X → R
be a locally Lipschitz functional such that the Clarke’s generalized gradient ∂J(·) :
X → 2X

∗
satisfies the relaxed η-monotonicity condition with constant c > 0. Let

G : X → R ∪ {+∞} be a proper, preinvex w.r.t. η and lower semicontinuous
functional with the η-subdifferential map ∂ηG. Assume that Hypothesis (B) holds.
If m > c, then the mixed hemivariational-like inequality MHVLI(A, f, J, η,G) is
strongly well-posed if and only if it has a unique solution in X.

Proof. Obviously, the necessity follows immediately from Definition 2.10 of the
strong α-well-posedness for the mixed hemivariational-like inequality MHVLI(A, f, J, η,G).
It remains to prove the sufficiency. Assume that the mixed hemivariational-like in-
equality MHVLI(A, f, J, η,G) has a unique solution x∗ ∈ X. We claim that xn →
x∗ in X for any approximating sequence {xn} ⊂ X for the mixed hemivariational-
like inequality MHVLI(A, f, J, η,G). Since x∗ is the unique solution to the mixed
hemivariational-like inequality MHVLI(A, f, J, η,G), we have that

〈Ax∗ − f, η(y, x∗)〉+ J◦(x∗, η(y, x∗)) +G(y)−G(x∗) ≥ 0, ∀y ∈ X.
By Lemma 3.2, x∗ is also a solution to the inclusion problem

f ∈ Ax+ ∂J(x) + ∂ηG(x),

and thus there exist ξ ∈ ∂J(x∗) and % ∈ ∂ηG(x∗) such that

f = Ax∗ + ξ + % (4.1)

(see the argument process of (i) ⇒ (ii) in the proof of Lemma 3.2). Moreover,
{xn} ⊂ X is an approximating sequence for the mixed hemivariational-like inequal-
ity MHVLI(A, f, J, η,G), which means that there exists a nonnegative sequence
{εn} with εn → 0 as n→∞ such that

〈Axn − f, η(y, xn)〉+ J◦(xn, η(y, xn)) +G(y)−G(xn) ≥ −εn‖η(y, xn)‖, ∀y ∈ X.
(4.2)

From the fact that

J◦(xn, η(y, xn)) = max{〈ν, η(y, xn)〉 : ν ∈ ∂J(xn)},
we obtain by the inequality (4.2) that there exists a ξ(xn, y) ∈ ∂J(xn) such that

〈Axn − f, η(y, xn)〉+ 〈ξ(xn, y), η(y, xn)〉+G(y)−G(xn) ≥ −εn‖η(y, xn)‖, ∀y ∈ X.
(4.3)

Define the functional Qn(·) : X → R as below

Qn(y) = ‖η(y, xn)‖, ∀y ∈ X.
It is easy to calculate that

∂Qn(y) = {y∗ ∈ X∗ : ‖y∗‖ = 1 and 〈y∗, η(y, xn)〉 = ‖η(y, xn)‖},
and hence, for each n ∈ N there exists a ζ(xn, y) ∈ ∂Qn(y) with ‖ζ(xn, y)‖ = 1
such that

〈ζ(xn, y), η(y, xn)〉 = ‖η(y, xn)‖, ∀n ∈ N.

Then (4.3) can be rewritten as

〈Axn − f + ξ(xn, y) + εnζ(xn, y), η(y, xn)〉 ≥ G(xn)−G(y), ∀y ∈ X. (4.4)

On the other hand, by virtue of Proposition 2.3 (vi), ∂J(xn) is a nonempty, con-
vex, bounded and weak∗-compact subset of X∗. Since X is reflexive, it can be



WELL-POSEDNESS OF MIXED HEMIVARIATIONAL-LIKE INEQUALITIES 49

readily seen that the weak topology σ(X∗, X∗∗) coincides with the weak∗ topology
σ(X∗, X). So, it follows that ∂J(xn) is a nonempty, convex, bounded and weakly
closed subset of X∗. Note that, for any subset in X, its closed convexity coincides
with its weakly closed convexity. Thus, ∂J(xn) is a nonempty, convex, bounded
and closed subset of X∗, which immediately implies that {Axn−f+ξ : ξ ∈ ∂J(xn)}
is a nonempty, convex, bounded and closed subset of X∗. Consequently, we know
that

{Axn − f + ξ + ζ : ξ ∈ ∂J(xn) and ζ ∈ B(0, 1)}
is a nonempty, convex, bounded and closed subset of X∗, where B(0, 1) is the closed
ball centered at 0 with radius 1. We now set C = X and

C∗ = {Axn − f + ξ + ζ : ξ ∈ ∂J(xn) and ζ ∈ B(0, 1)}.

So, it follows from (4.4) and Hypothesis (B), with ϕ(·) = G(·) which is proper,
preinvex w.r.t. η and lower semicontinuous, that there exists ω(xn) ∈ C∗ such
that

〈ω(xn), η(y, xn)〉 ≥ G(xn)−G(y), ∀y ∈ X. (4.5)

From ω(xn) ∈ C∗, it follows that there exist ξ(xn) ∈ ∂J(xn) and ζ(xn) ∈ B(0, 1)
such that ω(xn) = Axn − f + ξ(xn) + εnζ(xn). Then (4.5) can be rewritten as

G(y)−G(xn) ≥ 〈−(Axn − f + ξ(xn) + εnζ(xn)), η(y, xn)〉, ∀y ∈ X. (4.6)

For the sake of simplicity, we denote ξn = ξ(xn) and ζn = ζ(xn). So, it follows
from (4.6) that

G(y)−G(xn) ≥ 〈−(Axn − f + ξn + εnζn), η(y, xn)〉, ∀y ∈ X. (4.7)

Specially, taking y = x∗ in the above inequality (4.7) yields

G(x∗)−G(xn) ≥ 〈−(Axn − f + ξn + εnζn), η(x∗, xn)〉,

which hence leads to

εn〈ζn, η(x∗, xn)〉 ≥ G(xn)−G(x∗) + 〈f − (Axn + ξn), η(x∗, xn)〉. (4.8)

It follows from the strong η-monotonicity of the operatorA, the relaxed η-monotonicity
of the Clarke’s generalized gradient ∂J(·), the skew property of η, and the Eqs. (4.1)
and (4.8) that

εn‖η(x∗, xn)‖ ≥ εn〈ζn, η(x∗, xn)〉
≥ G(xn)−G(x∗) + 〈f − (Axn + ξn), η(x∗, xn)〉
= G(xn)−G(x∗) + 〈Ax∗ + ξ + %− (Axn + ξn), η(x∗, xn)〉
= G(xn)−G(x∗)− 〈%, η(xn, x

∗)〉+ 〈Ax∗ + ξ − (Axn + ξn), η(x∗, xn)〉
≥ 〈Ax∗ −Axn + ξ − ξn, η(x∗, xn)〉
≥ (m− c)‖x∗ − xn‖‖η(x∗, xn)‖,

which implies from the condition m > c that

‖x∗ − xn‖ ≤
εn

m− c
. (4.9)

Taking the limit at both sides of the above inequality (4.9) yields xn → x∗ in X.
This completes the proof of Theorem 4.1. �
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Remark. By the proof of Theorem 4.1, the condition m > c plays an important
role in the proof of the strong convergence of the approximating sequence {xn} for
the mixed hemivariational-like inequality MHVLI(A, f, J, η,G). It is clear that we
cannot obtain the conclusion in Theorem 4.1 when the condition m > c fails to hold.
The following theorem gives the conditions under which the existence and unique-
ness of solutions of the mixed hemivariational-like inequality MHVLI(A, f, J, η,G)
is equivalent to its weak well-posedness when m = c.

Theorem 4.2. Let η : X ×X → X satisfy the conditions:

(i) η(x, z) = η(x, y) + η(y, z),∀x, y, z ∈ X;
(ii) ‖η(x, y)‖ ≥ γ0‖x− y‖,∀x, y ∈ X for some γ0 > 0;
(iii) Hypothesis (A)holds; and
(iv) η is weakly continuous in the first variable.

Let operator A : X → X∗ be η-hemicontinuous and strongly η-monotone with
constant m > 0, and J : X → R be a locally Lipschitz functional such that the
Clarke’s generalized gradient ∂J(·) : X → 2X

∗
satisfies the relaxed η-monotonicity

condition with constant c > 0. Let G : X → R ∪ {+∞} be a proper, preinvex
w.r.t. η and weakly lower semicontinuous functional with the η-subdifferential map
∂ηG. Assume that Hypothesis (B) holds. If m = c, then the mixed hemivariational-
like inequality MHVLI(A, f, J, η,G) is weakly well-posed if and only if it has a unique
solution in X.

Proof. It is easy to see that η : X×X → X is skew. By Definition 2.10 of weak well-
posedness for the mixed hemivariational-like inequality MHVLI(A, f, J, η,G), the
necessity is obvious. For the sufficiency, suppose that the mixed hemivariational-
like inequality MHVLI(A, f, J, η,G) has a unique solution x∗ ∈ X. If the mixed
hemivariational-like inequality MHVLI(A, f, J, η,G) is not weakly well-posed, then
there exists at least an approximating sequence {xn} ⊂ X for the mixed hemivariational-
like inequality MHVLI(A, f, J, η,G) such that xn doesn’t converge weakly to x∗.
We claim that the approximating sequence {xn} is bounded in X. In fact, if xn is
unbounded, we may assume, without loss of generality, that ‖xn‖ → +∞. Utilizing
condition (ii) w.r.t. η, we get ‖η(xn, x

∗)‖ → +∞. Let

tn =
1

‖η(xn, x∗)‖
and zn = x∗ + tnη(xn, x

∗). (4.10)

Clearly, {zn} is a bounded sequence in X since ‖zn‖ ≤ ‖x∗‖+1. Thus, without loss
of generality, we may assume by the reflexivity of the Banach space X that {zn}
converges weakly to some point z ∈ X, which obviously is not equal to x∗ by (4.10).
Also, since the approximating sequence {xn} is unbounded, we can suppose that
tn ∈ (0, 1] by (4.10). Now, for any y ∈ X and ζ ∈ ∂J(y), it follows from condition
(i) and Hypothesis (A) that

〈Ay + ζ − f, η(y, z)〉 = 〈Ay + ζ − f, η(y, x∗)〉+ 〈Ay + ζ − f, η(x∗, zn)〉
+ 〈Ay + ζ − f, η(zn, z)〉

= 〈Ay + ζ − f, η(y, x∗)〉 − tn〈Ay + ζ − f, η(xn, x
∗)〉

+ 〈Ay + ζ − f, η(zn, z)〉
= (1− tn)〈Ay + ζ − f, η(y, x∗)〉+ tn〈Ay + ζ − f, η(y, xn)〉

+ 〈Ay + ζ − f, η(zn, z)〉.
(4.11)
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Keep in mind that x∗ is the unique solution to the mixed hemivariational-like
inequality MHVLI(A, f, J, η,G). By the same arguments as in the proof of Theorem
4.1, there exist ξ ∈ ∂J(x∗) and % ∈ ∂ηG(x∗) such that

f = Ax∗ + ξ + %. (4.12)

Since the operator A is strongly η-monotone with constant m and the Clarke’s
generalized gradient ∂J(·) of the locally Lipschitz functional J satisfies the relaxed
η-monotonicity with constant c, the condition m = c implies that A + ∂J(·) is
monotone on X. So, it follows from ζ ∈ ∂J(y), ξ ∈ ∂J(x∗) and (4.12) that

〈Ay+ζ−f, η(y, x∗)〉 = 〈Ay+ζ− (Ax∗+ξ), η(y, x∗)〉−〈%, η(y, x∗)〉 ≥ G(x∗)−G(y).
(4.13)

Moreover, since {xn} is an approximating sequence for the mixed hemivariational-
like inequality MHVLI(A, f, J, η,G), there exists a nonnegative sequence {εn} with
εn → 0 such that

〈Axn − f, η(y, xn)〉+ J◦(xn, η(y, xn)) +G(y)−G(xn) ≥ −εn‖η(y, xn)‖, ∀y ∈ X.

Also, by the same argument as in the proof of Theorem 4.1, there exist ξn ∈ ∂J(xn)
and ζn ∈ B(0, 1), which both are independent on y, such that

G(y)−G(xn) ≥ 〈−(Axn − f + ξn + εnζn), η(y, xn)〉, ∀y ∈ X.

which implies by the strong η-monotonicity of A, the relaxed η-monotonicity of the
Clarke’s generalized gradient ∂J(·), the condition m = c and the last inequality
that

〈Ay+ ζ − f, η(y, xn)〉 ≥ 〈Axn + ξn− f, η(y, xn)〉 ≥ G(xn)−G(y)− εn〈ζn, η(y, xn)〉.
(4.14)

Therefore, it follows from (4.11), (4.13), (4.14), tn = 1/‖η(xn, x
∗)‖ and the prein-

vexity w.r.t. η that

〈Ay + ζ − f, η(y, z)〉 = (1− tn)〈Ay + ζ − f, η(y, x∗)〉+ tn〈Ay + ζ − f, η(y, xn)〉
+ 〈Ay + ζ − f, η(zn, z)〉
≥ (1− tn)[G(x∗)−G(y)] + tn[G(xn)−G(y)− εn〈ζn, η(y, xn)〉]〉

+ 〈Ay + ζ − f, η(zn, z)〉
≥ G(zn)−G(y)− εn〈ζn, tnη(y, xn)〉]〉

+ 〈Ay + ζ − f, η(zn, z)〉.
(4.15)

Since η is weakly continuous in the first variable, G is weakly lower semicontin-
uous, zn ⇀ z and εn → 0 as n → ∞, we get by taking the limit at both sides of
the above inequality (4.15) that

〈Ay + ζ − f, η(y, z)〉+G(y)−G(z) ≥ 0.

By Lemma 3.3, the arbitrariness of y ∈ X and ζ ∈ ∂J(y) implies that z 6= x∗ is a
solution to the mixed hemivariational-like inequality MHVLI(A, f, J, η,G), which
reaches a contradiction to the uniqueness of solutions to the mixed hemivariational-
like inequality MHVLI(A, f, J, η,G). Thus, our claim that the approximating se-
quence {xn} is bounded in X is valid.

Since {xn} is bounded in X and Banach space X is reflexive, we let {xnk
} be

any subsequence of the approximating sequence {xn} such that xnk
⇀ x̂ as k →∞.
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Thus, it follows that

〈Axnk
−f, η(y, xnk

)〉+J◦(xnk
, η(y, xnk

))+G(y)−G(xnk
) ≥ −εnk

‖η(y, xnk
)‖, ∀y ∈ X.

(4.16)
By the similar arguments to those of (4.7) in the proof of Theorem 4.1, there exist
ξnk
∈ ∂J(xnk

) and ζnk
∈ B(0, 1) such that

〈Axnk
+ ξnk

− f, η(y, xnk
)〉 ≤ G(xnk

)−G(y)− εnk
〈ζnk

, η(y, xnk
)〉, ∀y ∈ X.

which together with the strong η-monotonicity of A, the relaxed η-monotonicity of
the Clarke’s generalized gradient ∂J(·), xnk

⇀ x̂, the weakly lower semicontinuity of
G, the weak continuity of η in the first variable (⇒ the boundedness of {η(xnk

, y)}),
and m = c, implies that for any y ∈ X and ζ ∈ ∂J(y),

〈Ay + ζ − f, η(y, x̂)〉 = lim inf
k→∞

〈Ay + ζ − f, η(y, xnk
)〉

≥ lim inf
k→∞

〈Axnk
+ ξnk

− f, η(y, xnk
)〉

≥ lim inf
k→∞

[G(xnk
)−G(y)− εnk

〈ζnk
, η(y, xnk

)〉]

= lim inf
k→∞

[G(xnk
)−G(y)]

≥ G(x̂)−G(y).

(4.17)

By Lemma 3.3, x̂ also solves the mixed hemivariational-like inequality MHVLI(A, f, J, η,G)
and so we have x̂ = x∗ in terms of the uniqueness of solutions to the mixed
hemivariational-like inequality MHVLI(A, f, J, η,G). Therefore, the whole approx-
imating sequence {xn} converges weakly to x∗. This completes the proof. �
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