ON SOLUTIONS OF INFINITE SYSTEMS OF INTEGRAL EQUATIONS IN N-VARIABLES IN SPACES OF TEMPERED SEQUENCES c_{0}^{β} AND l_{1}^{β}

MAJID GHASEMI, MAHNAZ KHANEHGIR, REZA ALLAHYARI

Abstract

The aim of the present paper is to establish the existence of solution of infinite systems of integral equations in N-variables in spaces of tempered sequences c_{0}^{β} and l_{1}^{β} by applying Meir-Keeler condensing operators. Our theorems improve the results of Hazarika et al. (Journal of Computational and Applied Mathematics 326 (2017) 183-192). The results we have established are illustrated with some examples which also show that the improvements are actual.

1. Introduction

The degree of noncompactness of a set is measured by means of functions called measures of noncompactness. The first measure of noncompactness, the function α, was defined and studied by Kuratowski [14] for purely topological considerations. In 1955 , Darbo [10] used this measure to generalize Banach's contraction mapping principle for so-called condensing operators. The Hausdorff measure of noncompactness χ was introduced by Goldenstein et al. [11] in the year 1957, and it was further studied by Goldenstein and Markus [12]. Measures of noncompactness are very useful tools widely used in fixed point theory, differential equations, integral and integro-differential equations, and optimization, etc. They have also been used in defining geometric properties of Banach spaces and in characterizing compact operators between sequence spaces.

The study of sequence spaces has been of great interest recently. A number of books have been published in this area over the last few years (see, for example [8]). Sequence spaces have various applications in several branches of functional analysis, in particular, the theory of locally convex spaces, matrix transformations, as well as the theory of summability invariably depends upon the study of sequences and series.

In recent years, a lot of scholars (see e.g. [1, 9, 15]) studied the existence of solutions of integral equations in one or two variables on some spaces. Mursaleen and Mohiuddine 18 proved existence theorems for the infinite system of differential

[^0]equations in the space l_{p}. Furthermore, existence theorems for the infinite systems of linear equations in l_{1} and l_{p} were given by Alotaibi et al. 4]. Mursaleen and Rizvi [19] studied solvability of infinite system of second order differential equations in c_{0} and l_{1} by Meir-Keeler condensing operators. Mursaleen and Alotaibi [17] proved existence theorems for the infinite system of differential equations in some $B K$ spaces. Arab et al. 5] investigated the existence of solutions of system of integral equations in two variables. Hazarika et al. 13] studied solvability of the infinite systems of integral equations in two variables in the sequence spaces c_{0} and l_{1}.
Classical sequence spaces are not always suitable to consider initial value problems for infinite systems of differential equations. Therefore, in order to consider those initial value problems we are frequently forced to treat the problems in question in enlarged sequence spaces. Such sequence spaces can be obtained if we consider the so-called tempered sequence spaces.
To define the mentioned spaces let us fix a real sequence $\beta=\left(\beta_{n}\right)$ such that β_{n} is positive for $n=1,2, \ldots$ and the sequence $\left(\beta_{n}\right)$ is nonincreasing. Such a sequence β will be called the tempering sequence. Next, consider the set X consisting of all real (or complex) sequences $x=\left(x_{n}\right)$ such that $\beta_{n} x_{n} \rightarrow 0$ as $n \rightarrow \infty$. It is easily seen that X forms a linear space over the field of real (or complex) numbers. We will denote this space by the symbol c_{0}^{β}. It is easy to check that c_{0}^{β} is a Banach space under the norm
$$
\|x\|_{c_{0}^{\beta}}=\left\|\left(x_{n}\right)\right\|_{c_{0}^{\beta}}=\sup \left\{\beta_{n}\left|x_{n}\right|: n=1,2, \ldots\right\} .
$$

In a similar way we may consider the space l_{1}^{β} consisting of real (complex) sequences $\left(x_{n}\right)$ such that the sequence $\left(\beta_{n} x_{n}\right)$ converges to a finite limit. Obviously l_{1}^{β} forms a linear space and it becomes a Banach space if we normed it by norm

$$
\|x\|_{l_{1}^{\beta}}=\left\|\left(x_{n}\right)\right\|_{l_{1}^{\beta}}=\sum_{n=1}^{\infty} \beta_{n}\left|x_{n}\right| .
$$

Let us pay attention to the fact that taking $\beta_{n}=1$ for $n=1,2, \ldots$ we obtain spaces $c_{0}^{\beta}=c_{0}$, and $l_{1}^{\beta}=l_{1}$. Similarly, if the sequence $\left(\beta_{n}\right)$ is bounded from below by a positive constant m i.e., if $\beta_{n} \geq m>0$ for $n=1,2, \ldots$, then the norm in the tempered sequence space $c_{0}^{\beta},\left(l_{1}^{\beta}\right)$ is equivalent to the classical supremum $\left(\sum\right)$ norm in the space $c_{0}\left(l_{1}\right)$. Thus, to obtain an essential enlargement of the spaces c_{0} we should to assume that the tempering sequence $\left(\beta_{n}\right)$ converges to zero. The pairs of the spaces $\left(c_{0}, c_{0}^{\beta}\right)$ and $\left(l_{1}^{\beta}, l_{1}\right)$ are isometric [7.
Now, in this paper we study the existence of solutions of infinite system of integral equations in N-variables in the spaces c_{0}^{β} and l_{1}^{β} by applying Meir-Keeler condensing operators. The results obtained in this paper generalize and extend earlier results due to Hazarika, Das, Arab and Mursaleen (see [13]).

The rest of the paper is organized as follows. In Section 2, we provide some notations, definitions and preliminary facts which will be needed further on. In Section 3, we construct the Hausdorff measures of noncompactness in both sequence spaces c_{0}^{β} and l_{1}^{β}. Sections 4 and 5 are devoted to applications of the results obtained to infinite systems of integral equations in N-variables in theses sequence spaces. We also give some examples to verify the effectiveness and applicability of our results.

2. NOTATION AND AUXILIARY FACTS

Suppose $(E,\|\cdot\|)$ is a real Banach space with zero element 0 . The symbol $B(x, r)$ stands for the ball centered at x with radius r. For a nonempty subset X of E, we denote by \bar{X} and $\operatorname{Conv} X$ the closure and closed convex hull of X, respectively. Moreover, let \mathfrak{M}_{E} indicate the family of nonempty and bounded subsets of E and \mathfrak{N}_{E} indicate the family of all nonempty and relatively compact subsets of E.

Definition 2.1. A mapping $\mu: \mathfrak{M}_{E} \rightarrow \mathbb{R}_{+}=[0,+\infty)$ is said to be a measure of noncompactness in E if it fulfils the following conditions:
1° The family ker $\mu=\left\{X \in \mathfrak{M}_{E}: \mu(X)=0\right\}$ is nonempty and $\operatorname{ker} \mu \subseteq \mathfrak{N}_{E}$,
$2^{\circ} X \subset Y$ implies that $\mu(X) \leq \mu(Y)$,
$3^{\circ} \mu(\bar{X})=\mu(X)$,
$4^{\circ} \mu(\operatorname{Conv} X)=\mu(X)$,
$5^{\circ} \mu(\lambda X+(1-\lambda) Y) \leq \lambda \mu(X)+(1-\lambda) \mu(Y)$ for $\lambda \in[0,1]$,
6° If $X_{n} \in \mathfrak{M}_{E}, X_{n}=\overline{X_{n}}$ and $X_{n+1} \subset X_{n}$ for $n=1,2, \ldots$ and $\lim _{n \rightarrow \infty} \mu\left(X_{n}\right)=$ 0 , then the intersection set $X_{\infty}=\bigcap_{n=1}^{\infty} X_{n}$ is nonempty.
In the following, we denote by \mathfrak{M}_{X}, the collection of all bounded subsets of a metric space (X, d).

Definition 2.2. [6] Let (X, d) be a metric space and $Q \in \mathfrak{M}_{X}$. Then the Kuratowski measure of noncompactness of Q, denoted by $\alpha(Q)$, is the infimum of the set of all numbers $\varepsilon>0$ such that Q can be covered by a finite number of sets with diameters ε, that is

$$
\alpha(Q)=\inf \left\{\varepsilon>0: Q \subset \bigcup_{i=1}^{n} S_{i}, S_{i} \subset X, \operatorname{diam}\left(S_{i}\right)<\varepsilon(i=1,2, \ldots, n) ; n \in \mathbb{N}\right\}
$$

where $\operatorname{diam}\left(S_{i}\right)=\sup \left\{d(x, y): x, y \in S_{i}\right\}$.
The Hausdorff measure of noncompactness for a bounded set Q is defined by

$$
\chi(Q)=\inf \left\{\varepsilon>0: Q \subset \bigcup_{i=1}^{n} B\left(x_{i}, r_{i}\right), x_{i} \in X, r_{i}<\varepsilon(i=1,2, \ldots, n) ; n \in \mathbb{N}\right\} .
$$

The Hausdorff measure of noncompactness is often called ball measure of noncompactness .

Lemma 2.3. [6 Let Q, Q_{1} and Q_{2} be bounded subsets of a metric space (X, d). Then
$1^{\circ} \chi(Q)=0$ if and only if Q is totally bounded,
$2^{\circ} Q_{1} \subset Q_{2} \quad$ implies that $\quad \chi\left(Q_{1}\right) \leq \chi\left(Q_{2}\right)$,
$3^{\circ} \chi(\bar{Q})=\chi(Q)$,
$4^{\circ} \chi\left(Q_{1} \cup Q_{2}\right)=\max \left\{\chi\left(Q_{1}\right), \chi\left(Q_{2}\right)\right\}$.
In the case of a normed space $(X,\|\cdot\|)$, the function $\chi: \mathfrak{M}_{X} \rightarrow \mathbb{R}_{+}$has some additional properties connected with the linear structure for example, we have
i) $\chi\left(Q_{1}+Q_{2}\right) \leq \chi\left(Q_{1}\right)+\chi\left(Q_{2}\right)$,
ii) $\chi(Q+x)=\chi(Q)$ for all $x \in X$,
iii) $\chi(\lambda Q)=|\lambda| \chi(Q)$ for all $\lambda \in \mathbb{C}$,
iv) $\chi(Q)=\chi(\operatorname{Conv} Q)$.

Definition 2.4. [3] Suppose that E_{1} and E_{2} are two Banach spaces and μ_{1} and μ_{2} are arbitrary measures of noncompactness on E_{1} and E_{2}, respectively. Also, suppose $T: E_{1} \rightarrow E_{2}$ is a continuous operator satisfies the following condition:

$$
\mu_{2}(T(C))<\mu_{1}(C)
$$

for every bounded noncompact set $C \subset E_{1}$, then T is called a $\left(\mu_{1}, \mu_{2}\right)$-condensing operator.

Remark. If in Definition 2.4 $E_{1}=E_{2}$ and $\mu_{1}=\mu_{2}=\mu$, then T is called a μ-condensing operator.

Theorem 2.5. (Darbo [10]) Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let $T: C \rightarrow C$ be a continuous mapping. Assume that a constant $k \in[0,1)$ exists such that

$$
\mu(T(X)) \leq k \mu(X)
$$

for any nonempty subset X of C, where μ is a measure of noncompactness defined in E. Then T has a fixed point in the set C.

The contractive maps and the compact maps are condensing if we take as measure of noncompactness the diameter of a set and the indicator function of a family of non-relatively compact sets, respectively [2]. In 1969, Meir and Keeler [16] introduced the concept of Meir-Keeler contractive mapping and proved some fixed point theorems for this kind of mappings. Thereafter, Aghajani et al. [2] generalized some fixed point and coupled fixed point theorems for Meir-Keeler condensing operators via measures of noncompactness.

Definition 2.6. [16] Let (X, d) be a metric space. Then, a mapping T on X is said to be a Meir-Keeler contraction if for any $\varepsilon>0, \delta>0$ exists such that

$$
\varepsilon \leq d(x, y)<\varepsilon+\delta \Rightarrow d(T x, T y)<\varepsilon
$$

for all $x, y \in X$.
Theorem 2.7. [16] Let (X, d) be a complete metric space. If $T: X \rightarrow X$ is a Meir-Keeler contraction, then T has a unique fixed point.

Definition 2.8. 2] Let C be a nonempty subset of a Banach space E and μ be an arbitrary measure of noncompactness on E. An operator $T: C \rightarrow C$ is called a Mier-Keeler condensing operator if for any $\varepsilon>0, \delta>0$ exists such that

$$
\varepsilon \leq \mu(X)<\varepsilon+\delta \quad \text { implies } \quad \mu(T(X))<\varepsilon
$$

for any bounded subset X of C.
Theorem 2.9. 2] Let C be a nonempty, bounded, closed and convex subset of a Banach space E and μ be an arbitrary measure of noncompactness on E. If $T: C \rightarrow C$ is a continuous and Meir-Keeler condensing operator, then T has at least one fixed point and the set of all fixed points of T in C is compact.

3. Hausdorff measure of noncompactness in spaces of tempered SEQUENCES

In this section, we formulate the Hausdorff measures of noncompactness χ in the Banach spaces $\left(c_{0}^{\beta},\|\cdot\|_{c_{0}^{\beta}}\right)$ and $\left(l_{1}^{\beta},\|\cdot\|_{l_{1}^{\beta}}\right)$ in N-variables.

Let Q be a bounded subset of the normed space $\left(c_{0}^{\beta},\|\cdot\|_{c_{0}^{\beta}}\right)$, then the Huasdorff measure of noncompactness χ in the Banach space $\left(c_{0}^{\beta},\|\cdot\|_{c_{0}^{\beta}}\right)$ can be formulated as follows (see [7]):

$$
\begin{equation*}
\chi(Q)=\lim _{n \rightarrow \infty}\left[\sup _{z\left(t_{1}, \ldots, t_{N}\right) \in Q}\left(\max _{k \geq n} \beta_{k}\left|z_{k}\left(t_{1}, \ldots, t_{N}\right)\right|\right)\right] \tag{3.1}
\end{equation*}
$$

where $z\left(t_{1}, \ldots, t_{N}\right)=\left(z_{i}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty} \in c_{0}^{\beta}$ for each $\left(t_{1}, \ldots, t_{N}\right) \in \mathbb{R}_{+}^{N}$ and $Q \in$ $\mathfrak{M}_{c_{0}^{\beta}}$.
In the Banach space $\left(l_{1}^{\beta},\|\cdot\|_{l_{1}^{\beta}}\right)$, the Huasdorff measure of noncompactness χ can be defined as follows:

$$
\begin{equation*}
\chi(Q)=\lim _{n \rightarrow \infty}\left[\sup _{z\left(t_{1}, \ldots, t_{N}\right) \in Q}\left(\sum_{k=n}^{\infty} \beta_{k}\left|z_{k}\left(t_{1}, \ldots, t_{N}\right)\right|\right)\right] \tag{3.2}
\end{equation*}
$$

where $z\left(t_{1}, \ldots, t_{N}\right)=\left(z_{i}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty} \in l_{1}^{\beta}$ for each $\left(t_{1}, \ldots, t_{N}\right) \in \mathbb{R}_{+}^{N}$ and $Q \in$ $\mathfrak{M}_{l_{1}^{\beta}}$.
Consider the infinite system of integral equations in N-variables
$z_{n}\left(t_{1}, \ldots, t_{N}\right)=f_{n}\left(t_{1}, \ldots, t_{N}, \int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)} g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right) d s_{1} \ldots d s_{N}, z\left(t_{1}, \ldots, t_{N}\right)\right)$,
where $z\left(t_{1}, \ldots, t_{N}\right)=\left(z_{i}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty},\left(t_{1}, \ldots, t_{N}\right) \in \mathbb{R}_{+}^{N}, n \in \mathbb{N}$ and $z_{i} \in$ $C\left(\mathbb{R}_{+}^{N}, \mathbb{R}\right)$ for all $i \in \mathbb{N}$.

4. Existence of solutions for infinite systems of integral equations IN N-variables in tempered SEquence space c_{0}^{β}

In this section, we are going to show how the measure χ, defined in (3.1), can be applied to the infinite system of integral equations (3.3) in the sequence space c_{0}.

Theorem 4.1. Assume that the following conditions are satisfied.
(i) $a_{1}, \ldots, a_{N}: \mathbb{R}_{+} \rightarrow[0, \infty)$ are continuous.
(ii) $f_{n}: \mathbb{R}_{+}^{N} \times \mathbb{R} \times \mathbb{R}^{\infty} \rightarrow \mathbb{R}(n \in \mathbb{N})$ is continuous with

$$
K_{n}=\sup _{k \geq n}\left\{\beta_{k}\left|f_{k}\left(t_{1}, \ldots, t_{N}, 0, z^{0}\left(t_{1}, \ldots, t_{N}\right)\right)\right|: t_{1}, \ldots, t_{N} \in \mathbb{R}_{+}\right\}<\infty
$$

where $z^{0}\left(t_{1}, \ldots, t_{N}\right)=\left(z_{i}^{0}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty} \in \mathbb{R}^{\infty} \operatorname{and} z_{i}^{0}\left(t_{1}, \ldots, t_{N}\right)=0, \forall i \in \mathbb{N},\left(t_{1}, \ldots, t_{N}\right) \in$ \mathbb{R}_{+}^{N}. Also, continuous functions $u_{n}, m_{n}: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}_{+}(n \in \mathbb{N})$ exist such that

$$
\begin{gathered}
\left|f_{n}\left(t_{1}, \ldots, t_{N}, p\left(t_{1}, \ldots, t_{N}\right), z\left(t_{1}, \ldots, t_{N}\right)\right)-f_{n}\left(t_{1}, \ldots, t_{N}, q\left(t_{1}, \ldots, t_{N}\right), \bar{z}\left(t_{1}, \ldots, t_{N}\right)\right)\right| \\
\leq u_{n}\left(t_{1}, \ldots, t_{N}\right) \max _{i \geq n} \beta_{i}\left|z_{i}\left(t_{1}, \ldots, t_{N}\right)-\overline{z_{i}}\left(t_{1}, \ldots, t_{N}\right)\right| \\
+m_{n}\left(t_{1}, \ldots, t_{N}\right)\left|p\left(t_{1}, \ldots, t_{N}\right)-q\left(t_{1}, \ldots, t_{N}\right)\right|,
\end{gathered}
$$

where p and q are mappings from \mathbb{R}_{+}^{N} into $\mathbb{R}, z\left(t_{1}, \ldots, t_{N}\right)=\left(z_{i}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty}$, $\bar{z}\left(t_{1}, \ldots, t_{N}\right)=\left(\overline{z_{i}}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty} \in \mathbb{R}^{\infty}$.
(iii) $g_{n}: \mathbb{R}_{+}^{2 N} \times \mathbb{R}^{\infty} \rightarrow \mathbb{R}(n \in \mathbb{N})$ is continuous and a constant G_{n} exists so that $G_{n}=\sup _{k \geq n}\left\{\beta_{k} m_{k}\left(t_{1}, \ldots, t_{N}\right)\left|\int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)} g_{k}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right) d s_{1} \ldots d s_{N}\right|\right\}$,
where $t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N} \in \mathbb{R}_{+}$and $z\left(s_{1}, \ldots, s_{N}\right) \in \mathbb{R}^{\infty}$. Moreover, for each n we have

$$
\begin{gathered}
\lim _{t_{1}, \ldots, t_{N} \rightarrow \infty} \beta_{n} \mid m_{n}\left(t_{1}, \ldots, t_{N}\right) \int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)}\left[g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right)\right. \\
\left.-g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, \bar{z}\left(s_{1}, \ldots, s_{N}\right)\right)\right] d s_{1} \ldots d s_{N} \mid=0
\end{gathered}
$$

(iv) Define an operator $Z: \mathbb{R}_{+}^{N} \times c_{0}^{\beta} \rightarrow c_{0}^{\beta}$ as follows
$\left(t_{1}, \ldots, t_{N}, z\left(t_{1}, \ldots, t_{N}\right)\right) \rightarrow(Z z)\left(t_{1}, \ldots, t_{N}\right)$, where

$$
\begin{gathered}
(Z z)\left(t_{1}, \ldots, t_{N}\right)=\left(\beta_{1} f_{1}\left(t_{1}, \ldots, t_{N}, v_{1}(z)\left(t_{1}, \ldots, t_{N}\right), z\left(t_{1}, \ldots, t_{N}\right)\right),\right. \\
\left.\beta_{2} f_{2}\left(t_{1}, \ldots, t_{N}, v_{2}(z)\left(t_{1}, \ldots, t_{N}\right), z\left(t_{1}, \ldots, t_{N}\right)\right), \ldots\right)
\end{gathered}
$$

where $v_{n}(z)\left(t_{1}, \ldots, t_{N}\right)=\int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)} g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right) d s_{1} \ldots d s_{N}$.
(v) $\lim _{n \rightarrow \infty} K_{n}=0$ and $\lim _{n \rightarrow \infty} G_{n}=0$. Also, $\sup _{n} K_{n}=K, \sup _{n} G_{n}=G$, and $\sup _{n}^{n \rightarrow \infty}\left\{\beta_{n} u_{n}\left(t_{1}, \ldots, t_{N}\right): \stackrel{n \rightarrow \infty}{n} t_{1}, \ldots, t_{N} \in \mathbb{R}_{+}\right\}=\stackrel{n}{U}<\infty$ so that $0<U<1$.
Then the infinite system (3.3) has at least one solution $z\left(t_{1}, \ldots, t_{N}\right)=\left(z_{i}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty}$ which belongs to the space c_{0} for all $t_{1}, \ldots, t_{N} \in \mathbb{R}_{+}$. Also, $z_{i} \in C\left(\mathbb{R}_{+}^{N}, \mathbb{R}\right)$ for all $i \in \mathbb{N}$.

Proof. By applying our assumptions and Eq. (3.3), for all $t_{1}, \ldots, t_{N} \in \mathbb{R}_{+}$we have

$$
\begin{aligned}
&\left\|z\left(t_{1}, \ldots, t_{N}\right)\right\|_{c_{0}^{\beta}}=\max _{n \geq 1}\left\{\beta_{n}\left|z_{n}\left(t_{1}, \ldots, t_{N}\right)\right|\right\} \\
&= \max _{n \geq 1}\left\{\beta_{n}\left|f_{n}\left(t_{1}, \ldots, t_{N}, \int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)} g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right) d s_{1} \ldots d s_{N}, z\left(t_{1}, \ldots, t_{N}\right)\right)\right|\right\} \\
& \leq \max _{n \geq 1}\left\{\beta_{n} \mid f_{n}\left(t_{1}, \ldots, t_{N}, \int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)} g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right) d s_{1} \ldots d s_{N}, z\left(t_{1}, \ldots, t_{N}\right)\right)\right. \\
&\left.-f_{n}\left(t_{1}, \ldots, t_{N}, 0, z^{0}\left(t_{1}, \ldots, t_{N}\right)\right) \mid\right\}+\max _{n \geq 1}\left\{\beta_{n}\left|f_{n}\left(t_{1}, \ldots, t_{N}, 0, z^{0}\left(t_{1}, \ldots, t_{N}\right)\right)\right|\right\} \\
& \leq \max _{n \geq 1}\left\{\beta_{n} u_{n}\left(t_{1}, \ldots, t_{N}\right) \max _{i \geq n} \beta_{i}\left|z_{i}\left(t_{1}, \ldots, t_{N}\right)\right|\right. \\
&\left.+\beta_{n} m_{n}\left(t_{1}, \ldots, t_{N}\right)\left|\int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)} g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right) d s_{1} \ldots d s_{N}\right|\right\}+K_{1} \\
& \leq U\left\|z\left(t_{1}, \ldots, t_{N}\right)\right\|_{c_{0}^{\beta}}+G_{1}+K_{1} \\
& \leq U\left\|z\left(t_{1}, \ldots, t_{N}\right)\right\|_{c_{0}^{\beta}}+G+K
\end{aligned}
$$

i.e. $(1-U)\left\|z\left(t_{1}, \ldots, t_{N}\right)\right\|_{c_{0}^{\beta}} \leq G+K \quad$ and so $\left\|z\left(t_{1}, \ldots, t_{N}\right)\right\|_{c_{0}^{\beta}} \leq \frac{G+K}{1-U}=r$ (say).

Suppose that $\bar{B}=\bar{B}\left(z^{0}\left(t_{1}, \ldots, t_{N}\right), r\right)$ is a closed ball with center at $z^{0}\left(t_{1}, \ldots, t_{N}\right)$ and radius r, therefore \bar{B} is a nonempty, bounded, closed and convex subset of c_{0}^{β}. Now, we define the operator $Z=\left(Z_{i}\right)$ on $C\left(\mathbb{R}_{+}^{N}, \bar{B}\right)$ by the formula

$$
(Z z)\left(t_{1}, \ldots, t_{N}\right)=\left(\left(Z_{i} z\right)\left(t_{1}, \ldots, t_{N}\right)\right)=\left(\beta_{i} f_{i}\left(t_{1}, \ldots, t_{N}, v_{i}(z)\left(t_{1}, \ldots, t_{N}\right), z\left(t_{1}, \ldots, t_{N}\right)\right)\right)
$$

where $z\left(t_{1}, \ldots, t_{N}\right)=\left(z_{i}\left(t_{1}, \ldots, t_{N}\right)\right) \in \bar{B}$ and $z_{i} \in C\left(\mathbb{R}_{+}^{N}, \mathbb{R}\right), \forall i \in \mathbb{N}$. From hypothesis (iv), for each $\left(t_{1}, \ldots, t_{N}\right) \in \mathbb{R}_{+}^{N}$ we have

$$
\lim _{i \rightarrow \infty}\left(Z_{i} z\right)\left(t_{1}, \ldots, t_{N}\right)=\lim _{i \rightarrow \infty} \beta_{i} f_{i}\left(t_{1}, \ldots, t_{N}, v_{i}(z)\left(t_{1}, \ldots, t_{N}\right), z\left(t_{1}, \ldots, t_{N}\right)\right)=0
$$

Hence $(Z z)\left(t_{1}, \ldots, t_{N}\right) \in c_{0}^{\beta}$.
Since $\left\|(Z z)\left(t_{1}, \ldots, t_{N}\right)-z^{0}\left(t_{1}, \ldots, t_{N}\right)\right\|_{c_{0}^{\beta}} \leq r$, then Z is a self mapping on \bar{B}.
We claim that the operator Z is a continuous function on $C\left(\mathbb{R}_{+}^{N}, \bar{B}\right)$. To establish this claim, let us $\varepsilon>0$ and take arbitrary $x_{m}\left(t_{1}, \ldots, t_{N}\right)=\left(x_{m, i}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty}$, $x\left(t_{1}, \ldots, t_{N}\right)=\left(x_{i}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty} \in \bar{B} \subseteq c_{0}^{\beta}$ such that $\left\|x_{m}\left(t_{1}, \ldots, t_{N}\right)-x\left(t_{1}, \ldots, t_{N}\right)\right\|_{c_{0}^{\beta}}<$ $\frac{\varepsilon}{2 U}$ for m sufficiently large. We claim that $\left\|Z x_{m}\left(t_{1}, \ldots, t_{N}\right)-Z x\left(t_{1}, \ldots, t_{N}\right)\right\|_{c_{0}^{\beta}}^{\alpha_{0}} \rightarrow$ 0 , for m large enough. To this end, we show that $\beta_{n}\left|Z_{n} x_{m}\left(t_{1}, \ldots, t_{N}\right)-Z_{n} x\left(t_{1}, \ldots, t_{N}\right)\right|$ tends to 0 as $m \rightarrow \infty$. Taking into account condition (ii), for each $\left(t_{1}, \ldots, t_{N}\right) \in \mathbb{R}_{+}^{N}$ we get

$$
\begin{align*}
\beta_{n} \mid & \left(Z_{n} x_{m}\right)\left(t_{1}, \ldots, t_{N}\right)-\left(Z_{n} x\right)\left(t_{1}, \ldots, t_{N}\right) \mid \tag{4.1}\\
=\quad & \beta_{n} \mid f_{n}\left(t_{1}, \ldots, t_{N}, v_{n}\left(x_{m}\right)\left(t_{1}, \ldots, t_{N}\right), x_{m}\left(t_{1}, \ldots, t_{N}\right)\right) \\
& -f_{n}\left(t_{1}, \ldots, t_{N}, v_{n}(x)\left(t_{1}, \ldots, t_{N}\right), x\left(t_{1}, \ldots, t_{N}\right)\right) \mid \\
\leq \quad & \beta_{n} u_{n}\left(t_{1}, \ldots, t_{N}\right) \max _{i \geq n} \beta_{i}\left|x_{m, i}\left(t_{1}, \ldots, t_{N}\right)-x_{i}\left(t_{1}, \ldots, t_{N}\right)\right| \\
& +\beta_{n} m_{n}\left(t_{1}, \ldots, t_{N}\right)\left|v_{n}\left(x_{m}\right)\left(t_{1}, \ldots, t_{N}\right)-v_{n}(x)\left(t_{1}, \ldots, t_{N}\right)\right| \\
\leq \quad & U\left\|x_{m}\left(t_{1}, \ldots, t_{N}\right)-x\left(t_{1}, \ldots, t_{N}\right)\right\|_{c_{0}^{\beta}} \\
& \quad+\beta_{n} m_{n}\left(t_{1}, \ldots, t_{N}\right) \mid \int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)}\left[g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x_{m}\left(s_{1}, \ldots, s_{N}\right)\right)\right. \\
& \left.\quad-g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x\left(s_{1}, \ldots, s_{N}\right)\right)\right] d s_{1} \ldots d s_{N} \mid
\end{align*}
$$

By applying hypothesis (iii), we choose $T>0$ such that $\max \left(t_{1}, \ldots, t_{N}\right)>T$, and we derive that

$$
\begin{gathered}
\beta_{n} \mid m_{n}\left(t_{1}, \ldots, t_{N}\right) \int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)}\left[g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x_{m}\left(s_{1}, \ldots, s_{N}\right)\right)\right. \\
\left.\quad-g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x\left(s_{1}, \ldots, s_{N}\right)\right)\right] d s_{1} \ldots d s_{N} \left\lvert\,<\frac{\varepsilon}{2}\right.
\end{gathered}
$$

It follows that $\beta_{n}\left|\left(Z_{n} x_{m}\right)\left(t_{1}, \ldots, t_{N}\right)-\left(Z_{n} x\right)\left(t_{1}, \ldots, t_{N}\right)\right|<\varepsilon$.
For $t_{1}, \ldots, t_{N} \in[0, T]$, put
$A_{1}^{T}=\sup \left\{a_{1}\left(t_{1}\right): t_{1} \in[0, T]\right\}$,
$A_{2}^{T}=\sup \left\{a_{2}\left(t_{2}\right): t_{2} \in[0, T]\right\}$,
\vdots
$A_{N}^{T}=\sup \left\{a_{N}\left(t_{N}\right): t_{N} \in[0, T]\right\}$,
$M_{T}=\sup _{n}\left\{\beta_{n} m_{n}\left(t_{1}, \ldots, t_{N}\right): t_{1}, \ldots, t_{N} \in[0, T]\right\}$,
and

$$
\begin{gathered}
g_{x_{m}, x}=\sup _{n}\left\{\left|g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x_{m}\left(s_{1}, \ldots, s_{N}\right)\right)-g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x\left(s_{1}, \ldots, s_{N}\right)\right)\right|,\right. \\
\left.t_{1}, \ldots, t_{N} \in[0, T], s_{1} \in\left[0, A_{N}^{T}\right], \ldots, s_{N} \in\left[0, A_{1}^{T}\right]\right\} .
\end{gathered}
$$

By 4.1) we find that

$$
\left|\left(Z_{n} x_{m}\right)\left(t_{1}, \ldots, t_{N}\right)-\left(Z_{n} x\right)\left(t_{1}, \ldots, t_{N}\right)\right|<\frac{\varepsilon}{2}+M^{T} g_{x_{m}, x} A_{N}^{T} \ldots A_{1}^{T}
$$

By using the continuity of g_{n} on the set $[0, T]^{N} \times\left[0, A_{N}^{T}\right] \times \ldots \times\left[0, A_{1}^{T}\right] \times c_{0}^{\beta}$, we have $g_{x_{m}, x} \rightarrow 0$ as $\varepsilon \rightarrow 0$. It enforces that $\beta_{n}\left|\left(Z_{n} x_{m}\right)\left(t_{1}, \ldots, t_{N}\right)-\left(Z_{n} x\right)\left(t_{1}, \ldots, t_{N}\right)\right| \rightarrow 0$ as $\left\|x_{m}\left(t_{1}, \ldots, t_{N}\right)-x\left(t_{1}, \ldots, t_{N}\right)\right\|_{c_{0}^{\beta}} \rightarrow 0$ for m large enough.

Therefore, we infer that Z is a continuous function on $\bar{B} \subset c_{0}^{\beta}$.
In order to finish the proof, we show that Z is a Meir-Keeler condensing operator on \bar{B}. Let Q be any bounded subset of \bar{B} and $\varepsilon>0$ be arbitrary. We have to find $\delta>0$ such that $\varepsilon \leq \chi(Q)<\varepsilon+\delta \Rightarrow \chi(Z(Q))<\varepsilon$.
In view of conditions (ii) and (iv) we observe that

$$
\begin{aligned}
\chi(Z(Q))= & \lim _{n \rightarrow \infty}\left[\sup _{z\left(t_{1}, \ldots, t_{N}\right) \in Q}\left\{\max _{k \geq n} \beta_{k}\left|f_{k}\left(t_{1}, \ldots, t_{N}, v_{k}(z), z\left(t_{1}, \ldots, t_{N}\right)\right)\right|\right\}\right] \\
\leq & \lim _{n \rightarrow \infty}\left[\operatorname { s u p } _ { z (t _ { 1 } , \ldots , t _ { N }) \in Q } \left\{\max _{k \geq n} \beta_{k} \mid f_{k}\left(t_{1}, \ldots, t_{N}, v_{k}(z), z\left(t_{1}, \ldots, t_{N}\right)\right)\right.\right. \\
& \left.\left.-f_{k}\left(t_{1}, \ldots, t_{N}, 0, z^{0}\left(t_{1}, \ldots, t_{N}\right)\right)\left|+\max _{k \geq n} \beta_{k}\right| f_{k}\left(t_{1}, \ldots, t_{N}, 0, z^{0}\left(t_{1}, \ldots, t_{N}\right)\right) \mid\right\}\right] \\
\leq & \lim _{n \rightarrow \infty}\left[\operatorname { s u p } _ { z (t _ { 1 } , \ldots , t _ { N }) \in Q } \left\{\operatorname { m a x } _ { k \geq n } \left(\beta_{k} u_{k}\left(t_{1}, \ldots, t_{N}\right) \max _{i \geq k} \beta_{i}\left|z_{i}\left(t_{1}, \ldots, t_{N}\right)\right|+\beta_{k} m_{k}\left(t_{1}, \ldots, t_{N}\right)\right.\right.\right. \\
& \left.\left.\left.\left|\int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)} g_{k}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right) d s_{1} \ldots d s_{N}\right|+K_{n}\right)\right\}\right] \\
\leq & U \lim _{n \rightarrow \infty}\left[\sup _{z\left(t_{1}, \ldots, t_{N}\right) \in Q}\left\{\max _{i \geq k} \beta_{i}\left|z_{i}\left(s_{1}, \ldots, s_{N}\right)\right|+G_{n}+K_{n}\right\}\right]
\end{aligned}
$$

Since, $G_{n} \rightarrow 0$ and $K_{n} \rightarrow 0$ as $n \rightarrow \infty$, we deduce

$$
\begin{equation*}
\chi(Z(Q)) \leq U \chi(Q) \tag{4.2}
\end{equation*}
$$

Taking $\delta=\frac{\varepsilon(1-U)}{U}$. From 4.2 we obtain

$$
\varepsilon \leq \chi(Q)<\varepsilon+\delta \Rightarrow \chi(Z(Q))<\varepsilon
$$

Therefore Z is a Meir-Keeler condensing operator defined on the set $\bar{B} \subset c_{0}^{\beta}$. Now, Theorem 2.9 guarantees that Z has a fixed point in \bar{B} and thus infinite system of integral equations 3.3 has at least one solution in c_{0}^{β}.
Example 4.2. Consider the following infinite system of integral equations

$$
\begin{gather*}
x_{n}\left(t_{1}, t_{2}, t_{3}\right)=\frac{1}{t_{1} t_{2}+t_{3}^{2}+n^{4}}+\frac{1}{n^{2}} \sum_{i=n}^{\infty}\left(\frac{x_{i}\left(t_{1}, t_{2}, t_{3}\right)}{3(2 i-1)^{2}}\right)+\frac{1}{\left(n^{3}+2 n^{2}\right) e^{t_{1}^{2}+t_{2}^{2}+t_{3}^{3}}} \tag{4.3}\\
\arctan \left(\int_{0}^{e^{t_{1}^{2}}} \int_{0}^{e^{t_{2}^{2}}} \int_{0}^{e^{t_{3}^{2}}} \frac{\sin \left(x_{n}\left(s_{1}, s_{2}, s_{3}\right)\right)+\sin \left(s_{1}\right) \cos \left(\ln \sum_{i=1}^{\infty}\left(x_{i}\left(s_{1}, s_{2}, s_{3}\right)\right)^{2}\right)}{3+\cos \left(\sum_{i=1}^{\infty} x_{i}\left(s_{1}, s_{2}, s_{3}\right)\right)} d s_{1} d s_{2} d s_{3}\right),
\end{gather*}
$$

where $n \in \mathbb{N}$.
Eq. (4.3) is a special case of Eq. (3.3). Here $a_{1}(t)=a_{2}(t)=a_{3}(t)=e^{t^{2}}$,

$$
\begin{array}{r}
f_{n}\left(t_{1}, t_{2}, t_{3}, v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right), x\left(t_{1}, t_{2}, t_{3}\right)\right)
\end{array} \begin{array}{r}
\frac{1}{t_{1} t_{2}+t_{3}^{2}+n^{4}}+\frac{1}{n^{2}} \sum_{i=n}^{\infty}\left(\frac{x_{i}\left(t_{1}, t_{2}, t_{3}\right)}{3(2 i-1)^{2}}\right) \\
\\
+\frac{1}{\left(n^{3}+2 n^{2}\right) e^{t_{1}^{2}+t_{2}^{2}+t_{3}^{3}} \arctan \left(v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right)\right)} \\
g_{n}\left(t_{1}, t_{2}, t_{3}, s_{1}, s_{2}, s_{3}, x\left(t_{1}, t_{2}, t_{3}\right)\right)=\frac{\sin \left(x_{n}\left(s_{1}, s_{2}, s_{3}\right)\right)+\sin \left(s_{1}\right) \cos \left(\ln \sum_{i=1}^{\infty}\left(x_{i}\left(s_{1}, s_{2}, s_{3}\right)\right)^{2}\right)}{3+\cos \left(\sum_{i=1}^{\infty} x_{i}\left(s_{1}, s_{2}, s_{3}\right)\right)}
\end{array}
$$

where $x\left(t_{1}, t_{2}, t_{3}\right)=\left(x_{i}\left(t_{1}, t_{2}, t_{3}\right)\right)_{i=1}^{\infty}$ and

$$
v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right)=\int_{0}^{e^{t_{1}^{2}}} \int_{0}^{e^{t_{2}^{2}}} \int_{0}^{e^{t_{3}^{2}}} g_{n}\left(t_{1}, t_{2}, t_{3}, s_{1}, s_{2}, s_{3}, x\left(t_{1}, t_{2}, t_{3}\right)\right) d s_{1} d s_{2} d s_{3}
$$

Further, take the tempering sequence of the form $\beta=\left(\beta_{n}\right)=\left(\frac{1}{n^{2}}\right)$. From the definition of a_{1}, a_{2} and a_{3}, hypothesis (i) of Theorem 4.1 is obviously satisfied. If $x\left(t_{1}, t_{2}, t_{3}\right) \in c_{0}^{\beta}$, then $f_{n}\left(t_{1}, t_{2}, t_{3}, v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right), x\left(t_{1}, t_{2}, t_{3}\right)\right) \in c_{0}^{\beta}$. Now, if $y\left(t_{1}, t_{2}, t_{3}\right)=\left(y_{i}\left(t_{1}, t_{2}, t_{3}\right)\right)_{i=1}^{\infty} \in c_{0}^{\beta}$, then by taking $u_{n}\left(t_{1}, t_{2}, t_{3}\right)=\frac{\Pi^{2}}{24}$ and $m_{n}\left(t_{1}, t_{2}, t_{3}\right)=$ $\frac{1}{\left(n^{3}+2 n^{2}\right) e^{t_{1}^{2}+t_{2}^{2}+t_{3}^{3}}}$. We can write

$$
\left|f_{n}\left(t_{1}, t_{2}, t_{3}, v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right), x\left(t_{1}, t_{2}, t_{3}\right)\right)-f_{n}\left(t_{1}, t_{2}, t_{3}, v_{n}(y)\left(t_{1}, t_{2}, t_{3}\right), y\left(t_{1}, t_{2}, t_{3}\right)\right)\right|
$$

$\leq \sum_{i=n}^{\infty} \frac{1}{3(2 i-1)^{2}} \times \frac{1}{n^{2}}\left|x_{i}\left(t_{1}, t_{2}, t_{3}\right)-y_{i}\left(t_{1}, t_{2}, t_{3}\right)\right|$
$+\frac{1}{\left(n^{3}+2 n^{2}\right) e^{t_{1}^{2}+t_{2}^{2}+t_{3}^{3}}}\left|\arctan v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right)-\arctan v_{n}(y)\left(t_{1}, t_{2}, t_{3}\right)\right|$

$$
\leq \frac{\Pi^{2}}{24} \max _{i \geq n} \frac{1}{i^{2}}\left|x_{i}\left(t_{1}, t_{2}, t_{3}\right)-y_{i}\left(t_{1}, t_{2}, t_{3}\right)\right|+\frac{1}{\left(n^{3}+2 n^{2}\right) e^{t_{1}^{2}+t_{2}^{2}+t_{3}^{3}}}\left|v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right)-v_{n}(y)\left(t_{1}, t_{2}, t_{3}\right)\right| .
$$

Then the condition (ii) holds. Further,

$$
\begin{aligned}
K_{n}= & \sup \left\{\frac{1}{n^{2}}\left|f_{n}\left(t_{1}, t_{2}, t_{3}, 0, z^{0}\left(t_{1}, t_{2}, t_{3}\right)\right)\right|: t_{1}, t_{2}, t_{3} \in \mathbb{R}_{+}\right\} \\
& =\sup \left\{\frac{1}{n^{2}}\left|\frac{1}{t_{1} t_{2}+t_{3}^{2}+n^{4}}\right|: t_{1}, t_{2}, t_{3} \in \mathbb{R}_{+}\right\} \leq 1,
\end{aligned}
$$

and $K_{n} \rightarrow 0$ as $n \rightarrow \infty$, and $0<U<1$. Evidently, g_{n} is continuous and since

$$
\begin{gathered}
\left|\int_{0}^{e^{t_{1}^{2}}} \int_{0}^{e^{t_{2}^{2}}} \int_{0}^{e^{t_{3}^{2}}} \frac{\sin \left(x_{n}\left(s_{1}, s_{2}, s_{3}\right)\right)+\sin \left(s_{1}\right) \cos \left(\ln \sum_{i=1}^{\infty}\left(x_{i}\left(s_{1}, s_{2}, s_{3}\right)\right)^{2}\right)}{3+\cos \left(\sum_{i=1}^{\infty} x_{i}\left(s_{1}, s_{2}, s_{3}\right)\right)} d s_{1} d s_{2} d s_{3}\right| \\
\quad \leq 2\left|\int_{0}^{e^{t_{1}^{2}}} \int_{0}^{e^{t_{2}^{2}}} \int_{0}^{e^{t_{3}^{2}}} d s_{1} d s_{2} d s_{3}\right| \leq 2 e^{t_{1}^{2}+t_{2}^{2}+t_{3}^{2}}
\end{gathered}
$$

for all $t_{1}, t_{2}, t_{3} \in \mathbb{R}_{+}$, so we deduce that

$$
G_{n} \leq \sup \left\{\frac{1}{n^{2}}\left(\frac{3 e^{t_{1}^{2}} e^{t_{2}^{2}} e^{t_{3}^{2}}}{\left(n^{3}+2 n^{2}\right) e^{t_{1}^{2}+t_{2}^{2}+t_{3}^{3}}}\right): t_{1}, t_{2}, t_{3} \in \mathbb{R}_{+}\right\}=\frac{1}{n^{2}}\left(\frac{3}{n^{3}+2 n^{2}}\right) .
$$

As $n \rightarrow \infty$ we obtain $G_{n} \rightarrow 0$. These prove condition (v). Moreover, for each n we get as $t_{1}, t_{2}, t_{3} \rightarrow \infty$

$$
\begin{gathered}
\frac{1}{n^{2}} \left\lvert\, \frac{1}{\left(n^{3}+2 n^{2}\right) e^{t_{1}^{2}+t_{2}^{2}+t_{3}^{3}}} \int_{0}^{e^{t_{1}^{2}}} \int_{0}^{e^{t_{2}^{2}}} \int_{0}^{e^{t_{3}^{2}}}\left[g_{n}\left(t_{1}, t_{2}, t_{3}, s_{1}, s_{2}, s_{3}, x\left(t_{1}, t_{2}, t_{3}\right)\right)\right.\right. \\
\left.-g_{n}\left(t_{1}, t_{2}, t_{3}, s_{1}, s_{2}, s_{3}, y\left(t_{1}, t_{2}, t_{3}\right)\right)\right] d s_{1} d s_{2} d s_{3} \mid \rightarrow 0,
\end{gathered}
$$

which shows that condition (iii) is satisfied. Consequently, all the conditions of Theorem 4.1 are satisfied. Hence the infinite system of integral equations (4.3) has at least one solution, which belongs to the space c_{0}^{β}.

5. Existence of solutions for infinite systems of integral equations IN N-variables in tempered sequence space l_{1}^{β}

To demonstrate the applicability of the Hausdorff measure of noncompactness (3.2) in the space l_{1}^{β}, we look for solutions of the Eq. 3.3) in the space l_{1}^{β}. Assume that
(a) $a_{1}, \ldots, a_{N}: \mathbb{R}_{+} \rightarrow[0, \infty)$ are continuous.
(b) $f_{n}: \mathbb{R}_{+}^{N} \times \mathbb{R} \times \mathbb{R}^{\infty} \rightarrow \mathbb{R}(n \in \mathbb{N})$ is continuous with

$$
\sum_{n=1}^{\infty} \beta_{n}\left|f_{n}\left(t_{1}, \ldots, t_{N}, 0, z^{0}\left(t_{1}, \ldots, t_{N}\right)\right)\right|
$$

is convergent to zero for all $t_{1}, \ldots, t_{N} \in \mathbb{R}_{+}$and $z^{0}\left(t_{1}, \ldots, t_{N}\right)=\left(z_{i}^{0}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty} \in$ \mathbb{R}^{∞} with $\left.z_{i}^{0}\left(t_{1}, \ldots, t_{N}\right)\right)=0, \forall i \in \mathbb{N}$. Also, continuous functions $\alpha_{n}, \gamma_{n}: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}_{+}(n \in \mathbb{N})$ exist such that

$$
\begin{aligned}
& \left|f_{n}\left(t_{1}, \ldots, t_{N}, p\left(t_{1}, \ldots, t_{N}\right), z\left(t_{1}, \ldots, t_{N}\right)\right)-f_{n}\left(t_{1}, \ldots, t_{N}, q\left(t_{1}, \ldots, t_{N}\right), \bar{z}\left(t_{1}, \ldots, t_{N}\right)\right)\right| \\
\leq & \alpha_{n}\left(t_{1}, \ldots, t_{N}\right)\left|z_{n}\left(t_{1}, \ldots, t_{N}\right)-\overline{z_{n}}\left(t_{1}, \ldots, t_{N}\right)\right|+\gamma_{n}\left(t_{1}, \ldots, t_{N}\right)\left|p\left(t_{1}, \ldots, t_{N}\right)-q\left(t_{1}, \ldots, t_{N}\right)\right|,
\end{aligned}
$$

where p and q are mappings from \mathbb{R}_{+}^{N} into $\mathbb{R}, z\left(t_{1}, \ldots, t_{N}\right)=\left(z_{i}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty}$, $\bar{z}\left(t_{1}, \ldots, t_{N}\right)=\left(\overline{z_{i}}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty}$ are in \mathbb{R}^{∞}.
(c) $g_{n}: \mathbb{R}_{+}^{2 N} \times \mathbb{R}^{\infty} \rightarrow \mathbb{R}(n \in \mathbb{N})$ is continuous and a constant Q_{k} exists so that
$Q_{k}=\sup \left\{\sum_{n \geq k} \beta_{n}\left(\gamma_{n}\left(t_{1}, \ldots, t_{N}\right)\left|\int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)} g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right) d s_{1} \ldots d s_{N}\right|\right)\right\}$,
where $z\left(s_{1}, \ldots, s_{N}\right) \in \mathbb{R}^{\infty}, t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N} \in \mathbb{R}_{+}$. Moreover,
$\lim _{t_{1}, \ldots, t_{N} \rightarrow \infty} \sum_{n=1}^{\infty} \beta_{n} \mid \gamma_{n}\left(t_{1}, \ldots, t_{N}\right) \int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)}\left(g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right)\right.$

$$
\left.-g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, \bar{z}\left(s_{1}, \ldots, s_{N}\right)\right)\right) d s_{1} \ldots d s_{N} \mid=0
$$

(d) Define an operator $Z: \mathbb{R}_{+}^{N} \times l_{1}^{\beta} \rightarrow l_{1}^{\beta}$ as follows
$\left(t_{1}, \ldots, t_{N}, z\left(t_{1}, \ldots, t_{N}\right)\right) \rightarrow(Z z)\left(t_{1}, \ldots, t_{N}\right)$ where
$(Z z)\left(t_{1}, \ldots, t_{N}\right)=\left(\beta_{1} f_{1}\left(t_{1}, \ldots, t_{N}, v_{1}\left(t_{1}, \ldots, t_{N}\right), z\left(t_{1}, \ldots, t_{N}\right)\right), \beta_{2} f_{2}\left(t_{1}, \ldots, t_{N}, v_{2}\left(t_{1}, \ldots, t_{N}\right), z\left(t_{1}, \ldots, t_{N}\right)\right), \ldots\right)$
and $v_{n}(z)\left(t_{1}, \ldots, t_{N}\right)=\int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)} g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right) d s_{1} \ldots d s_{N}$.
(e) $\lim _{k \rightarrow \infty} Q_{k}=0, \sup _{k} Q_{k}=Q, \eta_{1}=\sup \left\{\sum_{n=1}^{\infty} \beta_{n} \gamma_{n}\left(t_{1}, \ldots, t_{N}\right): t_{1}, \ldots, t_{N} \in \mathbb{R}_{+}\right\}$
and $\sup _{n}\left\{\alpha_{n}\left(t_{1}, \ldots, t_{N}\right): t_{1}, \ldots, t_{N} \in \mathbb{R}_{+}\right\}=\alpha<\infty$ such that $0<\alpha<1$.
Theorem 5.1. Under the hypotheses (a)-(e), Eq. (3.3) has at least one solution $z\left(t_{1}, \ldots, t_{N}\right)=\left(z_{i}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty}$ which belongs to the space l_{1}^{β} for all $t_{1}, \ldots, t_{N} \in$ \mathbb{R}_{+}. Also, $z_{i} \in C\left(\mathbb{R}_{+}^{N}, \mathbb{R}\right)$ for all $i \in \mathbb{N}$.

Proof. Applying conditions (a)-(e), and Eq. 3.3), for all $t_{1}, \ldots, t_{N} \in \mathbb{R}_{+}$we obtain

$$
\begin{aligned}
&\left\|z\left(t_{1}, \ldots, t_{N}\right)\right\|_{l_{1}^{\beta}}=\sum_{n=1}^{\infty} \beta_{n}\left|z_{n}\left(t_{1}, \ldots, t_{N}\right)\right| \\
&= \sum_{n=1}^{\infty} \beta_{n}\left|f_{n}\left(t_{1}, \ldots, t_{N}, \int_{0}^{a_{1}\left(t_{1}\right)} \cdots \int_{0}^{a_{N}\left(t_{N}\right)} g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right) d s_{1} \ldots d s_{N}, z\left(t_{1}, \ldots, t_{N}\right)\right)\right| \\
& \leq \sum_{n=1}^{\infty} \beta_{n} \mid f_{n}\left(t_{1}, \ldots, t_{N}, \int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)} g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right) d s_{1} \ldots d s_{N}, z\left(t_{1}, \ldots, t_{N}\right)\right) \\
&-f_{n}\left(t_{1}, \ldots, t_{N}, 0, z^{0}\left(t_{1}, \ldots, t_{N}\right)\right)\left|+\sum_{n=1}^{\infty} \beta_{n}\right| f_{n}\left(t_{1}, \ldots, t_{N}, 0, z^{0}\left(t_{1}, \ldots, t_{N}\right)\right) \mid \\
& \leq \sum_{n=1}^{\infty} \alpha_{n}\left(t_{1}, \ldots, t_{N}\right) \beta_{n}\left|z_{n}\left(t_{1}, \ldots, t_{N}\right)\right| \\
&+\sum_{n=1}^{\infty} \beta_{n} \gamma_{n}\left(t_{1}, \ldots, t_{N}\right)\left|\int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)} g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right) d s_{1} \ldots d s_{N}\right| \\
& \leq \alpha \sum_{n=1}^{\infty} \beta_{n}\left|z_{n}\left(t_{1}, \ldots, t_{N}\right)\right|+Q_{1} \leq \alpha\left\|z\left(t_{1}, \ldots, t_{N}\right)\right\|_{l_{1}^{\beta}}+Q
\end{aligned}
$$

i.e. $(1-\alpha)\left\|z\left(t_{1}, \ldots, t_{N}\right)\right\|_{l_{1}^{\beta}} \leq Q \Rightarrow\left\|z\left(t_{1}, \ldots, t_{N}\right)\right\|_{l_{1}^{\beta}} \leq \frac{Q}{1-\alpha}=r$ (say).

Suppose that $\bar{D}=\bar{D}\left(z^{0}\left(t_{1}, \ldots, t_{N}\right), r\right)$ is a closed ball in l_{1}^{β} with center at $z^{0}\left(t_{1}, \ldots, t_{N}\right)$ and radius r, thus \bar{D} is a nonempty, bounded, closed and convex subset of l_{1}^{β}.
Now, we define the operator $Z=\left(Z_{i}\right)$ on $C\left(\mathbb{R}_{+}^{N}, \bar{D}\right)$ by formula
$(Z z)\left(t_{1}, \ldots, t_{N}\right)=\left(\beta_{i}\left(Z_{i} z\right)\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty}=\left(\beta_{i} f_{i}\left(t_{1}, \ldots, t_{N}, v_{i}(z)\left(t_{1}, \ldots, t_{N}\right), z\left(t_{1}, \ldots, t_{N}\right)\right)\right)_{i=1}^{\infty}$,
where $z\left(t_{1}, \ldots, t_{N}\right)=\left(z_{i}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty} \in \bar{D}$ and $z_{i} \in C\left(\mathbb{R}_{+}^{N}, \mathbb{R}\right), \forall i \in \mathbb{N}$. Since, by condition (d), for each $\left(t_{1}, \ldots, t_{N}\right) \in \mathbb{R}_{+}^{N}$ we have

$$
\sum_{i=1}^{\infty} \beta_{i}\left|\left(Z_{i} z\right)\left(t_{1}, \ldots, t_{N}\right)\right|=\sum_{i=1}^{\infty} \beta_{i}\left|f_{i}\left(t_{1}, \ldots, t_{N}, v_{i}(z)\left(t_{1}, \ldots, t_{N}\right), z\left(t_{1}, \ldots, t_{N}\right)\right)\right|<\infty,
$$

hence $(Z z)\left(t_{1}, \ldots, t_{N}\right) \in l_{1}^{\beta}$.
Further, $\left\|(Z z)\left(t_{1}, \ldots, t_{N}\right)-z^{0}\left(t_{1}, \ldots, t_{N}\right)\right\|_{l_{1}^{\beta}} \leq r$ and so Z is a self mapping on \bar{D}.
Next, we show that Z is continuous. For this, take $x_{m}\left(t_{1}, \ldots, t_{N}\right)=\left(x_{m, i}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty}$, $x\left(t_{1}, \ldots, t_{N}\right)=\left(x_{i}\left(t_{1}, \ldots, t_{N}\right)\right)_{i=1}^{\infty} \in l_{1}^{\beta}$ and $\varepsilon>0$ arbitrary with $\| x_{m}\left(t_{1}, \ldots, t_{N}\right)-$ $x\left(t_{1}, \ldots, t_{N}\right) \|_{l_{1}^{\beta}}<\frac{\varepsilon}{2 \alpha}$ for m sufficiently large. We claim that $\| Z x_{m}\left(t_{1}, \ldots, t_{N}\right)-$ $Z x\left(t_{1}, \ldots, t_{N}\right) \|_{l_{1}^{\beta}} \rightarrow 0$, for m large enough. We will show that $\beta_{n} \mid Z_{n} x_{m}\left(t_{1}, \ldots, t_{N}\right)-$ $Z_{n} x\left(t_{1}, \ldots, t_{N}\right) \mid \rightarrow 0$, for m large enough. Then, for each $\left(t_{1}, \ldots, t_{N}\right) \in \mathbb{R}_{+}^{N}$, we have

$$
\begin{aligned}
& \beta_{n}\left|\left(Z_{n} x_{m}\right)\left(t_{1}, \ldots, t_{N}\right)-\left(Z_{n} x\right)\left(t_{1}, \ldots, t_{N}\right)\right| \\
&= \beta_{n}\left|f_{n}\left(t_{1}, \ldots, t_{N}, v_{n}\left(x_{m}\right)\left(t_{1}, \ldots, t_{N}\right), x_{m}\left(t_{1}, \ldots, t_{N}\right)\right)-f_{n}\left(t_{1}, \ldots, t_{N}, v_{n}(x)\left(t_{1}, \ldots, t_{N}\right), x\left(t_{1}, \ldots, t_{N}\right)\right)\right| \\
& \leq \beta_{n} \alpha_{n}\left(t_{1}, \ldots, t_{N}\right)\left|x_{m}\left(t_{1}, \ldots, t_{N}\right)-x\left(t_{1}, \ldots, t_{N}\right)\right| \\
&+\beta_{n} \gamma_{n}\left(t_{1}, \ldots, t_{N}\right)\left|v_{n}\left(x_{m}\right)\left(t_{1}, \ldots, t_{N}\right)-v_{n}(x)\left(t_{1}, \ldots, t_{N}\right)\right| \\
& \leq \alpha \beta_{n}\left|x_{m}\left(t_{1}, \ldots, t_{N}\right)-x\left(t_{1}, \ldots, t_{N}\right)\right| \\
&+\beta_{n} \gamma_{n}\left(t_{1}, \ldots, t_{N}\right) \mid \int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)}\left[g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x_{m}\left(s_{1}, \ldots, s_{N}\right)\right)\right. \\
&\left.\quad-g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x\left(s_{1}, \ldots, s_{N}\right)\right)\right] d s_{1} \ldots d s_{N} \mid
\end{aligned}
$$

and so

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \beta_{n}\left|\left(Z_{n} x_{m}\right)\left(t_{1}, \ldots, t_{N}\right)-\left(Z_{n} x\right)\left(t_{1}, \ldots, t_{N}\right)\right| \leq \alpha\left\|x_{m}\left(t_{1}, \ldots, t_{N}\right)-x\left(t_{1}, \ldots, t_{N}\right)\right\|_{l_{1}^{\beta}}+\sum_{n=1}^{\infty} \beta_{n} \gamma_{n}\left(t_{1}, \ldots, t_{N}\right) \\
& \left|\int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)}\left[g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x_{m}\left(s_{1}, \ldots, s_{N}\right)\right)-g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x\left(s_{1}, \ldots, s_{N}\right)\right)\right] d s_{1} \ldots d s_{N}\right| .
\end{aligned}
$$

In view of condition $(c), T_{1}>0$ exists such that if $\max \left(t_{1}, \ldots, t_{N}\right)>T_{1}$, then

$$
\begin{gathered}
\sum_{n=1}^{\infty} \beta_{n} \gamma_{n}\left(t_{1}, \ldots, t_{N}\right) \mid \int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)}\left[g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x_{m}\left(s_{1}, \ldots, s_{N}\right)\right)\right. \\
\left.-g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x\left(s_{1}, \ldots, s_{N}\right)\right)\right] d s_{1} \ldots d s_{N} \left\lvert\,<\frac{\varepsilon}{2}\right.
\end{gathered}
$$

Hence for $\max \left(t_{1}, \ldots, t_{N}\right)>T_{1}, \sum_{n=1}^{\infty} \beta_{n}\left|\left(Z_{n} x_{m}\right)\left(t_{1}, \ldots, t_{N}\right)-\left(Z_{n} x\right)\left(t_{1}, \ldots, t_{N}\right)\right|<\varepsilon \quad$ i.e.

$$
\left\|\left(Z x_{m}\right)\left(t_{1}, \ldots, t_{N}\right)-(Z x)\left(t_{1}, \ldots, t_{N}\right)\right\|_{l_{1}^{\beta}}<\varepsilon .
$$

For $t_{1}, \ldots, t_{N} \in[0, T]$, let
$A_{1}^{T}=\sup \left\{a_{1}\left(t_{1}\right): t_{1} \in[0, T]\right\}$,
$A_{2}^{T}=\sup \left\{a_{2}\left(t_{2}\right): t_{2} \in[0, T]\right\}$,
\vdots
$A_{N}^{T}=\sup \left\{a_{N}\left(t_{N}\right): t_{N} \in[0, T]\right\}$,
and
$g_{x_{m}, x}=\sup _{n}\left\{\left|g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x_{m}\left(s_{1}, \ldots, s_{N}\right)\right)-g_{n}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, x\left(s_{1}, \ldots, s_{N}\right)\right)\right|\right.$,

$$
\left.t_{1}, \ldots, t_{N} \in[0, T], s_{1} \in\left[0, A_{N}^{T}\right], \ldots, s_{N} \in\left[0, A_{1}^{T}\right]\right\} .
$$

Then $\sum_{n=1}^{\infty} \beta_{n}\left|\left(Z_{n} x_{m}\right)\left(t_{1}, \ldots, t_{N}\right)-\left(Z_{n} x\right)\left(t_{1}, \ldots, t_{N}\right)\right|<\frac{\varepsilon}{2}+g_{x_{m}, x} A_{N}^{T} \ldots A_{1}^{T} \eta_{1}$. By using the continuity of g_{n} on the set $[0, T]^{N} \times\left[0, A_{N}^{T}\right] \times \ldots \times\left[0, A_{1}^{T}\right] \times l_{1}^{\beta}$, we obtain $g_{x_{m}, x} \rightarrow 0$ as $m \rightarrow \infty$, thus

$$
\sum_{n=1}^{\infty} \beta_{n}\left|\left(Z_{n} x_{m}\right)\left(t_{1}, \ldots, t_{N}\right)-\left(Z_{n} x\right)\left(t_{1}, \ldots, t_{N}\right)\right| \rightarrow 0
$$

as $\left\|x_{m}\left(t_{1}, \ldots, t_{N}\right)-x\left(t_{1}, \ldots, t_{N}\right)\right\|_{l_{1}^{\beta}} \rightarrow 0$.
We infer that Z is a continuous function on $\bar{D} \subset l_{1}^{\beta}$.
In what follows, we verify that Z is a Meir-Keeler condensing operator.
For $\varepsilon>0$, we have to find $\delta>0$ such that $\varepsilon \leq \chi(\mathfrak{D})<\varepsilon+\delta \Rightarrow \chi(Z(\mathfrak{D}))<\varepsilon$ for any nonempty bounded subset \mathfrak{D} of \bar{D}.
From (b) and (d) we deduce

$$
\begin{aligned}
& \chi(Z(\mathfrak{D})) \\
&= \lim _{n \rightarrow \infty}\left(\sup _{z\left(t_{1}, \ldots, t_{N}\right) \in \mathfrak{D}}\left\{\sum_{k \geq n} \beta_{k}\left|f_{k}\left(t_{1}, \ldots, t_{N}, v_{k}(z)\left(t_{1}, \ldots, t_{N}\right), z\left(t_{1}, \ldots, t_{N}\right)\right)\right|\right\}\right) \\
& \leq \lim _{n \rightarrow \infty}\left(\operatorname { s u p } _ { z (t _ { 1 } , \ldots , t _ { N }) \in \mathfrak { D } } \left\{\sum_{k \geq n} \beta_{k} \mid f_{k}\left(t_{1}, \ldots, t_{N}, v_{k}(z)\left(t_{1}, \ldots, t_{N}\right), z\left(t_{1}, \ldots, t_{N}\right)\right)\right.\right. \\
&\left.\left.-f_{k}\left(t_{1}, \ldots, t_{N}, 0, z^{0}\left(t_{1}, \ldots, t_{N}\right)\right)\left|+\sum_{k \geq n} \beta_{k}\right| f_{k}\left(t_{1}, \ldots, t_{N}, 0, z^{0}\left(t_{1}, \ldots, t_{N}\right)\right) \mid\right\}\right) \\
& \leq \lim _{n \rightarrow \infty}\left(\operatorname { s u p } _ { z (t _ { 1 } , \ldots , t _ { N }) \in \mathfrak { D } } \left\{\sum _ { k \geq n } \left(\beta_{k} \alpha_{k}\left(t_{1}, \ldots, t_{N}\right)\left|z_{k}\left(t_{1}, \ldots, t_{N}\right)\right|\right.\right.\right. \\
&\left.\left.\left.+\beta_{k} \gamma_{k}\left(t_{1}, \ldots, t_{N}\right)\left|\int_{0}^{a_{1}\left(t_{1}\right)} \ldots \int_{0}^{a_{N}\left(t_{N}\right)} g_{k}\left(t_{1}, \ldots, t_{N}, s_{1}, \ldots, s_{N}, z\left(s_{1}, \ldots, s_{N}\right)\right) d s_{1} \ldots d s_{N}\right|\right)\right\}\right) \\
& \leq \lim _{n \rightarrow \infty}\left(\sup _{z\left(t_{1}, \ldots, t_{N}\right) \in \mathfrak{D}}\left\{\alpha \sum_{k \geq n} \beta_{k}\left|z_{k}\left(t_{1}, \ldots, t_{N}\right)\right|+Q_{n}\right\}\right) .
\end{aligned}
$$

Since, $Q_{n} \rightarrow 0$, as $n \rightarrow \infty$, we derive that

$$
\begin{equation*}
\chi(Z(\mathfrak{D})) \leq \alpha \chi(\mathfrak{D}) \tag{5.1}
\end{equation*}
$$

Let us choose $\delta=\frac{\varepsilon(1-\alpha)}{\alpha}$. From 5.1, it ts easy to see that Z is a Meir-Keeler condensing operator defined on the set $\bar{D} \subset l_{1}^{\beta}$. Now, by Theorem 2.9 we find that Z has a fixed point in \bar{D} and thus the infinite system of integral equations 3.3 has at least one solution in l_{1}^{β}.

Example 5.2. Consider the following infinite system of integral equations

$$
\begin{gather*}
x_{n}\left(t_{1}, t_{2}, t_{3}\right)=\sum_{i=n}^{\infty}\left(\frac{\sin \left(\frac{\Pi}{2 i}\right) \cos \left(e^{t_{1} t_{2} t_{3}}\right) x_{i}\left(t_{1}, t_{2}, t_{3}\right)}{3 i}\right) \tag{5.2}\\
+\frac{1}{n(n+1)(n+2) e^{t_{1}+t_{2}+t_{3}^{2}}} \sin \left(\int_{0}^{e^{t_{1}}} \int_{0}^{e^{t_{2}}} \int_{0}^{e^{t_{3}}} \frac{\tanh \left(\sum_{i=1}^{\infty} x_{i}\left(t_{1}, t_{2}, t_{3}\right)\right)}{5+\cosh \left(\sum_{i=1}^{\infty} x_{i}\left(t_{1}, t_{2}, t_{3}\right)\right)} d s_{1} d s_{2} d s_{3}\right),
\end{gather*}
$$

where $n \in \mathbb{N}$. Eq. (5.2) is a special case of Eq. (3.3). Here $a_{1}(t)=a_{1}(t)=a_{3}(t)=$ e^{t},

$$
\begin{gathered}
f_{n}\left(t_{1}, t_{2}, t_{3}, v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right), x\left(t_{1}, t_{2}, t_{3}\right)\right)=\sum_{i=n}^{\infty}\left(\frac{\sin \left(\frac{\Pi}{2 i}\right) \cos \left(e^{t_{1} t_{2} t_{3}}\right) x_{i}\left(t_{1}, t_{2}, t_{3}\right)}{3 i}\right) \\
+\frac{1}{n(n+1)(n+2) e^{t_{1}+t_{2}+t_{3}^{2}}} \sin \left(v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right)\right), \\
\text { where } v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right)=\int_{0}^{e^{t_{1}}} \int_{0}^{e^{t_{2}}} \int_{0}^{e^{t_{3}}} g_{n}\left(t_{1}, t_{2}, t_{3}, s_{1}, s_{2}, s_{3}, x\left(t_{1}, t_{2}, t_{3}\right)\right) d s_{1} d s_{2} d s_{3}, \text { and } \\
g_{n}\left(t_{1}, t_{2}, t_{3}, s_{1}, s_{2}, s_{3}, x\left(t_{1}, t_{2}, t_{3}\right)\right)= \\
\frac{\tanh \left(\sum_{i=1}^{\infty} x_{i}\left(t_{1}, t_{2}, t_{3}\right)\right)}{5+\cosh \left(\sum_{i=1}^{\infty} x_{i}\left(t_{1}, t_{2}, t_{3}\right)\right)}
\end{gathered}
$$

Furthermore, take $\beta=\left(\beta_{n}\right)=\left(\frac{1}{n^{3}}\right)$. If $x\left(t_{1}, t_{2}, t_{3}\right) \in l_{1}^{\beta}$ is arbitrary, then we have $\sum_{n=1}^{\infty} \beta_{n}\left|f_{n}\left(t_{1}, t_{2}, t_{3}, v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right), x\left(t_{1}, t_{2}, t_{3}\right)\right)\right|$

$$
\begin{aligned}
= & \sum_{n=1}^{\infty} \frac{1}{n^{3}} \left\lvert\, \sum_{i=n}^{\infty}\left(\frac{\sin \left(\frac{\Pi}{2 i}\right) \cos \left(e^{t_{1} t_{2} t_{3}}\right) x_{i}\left(t_{1}, t_{2}, t_{3}\right)}{3 i}\right)\right. \\
& \left.+\frac{1}{n(n+1)(n+2) e^{t_{1}+t_{2}+t_{3}^{2}}} \sin \left(v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right)\right) \right\rvert\, \\
\leq & \sum_{n=1}^{\infty} \sum_{i=n}^{\infty} \frac{1}{n^{3}}\left|\frac{\sin \left(\frac{\Pi}{2 i}\right) x_{i}\left(t_{1}, t_{2}, t_{3}\right)}{3 i}\right|+\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} \\
\leq & \sum_{n=1}^{\infty} \sum_{i=n}^{\infty}\left|\frac{\Pi}{6 i^{2}} \| \frac{1}{n^{3}} x_{i}\left(t_{1}, t_{2}, t_{3}\right)\right|+\frac{1}{4} \\
\leq & \frac{\pi^{3}}{36}\left\|x\left(t_{1}, t_{2}, t_{3}\right)\right\|_{l_{1}^{\beta}}+\frac{1}{4} \\
\leq & \left\|x\left(t_{1}, t_{2}, t_{3}\right)\right\|_{l_{1}^{\beta}}+\frac{1}{4}<\infty .
\end{aligned}
$$

Therefore $f_{n}\left(t_{1}, t_{2}, t_{3}, v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right), x\left(t_{1}, t_{2}, t_{3}\right)\right) \in l_{1}^{\beta}$. Now, if $y\left(t_{1}, t_{2}, t_{3}\right)=\left(y_{i}\left(t_{1}, t_{2}, t_{3}\right)\right)_{i=1}^{\infty} \in$ l_{1}^{β}, then by taking $\alpha_{n}\left(t_{1}, t_{2}, t_{3}\right)=\frac{\Pi^{3}}{36}$ and $\gamma_{n}\left(t_{1}, t_{2}, t_{3}\right)=\frac{1}{n(n+1)(n+2) e^{t_{1}+t_{2}+t_{3}^{2}}}$ we get $\mid f_{n}\left(t_{1}, t_{2}, t_{3}, v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right)-f_{n}\left(t_{1}, t_{2}, t_{3}, v_{n}(y)\left(t_{1}, t_{2}, t_{3}\right) \mid\right.\right.$

$$
\begin{aligned}
\leq & \left|\sum_{i=n}^{\infty} \frac{\sin \left(\frac{\Pi}{2 i}\right) \cos \left(e^{t_{1} t_{2} t_{3}}\right)}{3 i}\left(x_{i}\left(t_{1}, t_{2}, t_{3}\right)-y_{i}\left(t_{1}, t_{2}, t_{3}\right)\right)\right| \\
& +\frac{1}{n(n+1)(n+2) e^{t_{1}+t_{2}+t_{3}^{2}}}\left|\sin v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right)-\sin v_{n}(y)\left(t_{1}, t_{2}, t_{3}\right)\right| \\
\leq & \frac{\Pi^{3}}{36}\left|x_{i}\left(t_{1}, t_{2}, t_{3}\right)-y_{i}\left(t_{1}, t_{2}, t_{3}\right)\right|+\frac{1}{n(n+1)(n+2) e^{t_{1}+t_{2}+t_{3}^{2}}}\left|v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right)-v_{n}(y)\left(t_{1}, t_{2}, t_{3}\right)\right| .
\end{aligned}
$$

Evidently $0<\alpha<1, \sum_{n=1}^{\infty} \beta_{n}\left|f_{n}\left(t_{1}, t_{2}, t_{3}, 0, z^{0}\left(t_{1}, t_{2}, t_{3}\right)\right)\right|$ is convergent to zero for all $t_{1}, t_{2}, t_{3} \in \mathbb{R}_{+}, \eta_{1}=\sup \left\{\sum_{n=1}^{\infty} \beta_{n} \gamma_{n}\left(t_{1}, t_{2}, t_{3}\right): t_{1}, t_{2}, t_{3} \in \mathbb{R}_{+}\right\} \leq \frac{1}{4}$ and f_{n} and g_{n} are continuous functions.
On the other hand, we have

$$
\begin{aligned}
\sum_{n=k}^{\infty} \beta_{n} \gamma_{n}\left(t_{1}, t_{2}, t_{3}\right)\left|v_{n}(x)\left(t_{1}, t_{2}, t_{3}\right)\right| \leq & \sum_{n=k}^{\infty} \frac{1}{n(n+1)(n+2) e^{t_{1}+t_{2}+t_{3}^{2}}} \\
& \times\left|\int_{0}^{e^{t_{1}}} \int_{0}^{e^{t_{2}}} \int_{0}^{e^{t_{3}}} \frac{\tanh \left(\sum_{i=1}^{\infty} x_{i}\left(t_{1}, t_{2}, t_{3}\right)\right)}{5+\cosh \left(\sum_{i=1}^{\infty} x_{i}\left(t_{1}, t_{2}, t_{3}\right)\right)} d s_{1} d s_{2} d s_{3}\right| \\
\leq & \frac{e^{t_{1}+t_{2}+t_{3}}}{e^{t_{1}+t_{2}+t_{3}^{2}}} \sum_{n=k}^{\infty} \frac{1}{n(n+1)(n+2)}
\end{aligned}
$$

It in turn implies that

$$
Q_{k} \leq \sup \left\{\frac{e^{t_{1}+t_{2}+t_{3}}}{e^{t_{1}+t_{2}+t_{3}^{2}}} \sum_{n=k}^{\infty} \frac{1}{n(n+1)(n+2)} ; t_{1}, t_{2}, t_{3}, s_{1}, s_{2}, s_{3} \in \mathbb{R}_{+}\right\}
$$

As $k \rightarrow \infty$ we obtain $\sum_{n \geq k} \frac{1}{n(n+1)(n+2)} \rightarrow 0$. Thus, we infer that $Q_{k} \rightarrow 0$ as
$k \rightarrow \infty$ and $Q \leq \frac{1}{4}$.
Also, we observe that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \beta_{n} \mid \gamma_{n}\left(t_{1}, t_{2}, t_{3}\right) \int_{0}^{e^{t_{1}}} & \int_{0}^{e^{t_{2}}} \int_{0}^{e^{t_{3}}}\left[g_{n}\left(t_{1}, t_{2}, t_{3}, s_{1}, s_{2}, s_{3}, z\left(t_{1}, t_{2}, t_{3}\right)\right)\right. \\
& \left.-g_{n}\left(t_{1}, t_{2}, t_{3}, s_{1}, s_{2}, s_{3}, \bar{z}\left(t_{1}, t_{2}, t_{3}\right)\right)\right] d s_{1} d s_{2} d s_{3} \mid \\
& \leq \sum_{n=1}^{\infty} \frac{2 e^{t_{1}+t_{2}+t_{3}}}{e^{t_{1}+t_{2}+t_{3}^{2}}} \frac{1}{n(n+1)(n+2)}=\frac{1}{2 e^{t_{3}}}
\end{aligned}
$$

It enforces that

$$
\begin{gathered}
\lim _{t_{1}, t_{2}, t_{3} \rightarrow \infty} \sum_{n=1}^{\infty} \beta_{n} \mid \gamma_{n}\left(t_{1}, t_{2}, t_{3}\right) \int_{0}^{e^{t_{1}}} \int_{0}^{e^{t_{2}}} \int_{0}^{e^{t_{3}}}\left[g_{n}\left(t_{1}, t_{2}, t_{3}, s_{1}, s_{2}, s_{3}, z\left(t_{1}, t_{2}, t_{3}\right)\right)\right. \\
\left.-g_{n}\left(t_{1}, t_{2}, t_{3}, s_{1}, s_{2}, s_{3}, \bar{z}\left(t_{1}, t_{2}, t_{3}\right)\right)\right] d s_{1} d s_{2} d s_{3} \mid=0
\end{gathered}
$$

Consequently, all the conditions of Theorem 5.1 are satisfied. Hence the infinite system of integral equations (5.2) has at least one solution in l_{1}^{β}.

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] A. Aghajani, J. Banaś and Y. Jalilian, Existence of solution for a class of nonlinear Volterra singular integral equation, Comput. Math. Appl. 62 (2011) 1215-1227.
[2] A. Aghajani, M. Mursaleenand and A. Shole Haghighi, Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness, Acta Math. Sci. 35B (2015) 552-566.
[3] R. R. Akhmerov, M. I. Kamenski, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measures of noncompactness and condensing operators, Birkhauser Verlag. Basel 1992.
[4] A. Alotaibi, M. Mursaleen and S. A. Mohiuddine, Application of measures of noncompactness to infinite system of linear equations in sequence spaces, Bull. Iran. Math. Soc. 41 (2015) 519-527.
[5] R. Arab, R. Allahyari and A. Shole Haghighi, Existence of solutions of infinite systems of integral equations in two variables via measure of noncompactness, Appl. Math. Comput. 246 (2014) 283-291.
[6] J. Banaś and K. Goebel, Measures of noncompactness in Banach spaces, Lecture notes in pure and applied mathematics, 60 Marcel Dekker, New York, 1980.
[7] J. Banaś and M. Krajewska, Existence of solutions for infinite systems of differential equtions in spaces of tempered sequences, Electron. J. Differential Equ. 60 (2017) 1-28.
[8] J. Banaś and M. Mursaleen, Sequence spaces and measures of noncompactness with applications to differential and integral equations, Springer India 2014.
[9] J. Banaś and D. O'Regan, On existence and local attractivity of solutions of a quadratic Volterra integral eqution of fraction order, J. Math. Anal. Appl. 345 (2008) 573-582.
[10] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Uni. Padova. 24 (1955) 84-92.
[11] L. S. Goldenštein, L. T. Gohberg and A. S. Murkus, Investigations of some properties of bounded linear operators with their q-norms, Učen. Zap. Kishinevsk. Uni. 29 (1957) 29-36.
[12] L. S. Goldenštein and A. S. Murkus, On a meausure of noncompactness of bounded sets and linear operators, Studies in Algebra and Math. Anal. kishinev. (1965) 45-54.
[13] B. Hazarika, A. Das, R. Arab and M. Mursaleen, Solvability of the infinite system of integral equations in two variables in the sequence spaces c_{0} and l_{1}, J. comput. Appl. Math. 326 (2012) 183-192.
[14] K. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930) 301-309.
[15] K. Maleknejad, P. Torabi and T. Mollapourasl, Fixed point method for solving nonlinear quadratic Volterra integral equations, Comput. Math. Appl. 62 (2011) 2555-2566.
[16] A. Meir and E. A. Keeler, Theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969) 326-329.
[17] M. Mursaleen and A. Alotaibi, Infinite system of differential equations in some BK-spaces, Abstr. Appl. Anal. 20 (2012). Art. ID 863-483.
[18] M. Mursaleen and S. A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in l_{p} spaces, Nonlinear Anal. 75 (2012) 2111-2115.
[19] M. Mursaleen and S. M. H. Rizvi, Solvability of infinite system of second order differential equations in c_{0} and l_{1} by Meir-Keeler condensing operator, Proc. Amer. Math. Soc. 144 (10) (2016) 4279-4289.

Majid Ghasemi
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran E-mail address: ghasemi2314@yahoo.com

Mahnaz Khanehgir
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
E-mail address: khanehgir@mshdiau.ac.ir
Reza Allahyari
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
E-mail address: rezaallahyari@mshdiau.ac.ir

[^0]: 2000 Mathematics Subject Classification. 47H09, 47H10, 34A12.
 Key words and phrases. Hausdorff measure of noncompactness; Spaces of tempered sequences; System of integral equations; Meir-Keeler condensing operator.
 © 2018 Ilirias Research Institute, Prishtinë, Kosovë.
 Submitted May 5, 2018. Published December 23, 2018.
 Communicated by M. Mursaleen.

