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ON SOLUTIONS OF INFINITE SYSTEMS OF INTEGRAL

EQUATIONS IN N-VARIABLES IN SPACES OF TEMPERED

SEQUENCES cβ0 AND lβ1

MAJID GHASEMI, MAHNAZ KHANEHGIR, REZA ALLAHYARI

Abstract. The aim of the present paper is to establish the existence of solu-

tion of infinite systems of integral equations in N -variables in spaces of tem-

pered sequences cβ0 and lβ1 by applying Meir-Keeler condensing operators. Our
theorems improve the results of Hazarika et al. (Journal of Computational and

Applied Mathematics 326 (2017) 183-192). The results we have established are

illustrated with some examples which also show that the improvements are ac-
tual.

1. Introduction

The degree of noncompactness of a set is measured by means of functions called
measures of noncompactness. The first measure of noncompactness, the function α,
was defined and studied by Kuratowski [14] for purely topological considerations.
In 1955, Darbo [10] used this measure to generalize Banach’s contraction mapping
principle for so-called condensing operators. The Hausdorff measure of noncom-
pactness χ was introduced by Goldenstein et al. [11] in the year 1957, and it was
further studied by Goldenstein and Markus [12]. Measures of noncompactness are
very useful tools widely used in fixed point theory, differential equations, integral
and integro-differential equations, and optimization, etc. They have also been used
in defining geometric properties of Banach spaces and in characterizing compact
operators between sequence spaces.

The study of sequence spaces has been of great interest recently. A number of
books have been published in this area over the last few years (see, for example [8]).
Sequence spaces have various applications in several branches of functional analysis,
in particular, the theory of locally convex spaces, matrix transformations, as well
as the theory of summability invariably depends upon the study of sequences and
series.

In recent years, a lot of scholars (see e.g. [1, 9, 15]) studied the existence of
solutions of integral equations in one or two variables on some spaces. Mursaleen
and Mohiuddine [18] proved existence theorems for the infinite system of differential
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equations in the space lp. Furthermore, existence theorems for the infinite systems
of linear equations in l1 and lp were given by Alotaibi et al. [4]. Mursaleen and Rizvi
[19] studied solvability of infinite system of second order differential equations in c0
and l1 by Meir-Keeler condensing operators. Mursaleen and Alotaibi [17] proved
existence theorems for the infinite system of differential equations in some BK-
spaces. Arab et al. [5] investigated the existence of solutions of system of integral
equations in two variables. Hazarika et al. [13] studied solvability of the infinite
systems of integral equations in two variables in the sequence spaces c0 and l1.
Classical sequence spaces are not always suitable to consider initial value problems
for infinite systems of differential equations. Therefore, in order to consider those
initial value problems we are frequently forced to treat the problems in question in
enlarged sequence spaces. Such sequence spaces can be obtained if we consider the
so-called tempered sequence spaces.
To define the mentioned spaces let us fix a real sequence β = (βn) such that βn is
positive for n = 1, 2, . . . and the sequence (βn) is nonincreasing. Such a sequence
β will be called the tempering sequence. Next, consider the set X consisting of all
real (or complex) sequences x = (xn) such that βnxn → 0 as n → ∞. It is easily
seen that X forms a linear space over the field of real (or complex) numbers. We

will denote this space by the symbol cβ0 . It is easy to check that cβ0 is a Banach
space under the norm

‖x‖cβ0 = ‖(xn)‖cβ0 = sup{βn|xn| : n = 1, 2, . . .}.

In a similar way we may consider the space lβ1 consisting of real (complex) sequences

(xn) such that the sequence (βnxn) converges to a finite limit. Obviously lβ1 forms
a linear space and it becomes a Banach space if we normed it by norm

‖x‖lβ1 = ‖(xn)‖lβ1 =

∞∑
n=1

βn|xn|.

Let us pay attention to the fact that taking βn = 1 for n = 1, 2, . . . we obtain

spaces cβ0 = c0, and lβ1 = l1. Similarly, if the sequence (βn) is bounded from below
by a positive constant m i.e., if βn ≥ m > 0 for n = 1, 2, . . ., then the norm in

the tempered sequence space cβ0 , (lβ1 ) is equivalent to the classical supremum (
∑

)
norm in the space c0 (l1). Thus, to obtain an essential enlargement of the spaces
c0 we should to assume that the tempering sequence (βn) converges to zero. The

pairs of the spaces (c0, c
β
0 ) and (lβ1 , l1) are isometric [7].

Now, in this paper we study the existence of solutions of infinite system of integral

equations in N -variables in the spaces cβ0 and lβ1 by applying Meir-Keeler condensing
operators. The results obtained in this paper generalize and extend earlier results
due to Hazarika, Das, Arab and Mursaleen (see [13]).

The rest of the paper is organized as follows. In Section 2, we provide some
notations, definitions and preliminary facts which will be needed further on. In
Section 3, we construct the Hausdorff measures of noncompactness in both sequence

spaces cβ0 and lβ1 . Sections 4 and 5 are devoted to applications of the results obtained
to infinite systems of integral equations in N -variables in theses sequence spaces.
We also give some examples to verify the effectiveness and applicability of our
results.
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2. notation and auxiliary facts

Suppose (E, ‖·‖) is a real Banach space with zero element 0. The symbol B(x, r)
stands for the ball centered at x with radius r. For a nonempty subset X of E,
we denote by X and ConvX the closure and closed convex hull of X, respectively.
Moreover, let ME indicate the family of nonempty and bounded subsets of E and
NE indicate the family of all nonempty and relatively compact subsets of E.

Definition 2.1. A mapping µ : ME → R+ = [0,+∞) is said to be a measure of
noncompactness in E if it fulfils the following conditions:

1◦ The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊆ NE,
2◦ X ⊂ Y implies that µ(X) ≤ µ(Y ),
3◦ µ(X) = µ(X),
4◦ µ(ConvX) = µ(X),
5◦ µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1],
6◦ If Xn ∈ME, Xn = Xn and Xn+1 ⊂ Xn for n = 1, 2, . . . and lim

n→∞
µ(Xn) =

0, then the intersection set X∞ =

∞⋂
n=1

Xn is nonempty.

In the following, we denote by MX , the collection of all bounded subsets of a
metric space (X, d).

Definition 2.2. [6] Let (X, d) be a metric space and Q ∈MX . Then the Kuratowski
measure of noncompactness of Q, denoted by α(Q), is the infimum of the set of all
numbers ε > 0 such that Q can be covered by a finite number of sets with diameters
ε, that is

α(Q) = inf
{
ε > 0 : Q ⊂

n⋃
i=1

Si, Si ⊂ X, diam(Si) < ε (i = 1, 2, . . . , n); n ∈ N
}
,

where diam(Si) = sup{d(x, y) : x, y ∈ Si}.

The Hausdorff measure of noncompactness for a bounded set Q is defined by

χ(Q) = inf
{
ε > 0 : Q ⊂

n⋃
i=1

B(xi, ri), xi ∈ X, ri < ε (i = 1, 2, . . . , n); n ∈ N
}
.

The Hausdorff measure of noncompactness is often called ball measure of noncom-
pactness .

Lemma 2.3. [6] Let Q, Q1 and Q2 be bounded subsets of a metric space (X, d).
Then

1◦ χ(Q) = 0 if and only if Q is totally bounded,
2◦ Q1 ⊂ Q2 implies that χ(Q1) ≤ χ(Q2),
3◦ χ(Q) = χ(Q),
4◦ χ(Q1 ∪Q2) = max{χ(Q1), χ(Q2)}.

In the case of a normed space (X, ‖ · ‖), the function χ : MX → R+ has some
additional properties connected with the linear structure for example, we have
i) χ(Q1 +Q2) ≤ χ(Q1) + χ(Q2),
ii) χ(Q+ x) = χ(Q) for all x ∈ X,
iii) χ(λQ) = |λ|χ(Q) for all λ ∈ C,
iv) χ(Q) = χ(ConvQ).
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Definition 2.4. [3] Suppose that E1 and E2 are two Banach spaces and µ1 and
µ2 are arbitrary measures of noncompactness on E1 and E2, respectively. Also,
suppose T : E1 → E2 is a continuous operator satisfies the following condition:

µ2(T (C)) < µ1(C)

for every bounded noncompact set C ⊂ E1, then T is called a (µ1, µ2)-condensing
operator.

Remark. If in Definition 2.4 E1 = E2 and µ1 = µ2 = µ, then T is called a
µ-condensing operator.

Theorem 2.5. (Darbo [10]) Let C be a nonempty, bounded, closed and convex
subset of a Banach space E and let T : C → C be a continuous mapping. Assume
that a constant k ∈ [0, 1) exists such that

µ(T (X)) ≤ kµ(X)

for any nonempty subset X of C, where µ is a measure of noncompactness defined
in E. Then T has a fixed point in the set C.

The contractive maps and the compact maps are condensing if we take as mea-
sure of noncompactness the diameter of a set and the indicator function of a family
of non-relatively compact sets, respectively [2]. In 1969, Meir and Keeler [16] in-
troduced the concept of Meir-Keeler contractive mapping and proved some fixed
point theorems for this kind of mappings. Thereafter, Aghajani et al. [2] general-
ized some fixed point and coupled fixed point theorems for Meir-Keeler condensing
operators via measures of noncompactness.

Definition 2.6. [16] Let (X, d) be a metric space. Then, a mapping T on X is
said to be a Meir-Keeler contraction if for any ε > 0, δ > 0 exists such that

ε ≤ d(x, y) < ε+ δ ⇒ d(Tx, Ty) < ε

for all x, y ∈ X.

Theorem 2.7. [16] Let (X, d) be a complete metric space. If T : X → X is a
Meir-Keeler contraction, then T has a unique fixed point.

Definition 2.8. [2] Let C be a nonempty subset of a Banach space E and µ be an
arbitrary measure of noncompactness on E. An operator T : C → C is called a
Mier-Keeler condensing operator if for any ε > 0, δ > 0 exists such that

ε ≤ µ(X) < ε+ δ implies µ(T (X)) < ε

for any bounded subset X of C.

Theorem 2.9. [2] Let C be a nonempty, bounded, closed and convex subset of
a Banach space E and µ be an arbitrary measure of noncompactness on E. If
T : C → C is a continuous and Meir-Keeler condensing operator, then T has at
least one fixed point and the set of all fixed points of T in C is compact.
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3. Hausdorff measure of noncompactness in spaces of tempered
sequences

In this section, we formulate the Hausdorff measures of noncompactness χ in the

Banach spaces (cβ0 , ‖ · ‖cβ0 ) and (lβ1 , ‖ · ‖lβ1 ) in N -variables.

Let Q be a bounded subset of the normed space (cβ0 , ‖ · ‖cβ0 ), then the Huasdorff

measure of noncompactness χ in the Banach space (cβ0 , ‖ · ‖cβ0 ) can be formulated

as follows (see [7]):

χ(Q) = lim
n→∞

[
sup

z(t1,...,tN )∈Q

(
max
k≥n

βk|zk(t1, . . . , tN )|
)]
, (3.1)

where z(t1, . . . , tN ) = (zi(t1, . . . , tN ))∞i=1 ∈ c
β
0 for each (t1, . . . , tN ) ∈ RN+ and Q ∈

Mcβ0
.

In the Banach space (lβ1 , ‖ · ‖lβ1 ), the Huasdorff measure of noncompactness χ can

be defined as follows :

χ(Q) = lim
n→∞

[
sup

z(t1,...,tN )∈Q

( ∞∑
k=n

βk|zk(t1, . . . , tN )|
)]
, (3.2)

where z(t1, . . . , tN ) = (zi(t1, . . . , tN ))∞i=1 ∈ l
β
1 for each (t1, . . . , tN ) ∈ RN+ and Q ∈

Mlβ1
.

Consider the infinite system of integral equations in N -variables

zn(t1, . . . , tN ) = fn
(
t1, . . . , tN ,

∫ a1(t1)

0
. . .

∫ aN (tN )

0
gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))ds1 . . . dsN , z(t1, . . . , tN )

)
,

(3.3)

where z(t1, . . . , tN ) = (zi(t1, . . . , tN ))∞i=1, (t1, . . . , tN ) ∈ RN+ , n ∈ N and zi ∈
C(RN+ ,R) for all i ∈ N.

4. Existence of solutions for infinite systems of integral equations
in N-variables in tempered sequence space cβ0

In this section, we are going to show how the measure χ, defined in (3.1), can be
applied to the infinite system of integral equations (3.3) in the sequence space c0.

Theorem 4.1. Assume that the following conditions are satisfied.
(i) a1, . . . , aN : R+ → [0,∞) are continuous.
(ii) fn : RN+ × R× R∞ → R (n ∈ N) is continuous with

Kn = sup
k≥n

{
βk|fk(t1, . . . , tN , 0, z

0(t1, . . . , tN ))| : t1, . . . , tN ∈ R+

}
<∞,

where z0(t1, . . . , tN ) =
(
z0
i (t1, . . . , tN )

)∞
i=1
∈ R∞ and z0

i (t1, . . . , tN ) = 0, ∀i ∈ N, (t1, . . . , tN ) ∈
RN+ . Also, continuous functions un,mn : RN+ → R+ (n ∈ N) exist such that

|fn(t1, . . . , tN , p(t1, . . . , tN ), z(t1, . . . , tN ))− fn(t1, . . . , tN , q(t1, . . . , tN ), z(t1, . . . , tN ))|

≤ un(t1, . . . , tN ) max
i≥n

βi|zi(t1, . . . , tN )− zi(t1, . . . , tN )|

+mn(t1, . . . , tN )|p(t1, . . . , tN )− q(t1, . . . , tN )|,

where p and q are mappings from RN+ into R, z(t1, . . . , tN ) =
(
zi(t1, . . . , tN )

)∞
i=1

,

z(t1, . . . , tN ) =
(
zi(t1, . . . , tN )

)∞
i=1
∈ R∞.
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(iii) gn : R2N
+ × R∞ → R (n ∈ N) is continuous and a constant Gn exists so that

Gn = sup
k≥n

{
βkmk(t1, . . . , tN )

∣∣∣ ∫ a1(t1)

0
. . .

∫ aN (tN )

0
gk(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))ds1 . . . dsN

∣∣∣},
where t1, . . . , tN , s1, . . . , sN ∈ R+ and z(s1, . . . , sN ) ∈ R∞. Moreover, for each n we

have

lim
t1,...,tN→∞

βn

∣∣∣mn(t1, . . . , tN )

∫ a1(t1)

0
. . .

∫ aN (tN )

0

[
gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))

−gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))
]
ds1 . . . dsN

∣∣∣ = 0.

(iv) Define an operator Z : RN+ × c
β
0 → cβ0 as follows

(t1, . . . , tN , z(t1, . . . , tN ))→ (Zz)(t1, . . . , tN ), where

(Zz)(t1, . . . , tN ) =
(
β1f1(t1, . . . , tN , v1(z)(t1, . . . , tN ), z(t1, . . . , tN )),

β2f2(t1, . . . , tN , v2(z)(t1, . . . , tN ), z(t1, . . . , tN )), . . .
)
,

where vn(z)(t1, . . . , tN ) =

∫ a1(t1)

0
. . .

∫ aN (tN )

0
gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))ds1 . . . dsN .

(v) lim
n→∞

Kn = 0 and lim
n→∞

Gn = 0. Also, sup
n
Kn = K, sup

n
Gn = G, and

sup
n
{βnun(t1, . . . , tN ) : t1, . . . , tN ∈ R+} = U <∞ so that 0 < U < 1.

Then the infinite system (3.3) has at least one solution z(t1, . . . , tN ) =
(
zi(t1, . . . , tN )

)∞
i=1

which belongs to the space c0 for all t1, . . . , tN ∈ R+. Also, zi ∈ C(RN+ ,R) for all
i ∈ N.

Proof. By applying our assumptions and Eq. (3.3), for all t1, . . . , tN ∈ R+ we have

‖z(t1, . . . , tN )‖
c
β
0

= max
n≥1

{
βn|zn(t1, . . . , tN )|

}
= max

n≥1

{
βn

∣∣∣fn(t1, . . . , tN ,∫ a1(t1)

0
. . .

∫ aN (tN )

0
gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))ds1 . . . dsN , z(t1, . . . , tN )

)∣∣∣}
≤ max

n≥1

{
βn

∣∣∣fn(t1, . . . , tN ,∫ a1(t1)

0
. . .

∫ aN (tN )

0
gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))ds1 . . . dsN , z(t1, . . . , tN )

)
−fn

(
t1, . . . , tN , 0, z

0(t1, . . . , tN )
)∣∣∣}+ max

n≥1

{
βn

∣∣∣fn(t1, . . . , tN , 0, z0(t1, . . . , tN )
)∣∣∣}

≤ max
n≥1

{
βnun(t1, . . . , tN ) max

i≥n
βi|zi(t1, . . . , tN )|

+βnmn(t1, . . . , tN )
∣∣∣ ∫ a1(t1)

0
. . .

∫ aN (tN )

0
gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))ds1 . . . dsN

∣∣∣}+K1

≤ U‖z(t1, . . . , tN )‖
c
β
0

+G1 +K1

≤ U‖z(t1, . . . , tN )‖
c
β
0

+G+K

i.e. (1− U)‖z(t1, . . . , tN )‖
c
β
0
≤ G+K and so ‖z(t1, . . . , tN )‖

c
β
0
≤ G+K

1−U = r(say).

Suppose that B = B(z0(t1, . . . , tN ), r) is a closed ball with center at z0(t1, . . . , tN ) and

radius r, therefore B is a nonempty, bounded, closed and convex subset of cβ0 . Now,

we define the operator Z = (Zi) on C(RN+ , B) by the formula

(Zz)(t1, . . . , tN ) =
(

(Ziz)(t1, . . . , tN )
)

=
(
βifi(t1, . . . , tN , vi(z)(t1, . . . , tN ), z(t1, . . . , tN ))

)
,
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where z(t1, . . . , tN ) =
(
zi(t1, . . . , tN )

)
∈ B and zi ∈ C(RN+ ,R), ∀i ∈ N. From hypothesis

(iv), for each (t1, . . . , tN ) ∈ RN+ we have

lim
i→∞

(Ziz)(t1, . . . , tN ) = lim
i→∞

βifi(t1, . . . , tN , vi(z)(t1, . . . , tN ), z(t1, . . . , tN )) = 0.

Hence (Zz)(t1, . . . , tN ) ∈ cβ0 .
Since ‖(Zz)(t1, . . . , tN )− z0(t1, . . . , tN )‖

c
β
0
≤ r, then Z is a self mapping on B.

We claim that the operator Z is a continuous function on C(RN+ , B). To estab-

lish this claim, let us ε > 0 and take arbitrary xm(t1, . . . , tN ) =
(
xm,i(t1, . . . , tN )

)∞
i=1

,

x(t1, . . . , tN ) =
(
xi(t1, . . . , tN )

)∞
i=1
∈ B ⊆ cβ0 such that ‖xm(t1, . . . , tN ) − x(t1, . . . , tN )‖

c
β
0
<

ε
2U

for m sufficiently large. We claim that ‖Zxm(t1, . . . , tN )−Zx(t1, . . . , tN )‖cβ0 →
0, form large enough. To this end, we show that βn|Znxm(t1, . . . , tN )−Znx(t1, . . . , tN )|
tends to 0 as m→∞. Taking into account condition (ii), for each (t1, . . . , tN ) ∈ RN+
we get

βn|(Znxm)(t1, . . . , tN )− (Znx)(t1, . . . , tN )| (4.1)

= βn|fn(t1, . . . , tN , vn(xm)(t1, . . . , tN ), xm(t1, . . . , tN ))

−fn(t1, . . . , tN , vn(x)(t1, . . . , tN ), x(t1, . . . , tN ))|
≤ βnun(t1, . . . , tN ) max

i≥n
βi|xm,i(t1, . . . , tN )− xi(t1, . . . , tN )|

+βnmn(t1, . . . , tN )|vn(xm)(t1, . . . , tN )− vn(x)(t1, . . . , tN )|
≤ U‖xm(t1, . . . , tN )− x(t1, . . . , tN )‖

c
β
0

+βnmn(t1, . . . , tN )
∣∣∣ ∫ a1(t1)

0
. . .

∫ aN (tN )

0

[
gn(t1, . . . , tN , s1, . . . , sN , xm(s1, . . . , sN ))

−gn(t1, . . . , tN , s1, . . . , sN , x(s1, . . . , sN ))
]
ds1 . . . dsN

∣∣∣.
By applying hypothesis (iii), we choose T > 0 such that max(t1, . . . , tN ) > T, and

we derive that

βn

∣∣∣mn(t1, . . . , tN )

∫ a1(t1)

0
. . .

∫ aN (tN )

0

[
gn(t1, . . . , tN , s1, . . . , sN , xm(s1, . . . , sN ))

−gn(t1, . . . , tN , s1, . . . , sN , x(s1, . . . , sN ))
]
ds1 . . . dsN

∣∣∣ < ε

2
.

It follows that βn|(Znxm)(t1, . . . , tN )− (Znx)(t1, . . . , tN )| < ε.
For t1, . . . , tN ∈ [0, T ], put
AT1 = sup{a1(t1) : t1 ∈ [0, T ]},
AT2 = sup{a2(t2) : t2 ∈ [0, T ]},
...
ATN = sup{aN (tN ) : tN ∈ [0, T ]},
MT = sup

n
{βnmn(t1, . . . , tN ) : t1, . . . , tN ∈ [0, T ]},

and

gxm,x = sup
n

{∣∣∣gn(t1, . . . , tN , s1, . . . , sN , xm(s1, . . . , sN ))−gn(t1, . . . , tN , s1, . . . , sN , x(s1, . . . , sN ))
∣∣∣,

t1, . . . , tN ∈ [0, T ], s1 ∈ [0, ATN ], . . . , sN ∈ [0, AT1 ]
}
.

By (4.1) we find that

|(Znxm)(t1, . . . , tN )− (Znx)(t1, . . . , tN )| <
ε

2
+MT gxm,xA

T
N . . . AT1 .

By using the continuity of gn on the set [0, T ]N × [0, ATN ]× . . .× [0, AT1 ]× cβ0 , we have
gxm,x → 0 as ε → 0. It enforces that βn|(Znxm)(t1, . . . , tN ) − (Znx)(t1, . . . , tN )| → 0 as
‖xm(t1, . . . , tN )− x(t1, . . . , tN )‖

c
β
0
→ 0 for m large enough.
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Therefore, we infer that Z is a continuous function on B ⊂ cβ0 .
In order to finish the proof, we show that Z is a Meir-Keeler condensing operator
on B. Let Q be any bounded subset of B and ε > 0 be arbitrary. We have to find
δ > 0 such that ε ≤ χ(Q) < ε+ δ ⇒ χ(Z(Q)) < ε.

In view of conditions (ii) and (iv) we observe that

χ(Z(Q)) = lim
n→∞

[
sup

z(t1,...,tN )∈Q

{
max
k≥n

βk

∣∣∣fk(t1, . . . , tN , vk(z), z(t1, . . . , tN ))
∣∣∣}]

≤ lim
n→∞

[
sup

z(t1,...,tN )∈Q

{
max
k≥n

βk

∣∣∣fk(t1, . . . , tN , vk(z), z(t1, . . . , tN ))

−fk(t1, . . . , tN , 0, z
0(t1, . . . , tN ))

∣∣∣+ max
k≥n

βk

∣∣∣fk(t1, . . . , tN , 0, z
0(t1, . . . , tN ))

∣∣∣}]
≤ lim

n→∞

[
sup

z(t1,...,tN )∈Q

{
max
k≥n

(
βkuk(t1, . . . , tN ) max

i≥k
βi|zi(t1, . . . , tN )|+ βkmk(t1, . . . , tN )

∣∣∣ ∫ a1(t1)

0
. . .

∫ aN (tN )

0
gk(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))ds1 . . . dsN

∣∣∣+Kn
)}]

≤ U lim
n→∞

[
sup

z(t1,...,tN )∈Q

{
max
i≥k

βi|zi(s1, . . . , sN )|+Gn +Kn
}]

Since, Gn → 0 and Kn → 0 as n→∞, we deduce

χ(Z(Q)) ≤ Uχ(Q). (4.2)

Taking δ = ε(1−U)
U . From (4.2) we obtain

ε ≤ χ(Q) < ε+ δ ⇒ χ(Z(Q)) < ε.

Therefore Z is a Meir-Keeler condensing operator defined on the set B ⊂ cβ0 . Now,

Theorem 2.9 guarantees that Z has a fixed point in B and thus infinite system of

integral equations (3.3) has at least one solution in cβ0 . �

Example 4.2. Consider the following infinite system of integral equations

xn(t1, t2, t3) =
1

t1t2 + t23 + n4
+

1

n2

∞∑
i=n

(xi(t1, t2, t3)

3(2i− 1)2

)
+

1

(n3 + 2n2)et
2
1+t22+t33

(4.3)

arctan
(∫ et

2
1

0

∫ et
2
2

0

∫ et
2
3

0

sin(xn(s1, s2, s3)) + sin(s1) cos(ln

∞∑
i=1

(xi(s1, s2, s3))2)

3 + cos(

∞∑
i=1

xi(s1, s2, s3))

ds1ds2ds3
)
,

where n ∈ N.
Eq. (4.3) is a special case of Eq. (3.3). Here a1(t) = a2(t) = a3(t) = et

2

,

fn(t1, t2, t3, vn(x)(t1, t2, t3), x(t1, t2, t3)) =
1

t1t2 + t23 + n4
+

1

n2

∞∑
i=n

(xi(t1, t2, t3)

3(2i− 1)2

)
+

1

(n3 + 2n2)et
2
1+t22+t33

arctan
(
vn(x)(t1, t2, t3)

)
,

gn(t1, t2, t3, s1, s2, s3, x(t1, t2, t3)) =

sin(xn(s1, s2, s3)) + sin(s1) cos(ln

∞∑
i=1

(xi(s1, s2, s3))2)

3 + cos(
∞∑
i=1

xi(s1, s2, s3))

,

where x(t1, t2, t3) =
(
xi(t1, t2, t3)

)∞
i=1

and

vn(x)(t1, t2, t3) =

∫ et
2
1

0

∫ et
2
2

0

∫ et
2
3

0
gn(t1, t2, t3, s1, s2, s3, x(t1, t2, t3))ds1ds2ds3.
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Further, take the tempering sequence of the form β = (βn) = ( 1
n2 ). From the

definition of a1,a2 and a3, hypothesis (i) of Theorem 4.1 is obviously satisfied.

If x(t1, t2, t3) ∈ cβ0 , then fn(t1, t2, t3, vn(x)(t1, t2, t3), x(t1, t2, t3)) ∈ cβ0 . Now, if

y(t1, t2, t3) =
(
yi(t1, t2, t3)

)∞
i=1
∈ cβ0 , then by taking un(t1, t2, t3) = Π2

24 and mn(t1, t2, t3) =

1

(n3+2n2)et
2
1+t22+t33

. We can write∣∣∣fn(t1, t2, t3, vn(x)(t1, t2, t3), x(t1, t2, t3))− fn(t1, t2, t3, vn(y)(t1, t2, t3), y(t1, t2, t3))
∣∣∣

≤
∞∑
i=n

1

3(2i− 1)2
×

1

n2
|xi(t1, t2, t3)− yi(t1, t2, t3)|

+
1

(n3 + 2n2)et
2
1+t22+t33

| arctan vn(x)(t1, t2, t3)− arctan vn(y)(t1, t2, t3)|

≤
Π2

24
max
i≥n

1

i2
|xi(t1, t2, t3)− yi(t1, t2, t3)|+

1

(n3 + 2n2)et
2
1+t22+t33

|vn(x)(t1, t2, t3)− vn(y)(t1, t2, t3)|.

Then the condition (ii) holds. Further,

Kn = sup
{ 1

n2
|fn(t1, t2, t3, 0, z

0(t1, t2, t3))| : t1, t2, t3 ∈ R+

}
= sup

{ 1

n2

∣∣∣ 1

t1t2 + t23 + n4

∣∣∣ : t1, t2, t3 ∈ R+} ≤ 1,

and Kn → 0 as n→∞, and 0 < U < 1. Evidently, gn is continuous and since

∣∣∣ ∫ et
2
1

0

∫ et
2
2

0

∫ et
2
3

0

sin(xn(s1, s2, s3)) + sin(s1) cos(ln
∞∑
i=1

(xi(s1, s2, s3))2)

3 + cos(
∞∑
i=1

xi(s1, s2, s3))

ds1ds2ds3

∣∣∣

≤ 2
∣∣∣ ∫ et

2
1

0

∫ et
2
2

0

∫ et
2
3

0
ds1ds2ds3

∣∣∣ ≤ 2et
2
1+t22+t23

for all t1, t2, t3 ∈ R+, so we deduce that

Gn ≤ sup
{ 1

n2
(

3et
2
1et

2
2et

2
3

(n3 + 2n2)et
2
1+t22+t33

) : t1, t2, t3 ∈ R+

}
=

1

n2
(

3

n3 + 2n2
).

As n→∞ we obtain Gn → 0. These prove condition (v). Moreover, for each n we
get as t1, t2, t3 →∞

1

n2

∣∣∣ 1

(n3 + 2n2)et
2
1+t22+t33

∫ et
2
1

0

∫ et
2
2

0

∫ et
2
3

0

[
gn(t1, t2, t3, s1, s2, s3, x(t1, t2, t3))

−gn(t1, t2, t3, s1, s2, s3, y(t1, t2, t3))
]
ds1ds2ds3

∣∣∣→ 0,

which shows that condition (iii) is satisfied. Consequently, all the conditions of
Theorem 4.1 are satisfied. Hence the infinite system of integral equations (4.3) has

at least one solution, which belongs to the space cβ0 .

5. Existence of solutions for infinite systems of integral equations
in N-variables in tempered sequence space lβ1

To demonstrate the applicability of the Hausdorff measure of noncompactness

(3.2) in the space lβ1 , we look for solutions of the Eq. (3.3) in the space lβ1 .
Assume that
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(a) a1, . . . , aN : R+ → [0,∞) are continuous.
(b) fn : RN+ × R× R∞ → R (n ∈ N) is continuous with

∞∑
n=1

βn|fn(t1, . . . , tN , 0, z
0(t1, . . . , tN ))|

is convergent to zero for all t1, . . . , tN ∈ R+ and z0(t1, . . . , tN ) =
(
z0
i (t1, . . . , tN )

)∞
i=1
∈

R∞ with z0
i (t1, . . . , tN )) = 0, ∀i ∈ N. Also, continuous functions αn, γn : RN+ → R+ (n ∈ N)

exist such that

|fn(t1, . . . , tN , p(t1, . . . , tN ), z(t1, . . . , tN ))− fn(t1, . . . , tN , q(t1, . . . , tN ), z(t1, . . . , tN ))|

≤ αn(t1, . . . , tN )|zn(t1, . . . , tN )− zn(t1, . . . , tN )|+ γn(t1, . . . , tN )|p(t1, . . . , tN )− q(t1, . . . , tN )|,

where p and q are mappings from RN+ into R, z(t1, . . . , tN ) =
(
zi(t1, . . . , tN )

)∞
i=1

,

z(t1, . . . , tN ) =
(
zi(t1, . . . , tN )

)∞
i=1

are in R∞.

(c) gn : R2N
+ × R∞ → R (n ∈ N) is continuous and a constant Qk exists so that

Qk = sup
{∑
n≥k

βn
(
γn(t1, . . . , tN )

∣∣∣ ∫ a1(t1)

0
. . .

∫ aN (tN )

0
gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))ds1 . . . dsN

∣∣∣)},
where z(s1, . . . , sN ) ∈ R∞, t1, . . . , tN , s1, . . . , sN ∈ R+. Moreover,

lim
t1,...,tN→∞

∞∑
n=1

βn

∣∣∣γn(t1, . . . , tN )

∫ a1(t1)

0
. . .

∫ aN (tN )

0

(
gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))

−gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))
)
ds1 . . . dsN

∣∣∣ = 0.

(d) Define an operator Z : RN+ × l
β
1 → lβ1 as follows

(t1, . . . , tN , z(t1, . . . , tN ))→ (Zz)(t1, . . . , tN ) where

(Zz)(t1, . . . , tN ) =
(
β1f1(t1, . . . , tN , v1(t1, . . . , tN ), z(t1, . . . , tN )), β2f2(t1, . . . , tN , v2(t1, . . . , tN ), z(t1, . . . , tN )), . . .

)

and vn(z)(t1, . . . , tN ) =

∫ a1(t1)

0
. . .

∫ aN (tN )

0
gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))ds1 . . . dsN .

(e) lim
k→∞

Qk = 0, sup
k
Qk = Q, η1 = sup

{ ∞∑
n=1

βnγn(t1, . . . , tN ) : t1, . . . , tN ∈ R+

}
and sup

n

{
αn(t1, . . . , tN ) : t1, . . . , tN ∈ R+

}
= α <∞ such that 0 < α < 1.

Theorem 5.1. Under the hypotheses (a)-(e), Eq. (3.3) has at least one solution

z(t1, . . . , tN ) =
(
zi(t1, . . . , tN )

)∞
i=1

which belongs to the space lβ1 for all t1, . . . , tN ∈
R+. Also, zi ∈ C(RN+ ,R) for all i ∈ N.
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Proof. Applying conditions (a)-(e), and Eq. (3.3), for all t1, . . . , tN ∈ R+ we obtain

‖z(t1, . . . , tN )‖
l
β
1

=

∞∑
n=1

βn|zn(t1, . . . , tN )|

=

∞∑
n=1

βn

∣∣∣fn(t1, . . . , tN , ∫ a1(t1)

0
. . .

∫ aN (tN )

0
gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))ds1 . . . dsN , z(t1, . . . , tN )

)∣∣∣
≤

∞∑
n=1

βn

∣∣∣fn(t1, . . . , tN , ∫ a1(t1)

0
. . .

∫ aN (tN )

0
gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))ds1 . . . dsN , z(t1, . . . , tN )

)
−fn

(
t1, . . . , tN , 0, z

0(t1, . . . , tN )
)∣∣∣+

∞∑
n=1

βn

∣∣∣fn(t1, . . . , tN , 0, z0(t1, . . . , tN )
)∣∣∣

≤
∞∑
n=1

αn(t1, . . . , tN )βn|zn(t1, . . . , tN )|

+
∞∑
n=1

βnγn(t1, . . . , tN )
∣∣∣ ∫ a1(t1)

0
. . .

∫ aN (tN )

0
gn(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))ds1 . . . dsN

∣∣∣
≤ α

∞∑
n=1

βn|zn(t1, . . . , tN )|+Q1 ≤ α‖z(t1, . . . , tN )‖
l
β
1

+Q

i.e. (1− α)‖z(t1, . . . , tN )‖
l
β
1
≤ Q⇒ ‖z(t1, . . . , tN )‖

l
β
1
≤ Q

1−α = r(say).

Suppose that D = D(z0(t1, . . . , tN ), r) is a closed ball in lβ1 with center at z0(t1, . . . , tN )

and radius r, thus D is a nonempty, bounded, closed and convex subset of lβ1 .

Now, we define the operator Z = (Zi) on C(RN+ , D) by formula

(Zz)(t1, . . . , tN ) =
(
βi(Ziz)(t1, . . . , tN )

)∞
i=1

=
(
βifi(t1, . . . , tN , vi(z)(t1, . . . , tN ), z(t1, . . . , tN ))

)∞
i=1

,

where z(t1, . . . , tN ) =
(
zi(t1, . . . , tN )

)∞
i=1

∈ D and zi ∈ C(RN+ ,R), ∀i ∈ N. Since, by

condition (d), for each (t1, . . . , tN ) ∈ RN+ we have

∞∑
i=1

βi|(Ziz)(t1, . . . , tN )| =
∞∑
i=1

βi|fi(t1, . . . , tN , vi(z)(t1, . . . , tN ), z(t1, . . . , tN ))| <∞,

hence (Zz)(t1, . . . , tN ) ∈ lβ1 .
Further, ‖(Zz)(t1, . . . , tN )− z0(t1, . . . , tN )‖

l
β
1
≤ r and so Z is a self mapping on D.

Next, we show that Z is continuous. For this, take xm(t1, . . . , tN ) =
(
xm,i(t1, . . . , tN )

)∞
i=1

,

x(t1, . . . , tN ) =
(
xi(t1, . . . , tN )

)∞
i=1
∈ lβ1 and ε > 0 arbitrary with ‖xm(t1, . . . , tN ) −

x(t1, . . . , tN )‖lβ1 < ε
2α for m sufficiently large. We claim that ‖Zxm(t1, . . . , tN ) −

Zx(t1, . . . , tN )‖lβ1 → 0, form large enough. We will show that βn|Znxm(t1, . . . , tN )−
Znx(t1, . . . , tN )| → 0, for m large enough. Then, for each (t1, . . . , tN ) ∈ RN+ , we
have

βn|(Znxm)(t1, . . . , tN )− (Znx)(t1, . . . , tN )|

= βn|fn(t1, . . . , tN , vn(xm)(t1, . . . , tN ), xm(t1, . . . , tN ))− fn(t1, . . . , tN , vn(x)(t1, . . . , tN ), x(t1, . . . , tN ))|
≤ βnαn(t1, . . . , tN )|xm(t1, . . . , tN )− x(t1, . . . , tN )|

+βnγn(t1, . . . , tN )|vn(xm)(t1, . . . , tN )− vn(x)(t1, . . . , tN )|
≤ αβn|xm(t1, . . . , tN )− x(t1, . . . , tN )|

+βnγn(t1, . . . , tN )
∣∣∣ ∫ a1(t1)

0
. . .

∫ aN (tN )

0

[
gn(t1, . . . , tN , s1, . . . , sN , xm(s1, . . . , sN ))

−gn(t1, . . . , tN , s1, . . . , sN , x(s1, . . . , sN ))
]
ds1 . . . dsN

∣∣∣
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and so

∞∑
n=1

βn|(Znxm)(t1, . . . , tN )− (Znx)(t1, . . . , tN )| ≤ α‖xm(t1, . . . , tN )− x(t1, . . . , tN )‖
l
β
1

+

∞∑
n=1

βnγn(t1, . . . , tN )

∣∣∣ ∫ a1(t1)

0
. . .

∫ aN (tN )

0

[
gn(t1, . . . , tN , s1, . . . , sN , xm(s1, . . . , sN ))−gn(t1, . . . , tN , s1, . . . , sN , x(s1, . . . , sN ))

]
ds1 . . . dsN

∣∣∣.
In view of condition (c), T1 > 0 exists such that if max(t1, . . . , tN ) > T1, then

∞∑
n=1

βnγn(t1, . . . , tN )
∣∣∣ ∫ a1(t1)

0
. . .

∫ aN (tN )

0

[
gn(t1, . . . , tN , s1, . . . , sN , xm(s1, . . . , sN ))

−gn(t1, . . . , tN , s1, . . . , sN , x(s1, . . . , sN ))
]
ds1 . . . dsN

∣∣∣ < ε

2
.

Hence for max(t1, . . . , tN ) > T1,
∞∑
n=1

βn|(Znxm)(t1, . . . , tN )− (Znx)(t1, . . . , tN )| < ε i.e.

‖(Zxm)(t1, . . . , tN )− (Zx)(t1, . . . , tN )‖
l
β
1
< ε.

For t1, . . . , tN ∈ [0, T ], let

AT1 = sup{a1(t1) : t1 ∈ [0, T ]},
AT2 = sup{a2(t2) : t2 ∈ [0, T ]},
...
ATN = sup{aN (tN ) : tN ∈ [0, T ]},
and

gxm,x = sup
n

{∣∣∣gn(t1, . . . , tN , s1, . . . , sN , xm(s1, . . . , sN ))−gn(t1, . . . , tN , s1, . . . , sN , x(s1, . . . , sN ))
∣∣∣,

t1, . . . , tN ∈ [0, T ], s1 ∈ [0, ATN ], . . . , sN ∈ [0, AT1 ]
}
.

Then
∞∑
n=1

βn|(Znxm)(t1, . . . , tN )− (Znx)(t1, . . . , tN )| <
ε

2
+ gxm,xA

T
N . . . AT1 η1. By using the

continuity of gn on the set [0, T ]N × [0, ATN ]× . . .× [0, AT1 ]× lβ1 , we obtain gxm,x → 0 as
m→∞, thus

∞∑
n=1

βn|(Znxm)(t1, . . . , tN )− (Znx)(t1, . . . , tN )| → 0

as ‖xm(t1, . . . , tN )− x(t1, . . . , tN )‖lβ1 → 0.

We infer that Z is a continuous function on D ⊂ lβ1 .
In what follows, we verify that Z is a Meir-Keeler condensing operator.
For ε > 0, we have to find δ > 0 such that ε ≤ χ(D) < ε + δ ⇒ χ(Z(D)) < ε for any
nonempty bounded subset D of D.
From (b) and (d) we deduce
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χ(Z(D))

= lim
n→∞

(
sup

z(t1,...,tN )∈D

{∑
k≥n

βk

∣∣∣fk(t1, . . . , tN , vk(z)(t1, . . . , tN ), z(t1, . . . , tN ))
∣∣∣})

≤ lim
n→∞

(
sup

z(t1,...,tN )∈D

{∑
k≥n

βk

∣∣∣fk(t1, . . . , tN , vk(z)(t1, . . . , tN ), z(t1, . . . , tN ))

−fk(t1, . . . , tN , 0, z
0(t1, . . . , tN ))

∣∣∣+
∑
k≥n

βk

∣∣∣fk(t1, . . . , tN , 0, z
0(t1, . . . , tN ))

∣∣∣})
≤ lim

n→∞

(
sup

z(t1,...,tN )∈D

{∑
k≥n

(
βkαk(t1, . . . , tN )|zk(t1, . . . , tN )|

+βkγk(t1, . . . , tN )
∣∣∣ ∫ a1(t1)

0
. . .

∫ aN (tN )

0
gk(t1, . . . , tN , s1, . . . , sN , z(s1, . . . , sN ))ds1 . . . dsN

∣∣∣)})
≤ lim

n→∞

(
sup

z(t1,...,tN )∈D

{
α
∑
k≥n

βk|zk(t1, . . . , tN )|+Qn
})
.

Since, Qn → 0, as n→∞, we derive that

χ(Z(D)) ≤ αχ(D). (5.1)

Let us choose δ = ε(1−α)
α . From (5.1), it ts easy to see that Z is a Meir-Keeler

condensing operator defined on the set D ⊂ lβ1 . Now, by Theorem 2.9 we find that

Z has a fixed point in D and thus the infinite system of integral equations (3.3)

has at least one solution in lβ1 . �

Example 5.2. Consider the following infinite system of integral equations

xn(t1, t2, t3) =

∞∑
i=n

( sin( Π
2i

) cos(et1t2t3 )xi(t1, t2, t3)

3i

)
(5.2)

+
1

n(n+ 1)(n+ 2)et1+t2+t23
sin
(∫ et1

0

∫ et2

0

∫ et3

0

tanh(

∞∑
i=1

xi(t1, t2, t3))

5 + cosh(

∞∑
i=1

xi(t1, t2, t3))

ds1ds2ds3
)
,

where n ∈ N. Eq. (5.2) is a special case of Eq. (3.3). Here a1(t) = a1(t) = a3(t) =
et,

fn(t1, t2, t3, vn(x)(t1, t2, t3), x(t1, t2, t3)) =

∞∑
i=n

( sin( Π
2i

) cos(et1t2t3 )xi(t1, t2, t3)

3i

)

+
1

n(n+ 1)(n+ 2)et1+t2+t23
sin(vn(x)(t1, t2, t3)),

where vn(x)(t1, t2, t3) =

∫ et1

0

∫ et2

0

∫ et3

0
gn(t1, t2, t3, s1, s2, s3, x(t1, t2, t3))ds1ds2ds3, and

gn(t1, t2, t3, s1, s2, s3, x(t1, t2, t3)) =

tanh(
∞∑
i=1

xi(t1, t2, t3))

5 + cosh(
∞∑
i=1

xi(t1, t2, t3))

.
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Furthermore, take β = (βn) = ( 1
n3 ). If x(t1, t2, t3) ∈ lβ1 is arbitrary, then we have

∞∑
n=1

βn|fn(t1, t2, t3, vn(x)(t1, t2, t3), x(t1, t2, t3))|

=

∞∑
n=1

1

n3

∣∣∣ ∞∑
i=n

( sin( Π
2i

) cos(et1t2t3 )xi(t1, t2, t3)

3i

)
+

1

n(n+ 1)(n+ 2)et1+t2+t23
sin(vn(x)(t1, t2, t3))

∣∣∣
≤

∞∑
n=1

∞∑
i=n

1

n3

∣∣∣ sin( Π
2i

)xi(t1, t2, t3)

3i

∣∣∣+
∞∑
n=1

1

n(n+ 1)(n+ 2)

≤
∞∑
n=1

∞∑
i=n

|
Π

6i2
||

1

n3
xi(t1, t2, t3)|+

1

4

≤
π3

36
‖x(t1, t2, t3)‖

l
β
1

+
1

4

≤ ‖x(t1, t2, t3)‖
l
β
1

+
1

4
<∞.

Therefore fn(t1, t2, t3, vn(x)(t1, t2, t3), x(t1, t2, t3)) ∈ lβ1 . Now, if y(t1, t2, t3) =
(
yi(t1, t2, t3)

)∞
i=1
∈

lβ1 , then by taking αn(t1, t2, t3) = Π3

36 and γn(t1, t2, t3) = 1

n(n+1)(n+2)et1+t2+t23
we get∣∣∣fn(t1, t2, t3, vn(x)(t1, t2, t3)− fn(t1, t2, t3, vn(y)(t1, t2, t3)

∣∣∣
≤

∣∣∣ ∞∑
i=n

sin( Π
2i

) cos(et1t2t3 )

3i
(xi(t1, t2, t3)− yi(t1, t2, t3))

∣∣∣
+

1

n(n+ 1)(n+ 2)et1+t2+t23

∣∣∣ sin vn(x)(t1, t2, t3)− sin vn(y)(t1, t2, t3)
∣∣∣

≤
Π3

36
|xi(t1, t2, t3)− yi(t1, t2, t3)|+

1

n(n+ 1)(n+ 2)et1+t2+t23
|vn(x)(t1, t2, t3)− vn(y)(t1, t2, t3)|.

Evidently 0 < α < 1,
∞∑
n=1

βn|fn(t1, t2, t3, 0, z
0(t1, t2, t3))| is convergent to zero for all

t1, t2, t3 ∈ R+, η1 = sup
{ ∞∑
n=1

βnγn(t1, t2, t3) : t1, t2, t3 ∈ R+

}
≤

1

4
and fn and gn are

continuous functions.
On the other hand, we have

∞∑
n=k

βnγn(t1, t2, t3)|vn(x)(t1, t2, t3)| ≤
∞∑
n=k

1

n(n+ 1)(n+ 2)et1+t2+t23

×
∣∣∣ ∫ et1

0

∫ et2

0

∫ et3

0

tanh(

∞∑
i=1

xi(t1, t2, t3))

5 + cosh(

∞∑
i=1

xi(t1, t2, t3))

ds1ds2ds3

∣∣∣

≤
et1+t2+t3

et1+t2+t23

∞∑
n=k

1

n(n+ 1)(n+ 2)
.

It in turn implies that

Qk ≤ sup
{ et1+t2+t3

et1+t2+t23

∞∑
n=k

1

n(n+ 1)(n+ 2)
; t1, t2, t3, s1, s2, s3 ∈ R+

}
.
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As k → ∞ we obtain
∑
n≥k

1

n(n+ 1)(n+ 2)
→ 0. Thus, we infer that Qk → 0 as

k →∞ and Q ≤ 1
4 .

Also, we observe that
∞∑
n=1

βn
∣∣γn(t1, t2, t3)

∫ et1

0

∫ et2

0

∫ et3

0

[
gn(t1, t2, t3, s1, s2, s3, z(t1, t2, t3))

− gn(t1, t2, t3, s1, s2, s3, z(t1, t2, t3))
]
ds1ds2ds3

∣∣
≤

∞∑
n=1

2et1+t2+t3

et1+t2+t23

1

n(n+ 1)(n+ 2)
=

1

2et3
.

It enforces that

lim
t1,t2,t3→∞

∞∑
n=1

βn

∣∣∣γn(t1, t2, t3)

∫ et1

0

∫ et2

0

∫ et3

0

[
gn(t1, t2, t3, s1, s2, s3, z(t1, t2, t3))

−gn(t1, t2, t3, s1, s2, s3, z(t1, t2, t3))
]
ds1ds2ds3

∣∣∣ = 0.

Consequently, all the conditions of Theorem 5.1 are satisfied. Hence the infinite

system of integral equations (5.2) has at least one solution in lβ1 .
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