A NEW THREE-STEP ITERATION METHOD FOR
\(\alpha\)-NONEXPANSIVE MAPPINGS AND VARIATIONAL
INEQUALITIES

SHAHROKH GHASEMZADEHDIBAGI, MEHDI ASADI*, SOMAYEH HAGHAYEGHI AND
FARSHID KHOJASTEH

Abstract. In this paper, we find a common element for the set of fixed points
of an \(\alpha\)-nonexpansive mapping and the set of solutions for variational inequal-
ities by some three-steps iteration scheme. Moreover, the strong convergence
to common element of two sets under some constraints are established.

1. Introduction

Let \(K\) be a nonempty closed and convex set in a real Hilbert space, whose inner
product and norm are denoted by \(\langle ., . \rangle\) and \(|.|\), respectively. Let \(T : K \rightarrow K\) be
a nonlinear operator and \(S\) be a nonexpansive operator. Let \(P_K\) be the projection
from \(H\) onto the convex set \(K\). A mapping \(T : K \rightarrow H\) is called monotone, if
\(\langle Tu - Tv, u - v \rangle \geq 0\).

\(T\) is an \(\alpha\)-inverse strongly monotone, if there exists a positive real number \(\alpha\) such
that
\(\langle Tu - Tv, u - v \rangle \geq \alpha |Tu - Tv|^2,\)

for all \(u, v \in K\). A self mapping \(S\) on \(K\) is called nonexpansive if
\(|Su - Sv| \leq |u - v|\) for all \(u, v \in K\).

We take into account the following problem:

Find \(u \in K\) such that
\(\langle Tu, v - u \rangle \geq 0, \quad \forall v \in K,\) \hspace{1cm} (1.1)

which is introduced and studied by Stampacchia [9] in 1964. Iterative methods
has been extensively studied by many authors (see [1, 2, 6] and the references therein).
The following definitions and results from [7] are needed to go on:

Lemma 1.1. For each \(z \in H\), there exists \(u \in K\) such that
\(\langle u - z, v - u \rangle \geq 0,\)

2000 Mathematics Subject Classification. 47H09, 47J20.
Key words and phrases. Three-step convergence methods; \(\alpha\)-nonexpansive mappings; Vari-
tional inequalities.
©2018 Ilirias Research Institute, Prishtina, Kosovë.
Communicated by E. Karapinar.
*Corresponding author.
for all \(v \in K \), if and only if, \(u = P_K[z] \) in which \(P_K \) is the projection from \(H \) onto the closed convex set \(K \).

Using Lemma 1.1, one can show that the variational inequality (1.1) is equivalent to a fixed-point problem.

Lemma 1.2. The function \(u \in K \) is a solution of the variational inequality (1.1), if and only if, \(u \in K \) satisfies the relation

\[
u = P_K[u - \rho Tu],
\]

where \(\rho > 0 \) is a constant.

It is clear from Lemma 1.2 that the variational inequalities and the fixed point problems are equivalent. This alternative equivalent formulation plays a significant role in the studies of variational inequalities and related optimization problems.

Let \(S \) be a nonexpansive mapping. We denote the set of all fixed points of \(S \) by \(F(S) \) and the set of all solutions of the variational inequalities (1.1) by \(VI(K,T) \).

We can characterize the problem. If \(x^* \in F(S) \cap VI(K,T) \), then by Lemma 1.2 we have

\[
x^* = Sx^* = P_K[x^* - \rho Tx^*] = SP_K[x^* - \rho Tx^*],
\]

where \(\rho > 0 \) is a constant.

This fixed point formulation is used to suggest the following iterative methods for finding a common element for two different sets of fixed points of nonexpansive mappings and solutions of the variational inequalities.

Algorithm 1.3. For given \(x_0 \in K \), consider the sequence \(x_n \) by the following iterative scheme:

\[
z_n = (1 - c_n)x_n + c_n SP_K[x_n - \rho T x_n], \tag{1.2}
\]

\[
y_n = (1 - b_n)x_n + b_n SP_K[z_n - \rho T z_n], \tag{1.3}
\]

\[
x_{n+1} = (1 - a_n)x_n + a_n SP_K[y_n - \rho T y_n], \tag{1.4}
\]

where \(a_n,b_n,c_n \in [0,1] \), for all \(n \geq 0 \) and \(S \) is a nonexpansive operator. Algorithm 1.3 is a three-steps predictor-corrector method. For \(S = I \) (the identity operator) Algorithm 1.3 has been investigated by Noor [4].

Note that, for \(c_n \equiv 0 \), Algorithm 1.3 reduces as follows:

Algorithm 1.4. For an arbitrarily chosen initial point \(x_0 \in K \), consider the sequence \(x_n \) by the following iterative scheme:

\[
y_n = (1 - b_n)x_n + b_n SP_K[x_n - \rho T x_n],
\]

\[
x_{n+1} = (1 - a_n)x_n + a_n SP_K[y_n - \rho T y_n],
\]

where \(a_n,b_n \in [0,1] \), for all \(n \geq 0 \) and \(S \) is the nonexpansive operator. Algorithm 1.4 is called two-steps iterative method, which has been considered and studied by Huang and Noor [3]. For \(b_n \equiv 1, a_n \equiv 1 \), Algorithm 1.4 reduces as follows:

Algorithm 1.5. For an arbitrarily chosen initial point \(x_0 \in K \), consider the sequence \(x_n \) by the following iterative scheme:

\[
y_n = SP_K[x_n - \rho T x_n],
\]

\[
x_{n+1} = SP_K[y_n - \rho T y_n].
\]
Remark. It is worth mentioning that our Algorithm 1.3 is a two-steps method, which may be regarded as a predictor-corrector method. Moreover, Algorithm 1.4 covers the case in Algorithm 1.5 and Algorithm 1.5 can be written as

\[x_{n+1} = P_K[P_K[x_n - \rho T x_n] - \rho TP_K[x_n - \rho T x_n]], \]

which is called extragradient Algorithm. We refer to [4], for more details about the convergence of Algorithm 1.3.

For \(b_n = 0, c_n = 0 \), Algorithm 1.3 is simplified in the following iterative method:

Algorithm 1.6. For given \(x_0 \in K \), consider the sequence \(x_n \) by the following iterative scheme:

\[x_{n+1} = (1 - a_n) x_n + a_n SP_K[x_n - \rho T x_n], \tag{1.5} \]

which is known as one-step iteration method. We refer to Huang and Noor [4] for the convergence of Algorithm 1.6.

In particular, three-step method is quite general and includes several new and recent known algorithms for solving variational inequalities and nonexpansive mappings.

Theorem 1.7. [8 Theorem 3.1] Let \(K \) be a closed convex subset of a real Hilbert space \(H \). Let \(T : K \to H \) be an \(\alpha \)-inverse-monotone and let \(S \) be a nonexpansive mapping from \(K \) into itself such that \(F(S) \cap VI(K, T) \neq \emptyset \). Let \(u \in C \) be fixed and let \(x_0 \in C \) be given and let the sequences \(\{x_n\}, \{y_n\} \) and \(\{z_n\} \) are generated by the following:

\[
\begin{align*}
 y_n &= \sigma_n x_n + (1 - \sigma_n)SP_K[x_n - \rho_n T x_n] \\
 z_n &= \mu_n x_n + (1 - \mu_n)SP_K[y_n - \rho_n T y_n] \\
 x_{n+1} &= \alpha_n u + \beta_n x_n + \gamma_n SP_K[z_n - \rho_n T z_n], \quad n \geq 0,
\end{align*}
\]

where \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\mu_n\} \) and \(\{\sigma_n\} \) are five sequences in \([0, 1]\) and \(\{\rho_n\} \) is a sequence in \([0, 2\alpha]\). As long as, \(\rho_n \in [a, b] \) in which \(0 < a < b < 2\alpha \) and

(i) \(\alpha_n + \beta_n + \gamma_n = 1 \),
(ii) \(\lim_{n \to \infty} \alpha_n = 0 \), \(\sum_{n=0}^{\infty} \alpha_n = \infty \)
(iii) \(0 < \liminf_{n \to \infty} \beta_n \leq \limsup_{n \to \infty} \beta_n < 1 \) and \(\lim_{n \to \infty} \mu_n = 1 \)
(iv) \(\lim_{n \to \infty}(\rho_{n+1} - \rho_n) = 0 \),

then \(\{x_n\} \) is defined by (1.6) which converges strongly to \(x^* \in P_{F(S) \cap VI(K, T)} u \).

2. Preliminaries

Gobel and Pineda [3], studied \(\alpha \)-nonexpansive mapping, which is a generalization of the nonexpansive one. Let \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \), where \(\alpha_i \geq 0, i = 1, 2, \ldots, n \) and \(\sum_{i=1}^{n} \alpha_i = 1 \) and let \(K \) be a nonempty closed and convex subset of a Banach space \(X \). A mapping \(T : K \to K \) is said to be \(\alpha \)-nonexpansive if

\[
\sum_{i=1}^{n} \alpha_i \|T^i x - T^i y\| \leq \|x - y\|, \tag{2.1}
\]

for all \(x, y \in K \).
For some technical reasons we always assume that $\alpha_1 > 0$. In this case the mapping T satisfies the Lipschitz condition
\[\|Tx - Ty\| \leq \frac{1}{\alpha_1} \|x - y\|, \]
for all $x, y \in K$.

Taking into account (2.1), one can investigate that considering $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n)$ conducive to nonexpansivity of
\[T_\alpha x = \sum_{i=1}^{n} \alpha_i T^i x, \]
for all $x \in K$. However, nonexpansivity of T_α is much weaker than (2.1), it does not yield the continuity of T.

Lemma 2.1. Suppose that $\{\delta_k\}_{k=0}^{\infty}$ is a nonnegative sequence satisfies in the following inequality
\[\delta_{k+1} \leq (1 - \lambda_k)\delta_k + \sigma_k, \quad k \geq 0, \]
where $\lambda_k \in [0,1]$, $\sum_{k=0}^{\infty} \lambda_k = \infty$ and $\sigma_k = o(\lambda_k)$. Then $\lim_{k \to \infty} \delta_k = 0$.

Theorem 2.2. Let K be a closed convex subset of Banach space X and let $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n)$, for all $n \in \mathbb{N}$, be such that $\alpha_i \geq 0, i = 1, 2, \cdots, n, \alpha_1 > 0$ and $\sum_{i=1}^{n} \alpha_i = 1$. Let T be an α-nonexpansive mapping from K into itself. If $\alpha_1 > \frac{1}{\sqrt{2}}$, then $F(T) = F(T_\alpha)$.

3. Main results

In this section, we introduced a new definition which is generalization of the α-inverse-monotone mapping.

Definition 3.1. We say that a mapping $T : K \to H$ satisfies in θ-property, if there exist $\rho > 0$ and a function $0 < \theta(\rho) < \infty$ such that
\[\|(x - y) - \rho(Tx - Ty)\| \leq \theta(\rho) \|x - y\|, \]
for all $x, y \in K$.

Example 3.2. Let $H = K := l^2$ and $Tx = \frac{x}{\rho + 1}$, for some $\rho > 0$. Then we put $\theta(\rho) = \frac{1}{\rho + 1} < 1$.

Example 3.3. Let $H = K := l^2$, $Tx := x$ and $0 < \rho < 1$. Then $\theta(\rho) = 1 - \rho < 1$.

Example 3.4. Let $H = [0, \infty)$ and $K = [0, 1]$. Define $T : K \to H$ as follows:
\[T(x) = \frac{x^2}{1 + x} \quad \forall x \in [0, 1]. \]

Put $\theta(\rho) = 1 + 3\rho$. Clearly,
\[
\|(x - y) - \rho(Tx - Ty)\| = \|(x - y) - \rho\left(\frac{x^2}{1 + x} - \frac{y^2}{1 + y}\right)\|
\leq \|x - y\| + \rho \left|\frac{x^2}{1 + x} - \frac{y^2}{1 + y}\right|
\leq \|x - y\| + \rho \|x^2(1 + y) - y^2(1 + x)\|
\leq (1 + 3\rho) \|x - y\|
\]
Therefore, T satisfies in θ-property.

Example 3.5. Let $H = [0, \infty)$ and $K = [0, 1]$. The mappings $T(x) = x$, $T(x) = 1-x$ and $T(x) = \beta x$ satisfy in θ-property by $\theta(\rho) = 1-\rho$, for $0 < \rho < 1$, $\theta(\rho) = 1+\rho$ and $\theta(\rho) = 1$, respectively.

Theorem 3.6. Let K be a closed convex subset of a real Hilbert space H. Let $T : K \to H$ satisfies in θ-property and S be an α-nonexpansive mapping from K into itself such that $\alpha_1 > \frac{1}{1+\sqrt{2}}$ and $F(S) \cap VI(K,T) \neq \emptyset$. Let $\{x_n\}$ be a sequence defined by Algorithm 1.3 for any initial point $x_0 \in K$ where $0 < \theta(\rho) < 1, a_n, b_n, c_n \in [0, 1]$ and $\sum_{n=0}^{\infty} a_n = \infty$. Then the sequence x_n, which is derived from Algorithm 1.3, converges strongly to $x^* \in F(S) \cap VI(K,T)$.

Proof. Pick $x^* \in F(S) \cap VI(K,T)$. Since $F(S) = F(S_\alpha)$, by Theorem 2.2, we have $x^* \in K \cap F(S_\alpha) \cap VI(K,T)$. Therefore,

$$x^* = (1 - c_n)x^* + c_n S_\alpha P_K[x^* - \rho T x^*]$$ (3.1)

$$= (1 - b_n)x^* + b_n S_\alpha P_K[x^* - \rho T x^*]$$ (3.2)

$$= (1 - a_n)x^* + a_n S_\alpha P_K[x^* - \rho T x^*]$$ (3.3)

where $a_n, b_n, c_n \in [0, 1]$. We shall show that $x_{n+1} \to x^*$ as $n \to \infty$. From (3.4), (3.3) and the nonexpansive property of the projection P_K and the nonexpansive mapping S_α, we have

$$\|x_{n+1} - x^*\| = \|x_n - x^* - a_n S_\alpha P_K[y_n - \rho Ty_n] - (1 - a_n)x_n - a_n S_\alpha P_K[x^* - \rho T x^*]|$$

$$\leq (1 - a_n)\|x_n + a_n S_\alpha P_K[y_n - \rho Ty_n] - (1 - a_n)x_n - a_n S_\alpha P_K[x^* - \rho T x^*]|$$

$$\leq (1 - a_n)\|x_n - x^*\| + a_n\|S_\alpha P_K[y_n - \rho Ty_n] - S_\alpha P_K[x^* - \rho T x^*]|$$

From θ-property on T,

$$\|y_n - x^* - \rho(Ty_n - Tx^*)\| \leq \theta(\rho)\|y_n - x^*\|,$$ (3.5)

where $\theta(\rho) < 1$.

Combining (3.4) and (3.5), we have

$$\|x_{n+1} - x^*\| \leq (1 - a_n)\|x_n - x^*\| + a_n\|x^* - \rho T x^*|$$ (3.6)

From (1.2), (3.3) and α-nonexpansivity of the operators S_α and P_K, we have

$$\|y_n - x^*\| = \|(1 - b_n)x_n + b_n S_\alpha P_K[z_n - \rho T z_n] - (1 - b_n)x_n + b_n S_\alpha P_K[x^* - \rho T x^*]|$$

$$\leq (1 - b_n)\|x_n - x^*\| + b_n\|S_\alpha P_K[z_n - \rho T z_n] - S_\alpha P_K[x^* - \rho T x^*]|$$

$$\leq (1 - b_n)\|x_n - x^*\| + b_n\|z_n - \rho T z_n - x^* - \rho T x^*|.$$ (3.7)

Now from θ-property on T, it yields that

$$\|z_n - x^* - (1 - \theta(\rho))(Tz_n - Tx^*)\| \leq \theta(\rho)\|z_n - x^*\|.$$ (3.8)

Analogously, (1.2) and (3.1) conclude that

$$\|z_n - x^*\| \leq (1 - c_n)\|x_n - x^*\| + c_n \theta(\rho)\|x_n - x^*\| = (1 - c_n(1 - \theta(\rho)))\|x_n - x^*\| \leq \|x_n - x^*\|.$$ (3.9)

Then from (3.7) and (3.8), we have

$$\|y_n - x^*\| \leq (1 - b_n)\|x_n - x^*\| + b_n \theta(\rho)\|z_n - x^*\|$$

$$\leq (1 - b_n)\|x_n - x^*\| + b_n \theta(\rho)\|x_n - x^*\|$$

$$\leq \|x_n - x^*\|.$$ (3.10)
From (3.6), (3.9) and (3.10), one can obtain
\[||x_{n+1} - x^*|| \leq (1 - a_n) ||x_n - x^*|| + a_n \theta(\rho) ||y_n - x^*|| \]
\[\leq (1 - a_n) ||x_n - x^*|| + a_n \theta(\rho) ||x_n - x^*|| = [1 - a_n(1 - \theta(\rho))] ||x_n - x^*||, \]
and hence by Lemma 2.1 \(\lim_{n \to \infty} ||x_n - x^*|| = 0. \)

Example 3.7. Let \(H := l^2, K := B_{l^2}, \) where \(B_{l^2} \) denote the closed unit ball of \(l^2. \)

Define the mapping \(T : H \to K \) by:
\[T(x) = (x - \frac{1}{2})(\frac{1}{1 + \rho}), \]
for all \(x \in B_{l^2}, S : K \to K \) by \(S(x) = 1 - x \) for all \(x \in K \) and the projection operator \(P_K : H \to K \) define as follows:
\[P_K(x) = \frac{x}{\max\{1, ||x||_2\}}, \]
for all \(x \in K. \) Clearly \(S \) is an \((\frac{1}{\sqrt{2}}, 1 - \frac{1}{\sqrt{2}}) \)-nonexpansive mapping and \(\frac{1}{2} \in F(S) \cap \text{VI}(K,T). \) If \(a_n = \frac{1}{n^2}, b_n = \frac{1}{n^2}, c_n = \frac{1}{n^2} \) and \(x_0 = 0, \) then the sequence \(x_n, \) which is derived from Algorithm 1, converges strongly to \(\frac{1}{2} \in F(S) \cap \text{VI}(K,T). \)

Solving the above example in Mathematica software as follows:

```plaintext
Clear ["\*""]
n  \[ x_0 = 0;  \\
\rho = 1;  \\
n_{n-1} = 1/(n + 1)
\]
b\[ n_{-1} = 1/2^n;  \\
c\[ n_{-1} = 1/3^n;  \\
S\[ n_{-1} = 1/Sqrt[2] (1 - x) + (1 - 1/Sqrt[2]) x  \\
(1 - x)/Sqrt[2] + (1 - 1/Sqrt[2]) x  \\
T\[ n_{-1} = 1/(\rho + 1)(x - 1/2);  \\
Subscript[P, k] [n_{-1}] = x;  \\
Z\[ n_{-1} := (1 - c[n])X[n] + c[n]S[Subscript[P, k] [X[n] - \rho T[X[n]]]] // N  \\
Y\[ n_{-1} := (1 - b[n])X[n] + b[n]S[Subscript[P, k] [Z[n] - \rho T[Z[n]]]] // N  \\
X[(n + 1)_{-1}] := (1 - a[n])X[n] + a[n]S[Subscript[P, k] [Y[n] - \rho T[Y[n]]]] // Simplify // N  \\
For [i = 0, i <= 8, i + 1 + , , X[i + 1] = (1 - a[i])X[i] + a[i]S[Subscript[P, k] [Y[i] - \rho T[Y[i]]]]]
Table[X[i + n], {i, 0, 10}]
{0, 0.504442, 0.499961, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}

If \( c_n \equiv 0 \) then the following result is a special case of Theorem 3.6.

**Corollary 3.8.** Let \( K \) be a closed convex subset of a real Hilbert space \( H. \) Let \( T : K \to H \) satisfies in \( \theta \) property and \( S \) be an \( \alpha \)-nonexpansive mapping of \( K \) into \( K \) such that \( \alpha_1 > \frac{1}{n - 1/\sqrt{2}} \) and \( F(S) \cap \text{VI}(K,T) \neq \emptyset. \) Let \( \{x_n\} \) be a sequence
defined by Algorithm 1.4 for any initial point \( x_0 \in K \), with condition \( 0 < \theta(\rho) < 1 \), \( a_n, b_n \in [0,1] \) and \( \sum_{n=0}^{\infty} a_n = \infty \), then \( \{x_n\} \) obtained from Algorithm 1.4 converges strongly to \( x^* \in F(S) \cap VI(K, T) \).

Now, we prove the strong convergence theorem of Algorithm 1.6.

**Theorem 3.9.** Let \( K \) be a closed convex subset of a real Hilbert space \( H \). Let \( T : K \to H \) satisfies in \( \theta \)-property and \( S \) be an \( \alpha \)-nonexpansive mapping of \( K \) into \( K \) such that \( \alpha \neq 0 \). Let \( \{x_n\} \) be the approximate solution obtained from Algorithm 1.6 for any initial point \( x_0 \in K \), with condition \( 0 < \theta(\rho) < 1 \). Then the sequence \( \{x_n\} \) converges strongly to \( x^* \in F(S) \cap VI(K, T) \).

**Proof.** Consider
\[
\|x_n - x^* - \rho[Tx_n - Tx^*]\| \leq \theta(\rho)\|x_n - x^*\|. 
\]
From (1.5), (3.9), (3.11) and the \( \alpha \)-nonexpansive property of the operators \( S_\alpha \) and \( P_K \), we have
\[
\|x_{n+1} - x^*\| = \|(1 - a_n)x_n + a_nS_\alpha P_K[x_n - \rho Tx_n] - (1 - a_n)x^* - a_nS_\alpha P_K[x^* - \rho Tx^*]\|
\leq (1 - a_n)\|x_n - x^*\| + a_n\|S_\alpha P_K[x_n - \rho Tx_n] - S_\alpha P_K[x^* - \rho Tx^*]\|
\leq (1 - a_n)\|x_n - x^*\| + a_n\|x_n - x^* - \rho(Tx_n - Tx^*)\|
\leq (1 - a_n)\|x_n - x^*\| + a_n\theta(\rho)\|x_n - x^*\|
= (1 - a_n(1 - \theta(\rho)))\|x_n - x^*\|.
\]
Therefore by Lemma 2.1, \( \lim_{n \to \infty} \|x_n - x^*\| = 0 \). \qed

4. **Another New Algorithm**

The following equality is established in a Hilbert space
\[
\|(x - y) - \rho(Tx - Ty)\|^2 = \|x - y\|^2 + \rho^2\|Tx - Ty\|^2 - 2\rho(x - y, Tx - Ty).
\]
If the mapping \( T : K \to H \) be an \( \alpha \)-inverse strongly monotone, then
\[
\|(x - y)^2 + \rho^2\|Tx - Ty\|^2 - ((x - y) - \rho(Tx - Ty))^2 \geq 2\rho\alpha\|Tx - Ty\|^2.
\]
Hence
\[
\rho^2 - 2\rho\alpha\|Tx - Ty\|^2 + \|x - y\|^2 \geq \|(x - y) - \rho(Tx - Ty)\|^2.
\]
That is, if \( \alpha < \frac{\rho}{2} \), then \( T \) is not satisfies in \( \theta \)-property. The following theorem shows that, if \( T \) satisfies in \( \theta \)-property, then \( T \) is an \( \alpha \)-inverse strongly monotone mapping. Therefore it is a conclusion of Theorem 1.7.

**Theorem 4.1.** Let \( K \) be a closed convex subset of a real Hilbert space \( H \). Let \( T : K \to H \) satisfies in \( \theta \)-property with condition \( 0 < \theta(\rho) < 1 \) and \( S \) be an \( \alpha \)-nonexpansive mapping of \( K \) into \( K \) such that \( \alpha_1 > \frac{1}{\rho - \sqrt{\rho^2}} \) and \( F(S) \cap VI(K, T) \neq \emptyset \). For fixed \( u \in K \) and given \( x_0 \in K \) arbitrary, let the sequences \( \{x_n\}, \{y_n\} \) and \( \{z_n\} \) are generated by
\[
\begin{align*}
\{y_n\} = \{ & \sigma_n x_n + (1 - \sigma_n)S_\alpha P_K[x_n - \rho_n Tx_n] \\
\{z_n\} = \{ & \mu_n x_n + (1 - \mu_n)S_\alpha P_K[y_n - \rho_n Ty_n] \\
x_{n+1} = \{ & \alpha_n u + \beta_n x_n + \gamma_n S_\alpha P_K[z_n - \rho_n Tz_n], n \geq 0,
\end{align*}
\]
where \( \{\sigma_n\}, \{\beta_n\}, \{\gamma_n\}, \{\mu_n\} \) and \( \{\sigma_n\} \) are five sequences in \([0,1]\) and \( \theta(\rho_n) \) is a sequence in \((0,1)\). If for these sequences \( \rho_n \in (0,2) \) and
Proof. For fixed $T$:

(i) $\alpha_n + \beta_n + \gamma_n = 1$,
(ii) $\lim_{n \to \infty} \alpha_n = 0$, $\sum_{n=0}^{\infty} \alpha_n = \infty$
(iii) $0 < \liminf_{n \to \infty} \beta_n \leq \limsup_{n \to \infty} \beta_n < 1$ and $\lim_{n \to \infty} \mu_n = 1$
(iv) $\lim_{n \to \infty} (\rho_{n+1} - \rho_n) = 0$.

Then $\{x_n\}$ defined by (4.1) converges strongly to $x^* \in P_{F(S) \cap VI(K, T)} u$.

Corollary 4.2. Let $K$ be a closed convex subset of a real Hilbert space $H$. Let $T : K \to H$ satisfies in $\theta$-property with condition $0 < \theta(\rho) < 1$ and $VI(K, T) \neq \emptyset$. For fixed $u \in K$ and given $x_0 \in K$ arbitrary, let the sequences $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ are generated by

\[
\begin{align*}
\begin{cases}
  y_n = \sigma_n x_n + (1 - \sigma_n) P_K [x_n - \rho_n T x_n] \\
  z_n = \mu_n x_n + (1 - \mu_n) P_K [y_n - \rho_n T y_n] \\
  x_{n+1} = \alpha_n u + \beta_n x_n + \gamma_n P_K [z_n - \rho_n T z_n], n \geq 0,
\end{cases}
\end{align*}
\]

where $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$, $\{\mu_n\}$ and $\{\sigma_n\}$ are five sequences in $[0, 1]$ and $\theta(\rho_n)$ is a sequence in $(0, 1)$. If for these sequences $\rho_n \in (0, 2)$ and

(i) $\alpha_n + \beta_n + \gamma_n = 1$,
(ii) $\lim_{n \to \infty} \alpha_n = 0$, $\sum_{n=0}^{\infty} \alpha_n = \infty$
(iii) $0 < \liminf_{n \to \infty} \beta_n \leq \limsup_{n \to \infty} \beta_n < 1$ and $\lim_{n \to \infty} \mu_n = 1$
(iv) $\lim_{n \to \infty} (\rho_{n+1} - \rho_n) = 0$.

Then $\{x_n\}$ defined by (4.3) converges strongly to $x^* \in P_{VI(K, T)} u$.

Theorem 4.3. Let $K$ be a closed convex subset of a real Hilbert space $H$. Let $T : K \to H$ satisfies in $\theta$-property with condition $0 < \theta(\rho) < 1$ and $S$ be an $\alpha$-nonexpansive mapping of $K$ into $K$ such that $\alpha_1 > \frac{1}{\pi - 1}$ and $F(S) \cap T^{-1} \neq \emptyset$. For fixed $u \in K$ and given $x_0 \in K$ arbitrary, let the sequences $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ are generated by

\[
\begin{align*}
\begin{cases}
  y_n = \sigma_n x_n + (1 - \sigma_n) S_{\alpha_n} P_K [x_n - \rho_n T x_n] \\
  z_n = \mu_n x_n + (1 - \mu_n) S_{\alpha_n} P_K [y_n - \rho_n T y_n] \\
  x_{n+1} = \alpha_n u + \beta_n x_n + \gamma_n S_{\alpha_n} P_K [z_n - \rho_n T z_n], n \geq 0,
\end{cases}
\end{align*}
\]

where $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$, $\{\mu_n\}$ and $\{\sigma_n\}$ are five sequences in $[0, 1]$ and $\theta(\rho_n)$ is a sequence in $(0, 1)$. If for these sequences $\rho_n \in (0, 2)$ and

(i) $\alpha_n + \beta_n + \gamma_n = 1$,
(ii) $\lim_{n \to \infty} \alpha_n = 0$, $\sum_{n=0}^{\infty} \alpha_n = \infty$
(iii) $0 < \liminf_{n \to \infty} \beta_n \leq \limsup_{n \to \infty} \beta_n < 1$ and $\lim_{n \to \infty} \mu_n = 1$
(iv) \( \lim_{n \to \infty} (\rho_{n+1} - \rho_n) = 0 \).

Then \( \{x_n\} \) defined by (4.1) converges strongly to \( x^* \in P_{F(S) \cap T^{-1}u} \).

Proof. Since \( T^{-1}0 = VI(K,T) \), putting \( P_K = I \), by Theorem [4.1] we can obtain the conclusion. This completes the proof. \( \Box \)

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References


Shahrokh Ghasemzadehdibagi
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
E-mail address: sh.ghasemzadeh@kiau.ac.ir

Mehdi Asadi
(*Corresponding Author) Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
E-mail address: masadi@iauz.ac.ir

Somayeh Haghayeghi
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
E-mail address: s.haghayeghi@kiau.ac.ir

Farshid Khojasteh
Young Researcher and Elite club, Arak Branch, Islamic Azad University, Arak, Iran
E-mail address: f-khojaste@iau-arak.ac.ir