ON THE INCLUSIONS OF SOME LORENTZ MIXED NORMED SPACES AND WIENER-DITKIN SETS

AYSÈ SANDIKÇI

Abstract. In this paper, we consider sufficient and necessary condition for the inclusion between Lorentz spaces with mixed norms for two different product measures on \((X \times Y, A \times B)\). Later, we discuss the Wiener-Ditkin sets of Lorentz spaces with mixed norms and Lorentz spaces.

1. Introduction

Let \((X, A, \mu)\) be a measure space such that \(\mu\) is a nonnegative measure. For a measurable function \(f\) on \(X\), the distribution function is

\[
\lambda_f(y) = \mu\left(\{x \in X \mid |f(x)| > y\}\right), \quad (y > 0).
\]

Its rearrangement is defined by

\[
f^*(t) = \inf\{y > 0 : \lambda_f(y) \leq t\}, \quad (t > 0),
\]

and its average function is given by

\[
f^{**}(x) = \frac{1}{x} \int_0^x f^*(t)dt, \quad (x > 0).
\]

Note that \(\lambda_f\), \(f^*\) and \(f^{**}\) are nonincreasing and right continuous functions on \((0, \infty)\). If \(\lambda_f(y)\) is continuous and strictly decreasing, then \(f^*\) is the inverse function of \(\lambda_f\). The most important property of \(f^*\) is that it has the same distribution function as \(f\). It follows that

\[
\left(\int_X |f(x)|^p d\mu(x)\right)^{\frac{1}{p}} = \left(\int_0^\infty [f^*(t)]^p dt\right)^{\frac{1}{p}}. \tag{1.1}
\]

The Lorentz space denoted by \(L(p, q)(X, \mu)\) (shortly \(L(p, q)\)) is defined to be vector space of all (equivalence classes) of measurable functions \(f\) such that \(\| f \|_{pq} < \infty\), where

\[
\| f \|_{pq} = \begin{cases}
\left(\frac{q}{p} \int_0^\infty t^{\frac{q}{p}-1} [f^*(t)]^q dt\right)^{\frac{1}{q}}, & 0 < p < q < \infty \\
\sup_{t>0} t^{\frac{q}{p}} f^*(t), & 0 < p \leq q = \infty.
\end{cases}
\]

2010 Mathematics Subject Classification. 46E30, 43A15.

Key words and phrases. Product measure, Lorentz mixed normed spaces, Wiener-Ditkin sets.

©2018 Ilirias Research Institute, Pristinë, Kosovë.

Submitted May 4, 2017. Published March 5, 2018.

Communicated by A. Bourhim.
For any one of the cases $p \leq 2 \ A. \ SANDIKÇI$

Lorentz space by measurable function on the product space (L^p_{ν}). In this theory are due to Miamee (see [9]) for Lebesgue spaces with two different norms P,Q (see [3, 8, 11]). Let (X, A, μ) and (Y, B, ν) be σ-finite measure spaces, f be a complex valued measurable function on the product space $(X \times Y, A \times B, \mu \times \nu)$, $1 < P = (p_1, p_2) < \infty$ and $1 \leq Q = (q_1, q_2) \leq \infty$, that is p_i and q_i, $i = 1, 2$, are between 1 and ∞. The Lorentz mixed norm space $L(P, Q) = L(P, Q)(X \times Y)$ is defined by

$$L(P, Q) = L(p_2, q_2)[L(p_1, q_1)] = \left\{ f : \| f \|_P = \| f \|_{L(p_2, q_2)}[L(p_1, q_1)] = \| f \|_{p_1, q_1} \right\}_{p_2, q_2} < \infty \right\}.$$

So, $L(P, Q)$ occurs by taking an $L(p_1, q_1)$-norm with respect to first variable and an $L(p_2, q_2)$-norm with respect to second variable. The $L(P, Q)$ space is a Banach space under the norm $\| . \|_{PQ}$ (see [2, 3, 10]).

In section 2, we prove that the inclusion $L(P_1, Q_1)(X \times Y, \mu_1 \times \nu_1) \subseteq L(P_2, Q_2)(X \times Y, \mu_2 \times \nu_2)$ will hold under which condition for two different product measures. The first results in this theory are due to Miamee (see [9]) for Lebesgue spaces with two different measures. In [3], Gürkanlı extended the results of Mamee to the Lorentz spaces. Our theorems generalize previous results from [9] and [6]. In the third section, we investigate the Wiener-Ditkin sets of Lorentz spaces with mixed norms and Lorentz spaces.

In this paper, we denote the Lebesgue space with mixed norm by $L^{p,q}$; the Lorentz space by $L(p, q)$; the Lorentz mixed norm space $L(P, Q)$ or sometimes $L(p_2, q_2)[L(p_1, q_1)]$, where $P = (p_1, p_2)$ and $Q = (q_1, q_2)$.

2. The inclusions of some Lorentz mixed normed spaces

Throughout the paper, the letters P and Q will denote 2-tuples $P = (p_1, p_2)$ and $Q = (q_1, q_2)$, where p_i and q_i, $i = 1, 2$, are between 1 and ∞. When $i = 1$, we shall write $P = p$ and $Q = q$. Moreover, $P \leq Q$ will mean $p_i \leq q_i$ for $i = 1, 2$. Further, in this section, the symbol $\mu \ll \nu$ is used to indicate the absolute continuity of μ with respect to ν.

Lemma 2.1. Let $0 < P_1, P_2 < \infty$ and $0 < Q_1, Q_2 \leq \infty$, where $P_i = (p_i^1, p_i^2)$, $Q_i = (q_i^1, q_i^2)$, $i = 1, 2$. Then the inclusion $L(P_1, Q_1)(X \times Y, \mu_1 \times \nu_1) \subseteq L(P_2, Q_2)(X \times Y, \mu_2 \times \nu_2)$ holds in the sense of equivalence classes if and only if $\mu_1 \times \nu_1$ and $\mu_2 \times \nu_2$ are
absolute continuous with respect to each other and \(L(P_1, Q_1)(X \times Y, \mu_1 \times \nu_1) \subseteq L(P_2, Q_2)(X \times Y, \mu_2 \times \nu_2) \) in the sense of individual functions.

Proof. The 'if' part is easy. To prove the 'only if' part, let us take any \(E \in \mathcal{A} \times \mathcal{B} \) with \((\mu_1 \times \nu_1)(E) = 0 \). Then we have \(\mu_1(E_y) = 0 \) for \(\nu_1 \)-a.e. \(y \in Y \) and \(\nu_1(E_x) = 0 \) for \(\mu_1 \)-a.e. \(x \in X \), where \(E_y \) and \(E_x \) are the \(x \)-section and the \(y \)-section, respectively, of \(E \). Hence \(\chi_{E_y} = 0 \) \(\nu_1 \)-a.e. and the rearrangement of \(\chi_{E_y} \) is

\[
\chi_{E_y}^*(s) = \begin{cases} 1, & 0 < s < \mu_1(E_y) \\ 0, & s \geq \mu_1(E_y) \end{cases}
\]

If \(0 < P_1, Q_1 < \infty \), then we have

\[
\| \chi_E \|_{p_1, Q_1}^* = \left\| \chi_{E_y} \right\|_{p_1, q_1}^* = \left\| \left(\frac{q_1^1}{p_1^1} \int_0^\infty \frac{s^{q_1^1-1}}{s^{p_1^1}} |\chi_{E_y}(s)|^{q_1^1} ds \right)^{\frac{1}{q_1^1}} \right\|_{p_1^2, q_1^2}^* = \left(\frac{q_1^1}{p_1^1} \int_0^\infty \frac{\mu_1(E_y)}{s^{p_1^1}} ds \right)^{\frac{1}{q_1^1}} = 0
\]

since \(\mu_1(E_y) = 0 \) a.e. with respect to \(\nu_1 \). Similarly, if \(0 < P_1 < \infty \) and \(Q_1 = (\infty, \infty) \), we obtain

\[
\| \chi_E \|_{P_1, Q_1}^* = \left\| \chi_{E_y} \right\|_{P_1, \infty}^* = \left\| \left(\mu_1(E_y) \right)^{\frac{1}{p_1^1}} \right\|_{P_1^2, \infty}^* = 0.
\]

So, \(\chi_E \in L(P_1, Q_1)(X \times Y, \mu_1 \times \nu_1) \) for \(0 < P_1 < \infty \) and \(0 < Q_1 \leq \infty \). Then \(\chi_E \) is in the equivalence class 0 of \(L(P_1, Q_1)(X \times Y, \mu_1 \times \nu_1) \), and so, by the hypothesis, this equivalence class 0 is in the space \(L(P_2, Q_2)(X \times Y, \mu_2 \times \nu_2) \). Hence \(\chi_E \) is in the equivalence class 0 of \(L(P_2, Q_2)(X \times Y, \mu_2 \times \nu_2) \). Thus we write

\[
\| \chi_E \|_{P_2, Q_2}^* = \left\| \left(\mu_2(E_y) \right)^{\frac{1}{p_2^1}} \right\|_{P_2^2, q_2^2}^* = 0.
\]

It follows from here \(\mu_2(E_y) = 0 \) a.e. with respect to \(\nu_2 \). That means \((\mu_2 \times \nu_2)(E) = \int \mu_2(E_y) d\nu_2 = 0 \). Thus the absolute continuity of \(\mu_2 \times \nu_2 \) follows. Similarly, \(\mu_1 \times \nu_1 \) is absolute continuous with respect to \(\mu_2 \times \nu_2 \). \(\square \)

We shall need the following lemma for the next theorem. In this lemma, we will state the existence of a.e. convergent subsequence of a convergent sequence \((f_n) \) in \(L(P, Q)(X \times Y, \mu \times \nu) \). This mode of convergence is true for Banach function spaces \([2]\). Since \(L(P, Q)(X \times Y, \mu \times \nu) \) is a Banach function space \([2]\), it is also true for \(L(P, Q)(X \times Y, \mu \times \nu) \). But let us provide the details anyway for the sake of completeness.

Lemma 2.2. Let \(1 < P = (p_1, p_2) < \infty, 1 \leq Q = (q_1, q_2) \leq \infty \). If \((f_n) \) is a sequence in \(L(P, Q)(X \times Y, \mu \times \nu) \) and \(\| f_n - f \|_{PQ} \to 0 \), where \(f \in L(P, Q)(X \times Y, \mu \times \nu) \), then \((f_n) \) contains a subsequence that converges almost everywhere to the limit function.
Proof. Suppose \(\| f_n - f \|_{PQ} \to 0 \) as \(n \to \infty \). Then \(\| f_n - f \|_{P_iQ_i} \to 0 \) as \(n \to \infty \).
By using the inequality \(\| f \|_{P_iQ_i}^* \leq \| f \|_{P_iQ_i} \), we get \(\| f_n - f \|_{P_iQ_i}^* \to 0 \) as \(n \to \infty \). Thus we write
\[
\| f_n - f \|_{P_iQ_i}^* = \sup_{s > 0} \lambda \left((f_n - f)^*_y(s) = \sup_{\lambda > 0} \lambda \left(\mu((f_n - f)_y)(\lambda) \right)^{\frac{1}{\lambda}} \right.
\]
and so \(\mu \left\{ x \in X : \left| (f_n - f)_y \right| > \lambda \right\} \to 0 \) as \(n \) tends to infinity. This implies \((f_n)_y \) converges to \(f_y \) in measure with respect to \(\mu \). Hence there is a subsequence \((f_{n_k})_y \subset (f_n)_y \) such that \((f_{n_k})_y \) converges \(\mu \)-a.e. to \(f_y \). Finally, by holding \(x \) fixed and repeating the same procedure with respect to second variable \(y \), we obtain a subsequence \((f_{n_k}) \) of \((f_n) \) converges almost everywhere to the limit function \(f \).

Theorem 2.3. Let \(1 < P_1, P_2 < \infty \) and \(1 \leq Q_1, Q_2 \leq \infty \), where \(P_i = (p_i^1, p_i^2) \), \(Q_i = (q_i^1, q_i^2) \), \(i = 1, 2 \). Then \(L(P_1, Q_1)(X \times Y, \mu_1 \times \nu_1) \subset L(P_2, Q_2)(X \times Y, \mu_2 \times \nu_2) \)
if and only if \(\mu_1 \times \nu_1 \) is absolute continuous with respect to \(\mu_2 \times \nu_2 \) and there exists a constant \(C > 0 \) such that
\[
\| f \|_{P_2Q_2, \mu_2 \times \nu_2} \leq C \| f \|_{P_1Q_1, \mu_1 \times \nu_1} \tag{2.2}
\]
for all \(f \in L(P_1, Q_1)(X \times Y, \mu_1 \times \nu_1) \).

Proof. Suppose that \(L(P_1, Q_1)(X \times Y, \mu_1 \times \nu_1) \subset L(P_2, Q_2)(X \times Y, \mu_2 \times \nu_2) \). Then \(\mu_1 \times \nu_1 \) and \(\mu_2 \times \nu_2 \) are absolute continuous with respect to each other by Lemma 2.1.
In order to show (2.2), define the linear operator \(I(f) = f \) from \(L(P_1, Q_1)(X \times Y, \mu_1 \times \nu_1) \) into \(L(P_2, Q_2)(X \times Y, \mu_2 \times \nu_2) \). Then the graph of \(I \) is
\[
G(I) = \{ (f, I(f)) : f \in L(P_1, Q_1)(X \times Y, \mu_1 \times \nu_1) \}
\]
and it is a vector subspace of \(L(P_1, Q_1)(X \times Y, \mu_1 \times \nu_1) \times L(P_2, Q_2)(X \times Y, \mu_2 \times \nu_2) \)
since \(I \) is linear. Now we will show that \(G(I) \) is close. Assume that \((f_n, I(f_n)) \subset G(I) \)
converges to \((f, g) \), where \(f \in L(P_1, Q_1)(X \times Y, \mu_1 \times \nu_1) \), \(g \in L(P_2, Q_2)(X \times Y, \mu_2 \times \nu_2) \).
Then, for any \(\epsilon > 0 \), there exists \(n_0 \in \mathbb{N} \) such that
\[
\| (f_n, I(f_n)) - (f, g) \| = \| f_n - f \|_{P_1Q_1, \mu_1 \times \nu_1} + \| I(f_n) - g \|_{P_2Q_2, \mu_2 \times \nu_2} < \epsilon
\]
for all \(n \geq n_0 \). Thus we get \(\| f_n - f \|_{P_1Q_1, \mu_1 \times \nu_1} \to 0 \) and \(\| I(f_n) - g \|_{P_2Q_2, \mu_2 \times \nu_2} \to 0 \). Then by Lemma 2.2, there exists a subsequence \((f_{n_k}) \) of \((f_n) \) such that
\[
f_{n_k} \to f, \quad \mu_1 \times \nu_1 - a.e. \quad \text{and} \quad I(f_{n_k}) = f_{n_k} \to g, \quad \mu_2 \times \nu_2 - a.e.
\]
Since \(\mu_2 \times \nu_2 \ll \mu_1 \times \nu_1 \), we have
\[
f_{n_k} \to f, \quad \mu_2 \times \nu_2 - a.e. \quad \text{and} \quad f_{n_k} \to g, \quad \mu_2 \times \nu_2 - a.e.
\]
Thus \(f = g, \mu_2 \times \nu_2 - a.e. \) and so \((f, g) \in G(I) \). That means \(G(I) \) is close. Hence the linear operator \(I \) is bounded by closed graph theorem. Then there exists \(C > 0 \) such that
\[
\| f \|_{P_2Q_2, \mu_2 \times \nu_2} \leq C \| f \|_{P_1Q_1, \mu_1 \times \nu_1}
\]
for all \(f \in L(P_1, Q_1)(X \times Y, \mu_1 \times \nu_1) \).

The if-part of this theorem is obvious.
Proposition 2.4. Let $0 < P = (p_1, p_2) < \infty$, $0 < Q = (q_1, q_2) \leq \infty$ and $f \in L(P, Q) (X \times Y, \mu_1 \times \nu_1)$ be a real valued measurable function. If there exist constants $m, n > 0$ such that $\mu_2 (A) \leq m \mu_1 (A)$ for all $A \in \mathcal{A}$ and $\nu_2 (B) \leq n \nu_1 (B)$ for all $B \in \mathcal{B}$, then we have the inequality

$$
\| f \|^{*}_{pQ, \mu_2 \times \nu_2} \leq m^{\frac{1}{p_1}} n^{\frac{1}{p_2}} \| f \|^{*}_{pQ, \mu_1 \times \nu_1}.
$$

Moreover, there is the inclusion $L(P, Q) (X \times Y, \mu_1 \times \nu_1) \subseteq L(P, Q) (X \times Y, \mu_2 \times \nu_2)$.

Proof. Let $f \in L(P, Q) (X \times Y, \mu_1 \times \nu_1)$. Then $f_y \in L(p_1, q_1) (X, \mu_1)$ and $\| f_y \|_{p_1, q_1, \mu_1} \in L(p_2, q_2) (Y, \nu_1)$. Since $f_y \in L(p_1, q_1) (X, \mu_1)$ is a measurable real valued function, then

$$
E_{\sigma} = \{ x \in X : f_y (x) > \sigma \} \in \mathcal{A}
$$

for all real number σ. Also let M and N such that

$$
M = \{ \sigma > 0 : \lambda_{f_y}^{\mu_2} (\sigma) \leq t \}
$$

and

$$
N = \{ \sigma > 0 : \lambda_{f_y}^{\mu_1} (\sigma) \leq t \}
$$

for all $t > 0$, where $\lambda_{f_y}^{\mu_2} (\sigma) = \mu_2 (E_{\sigma})$ and $\lambda_{f_y}^{\mu_1} (\sigma) = (m \mu_1) (E_{\sigma})$. Since $\mu_2 (A) \leq m \mu_1 (A)$, we get $\lambda_{f_y}^{\mu_2} (\sigma) \leq \lambda_{f_y}^{\mu_1} (\sigma)$ and so $N \subseteq M$. Thus we can write

$$
f_{y, \mu_2}^{*, \ast} (t) = \inf_{\sigma} M \leq \inf_{\sigma} N = f_{y, \mu_1}^{*, \ast} (t). \tag{2.3}
$$

Moreover, since

$$
\{ \sigma > 0 : \lambda_{f_y}^{m \mu_1} (\sigma) \leq t \} = \{ \sigma > 0 : (m \mu_1) (E_{\sigma}) \leq t \}
$$

$$
= \left\{ \sigma > 0 : (\mu_1) (E_{\sigma}) \leq \frac{t}{m} \right\}, \tag{2.4}
$$

we have by (2.3) and (2.4)

$$
f_{y, \mu_2}^{*, \ast} (t) \leq f_{y, \mu_1}^{*, \ast} (t) = f_{y, \mu_1}^{*, \ast} \left(\frac{t}{m} \right).
$$

Thus we get

$$
\| f_y \|^{*}_{p_1, q_1, \mu_1} = \left(\frac{q_1}{p_1} \int_0^\infty t^{\frac{q_1}{p_1} - 1} [f_{y, \mu_2}^{*, \ast} (t)]^{q_1} \, dt \right)^{\frac{1}{q_1}}
$$

$$
\leq \left(\frac{q_1}{p_1} \int_0^\infty \left(\frac{t}{m} \right)^{\frac{q_1}{p_1} - 1} [f_{y, \mu_1}^{*, \ast} (\frac{t}{m})]^{q_1} \, dt \right)^{\frac{1}{q_1}}
$$

$$
= \left(\frac{q_1}{p_1} \int_0^\infty (m u)^{\frac{q_1}{p_1} - 1} \left(f_{y, \mu_1}^{*, \ast} (u) \right)^{q_1} m \, du \right)^{\frac{1}{q_1}}
$$

$$
= m^{\frac{1}{p_1}} \| f_y \|^{*}_{p_1, q_1, \mu_1}. \tag{2.5}
$$

Also since $\| f_y \|_{p_1, q_1, \mu_1} \in L(p_2, q_2) (Y, \nu_1)$ and $\nu_2 (B) \leq n \nu_1 (B)$ for all $B \in \mathcal{B}$, by applying the same procedure to second variable, we obtain

$$
\| f_y \|^{*}_{p_1, q_1, \mu_1} \| f_y \|^{*}_{p_2, q_2, \nu_2} \leq n^{\frac{1}{p_2}} \| f_y \|^{*}_{p_1, q_1, \mu_1} \| f_y \|^{*}_{p_2, q_2, \nu_2}. \tag{2.6}
$$
Hence we have \(\|f\|_{P,Q;\mu,\nu} \in L(P_2, Q_2)(Y, \nu_2) \). Since \(L(p_2, q_2)(Y, \nu_2) \) is a solid space, we obtain from (2.5) and (2.6)

\[
\| f \|_{P,Q;\mu,\nu} \leq \| f \|_{p_1,q_1,\mu_1} \leq m \frac{1}{n^{1/2}} \| f \|_{p_2,q_2,\nu_2} = m \frac{1}{n^{1/2}} \| f \|_{p_1,q_1,\mu_1,\nu_1}. \tag{2.7}
\]

Let \(S \) denote the set of simple functions. By Proposition 2.2 in [5], \(S = L(P, Q)(X \times Y, \mu_1 \times \nu_1) \). Let \(I \) be a unit function from \(S \) into \(L(P, Q)(X \times Y, \mu_2 \times \nu_2) \). By using (2.7), we have the inequality

\[
\| f \|_{P,Q;\mu,\nu} \leq C \| f \|_{p_1,q_1,\mu_1,\nu_1}
\]

for all \(f \in S \), where \(C = m \frac{1}{n^{1/2}} \). That means \(I \) is continuous from \(S \) into \(L(P, Q)(X \times Y, \mu_2 \times \nu_2) \). Then \(I \) is continuously extended to the space \(L(P, Q)(X \times Y, \mu_1 \times \nu_1) \).

Thus we get the inequality

\[
\| f \|_{P,Q;\mu,\nu} \leq C \| f \|_{p_1,q_1,\mu_1,\nu_1}
\]

for all \(f \in L(P, Q)(X \times Y, \mu_1 \times \nu_1) \). Hence we have the inclusion \(L(P, Q)(X \times Y, \mu_1 \times \nu_1) \subseteq L(P, Q)(X \times Y, \mu_2 \times \nu_2) \).

In Proposition 4, if there exists the inclusion which is mentioned, we could not obtain the converse of this proposition for \(P = (p_1, p_2) \). But we can state it when \(P = (p, p) \) as in the following.

Proposition 2.5. Let \(0 < P = (p, p) < \infty, 0 < Q = (q_1, q_2) \leq \infty \). If \(L(P, Q)(X \times Y, \mu_1 \times \nu_1) \subseteq L(P, Q)(X \times Y, \mu_2 \times \nu_2) \), then there exists \(K > 0 \) such that \((p_2 \times \nu_2)(E) \leq K (\mu_1 \times \nu_1)(E) \) for all \(E \in \mathcal{M} \).

Proof. Let \(L(P, Q)(X \times Y, \mu_1 \times \nu_1) \subseteq L(P, Q)(X \times Y, \mu_2 \times \nu_2) \). By Theorem 2.3 there exists \(C > 0 \) such that

\[
\| f \|_{P,Q;\mu,\nu} \leq C \| f \|_{p_1,q_1,\mu_1,\nu_1}
\]

for all \(f \in L(P, Q)(X \times Y, \mu_1 \times \nu_1) \). If it is taken \(f = \chi_E \), we have from (2.1)

\[
\mu_2(E_y) \frac{1}{p} \nu_2(E_x) \frac{1}{p} \leq C \mu_1(E_y) \frac{1}{p} \nu_1(E_x) \frac{1}{p},
\]

where \(E_y \) and \(E_x \) are the \(x \)–section and the \(y \)–section of \(E \), respectively. Hence we obtain

\[
(\mu_2(E_y) \nu_2(E_x))^\frac{1}{p} \leq C (\mu_1(E_y) \nu_1(E_x))^\frac{1}{p}
\]

and

\[
(\mu_2 \nu_2)(E) \leq K (\mu_1 \nu_1)(E),
\]

where \(K = C \frac{1}{p} \).

Proposition 2.6. Let \(P_1 = (p_1, p_1), P_2 = (p_2, p_2), Q_1 = (q_1, q_2), \) \(i = 1, 2, \) and \(0 < Q_1 \leq P_1 < P_2 \leq Q_2 < \infty \). Then there is the inclusion \(L(P_1, Q_1)(X \times Y, \mu \times \nu) \subseteq L(P_2, Q_2)(X \times Y, \mu \times \nu) \) if and only if there exists a constant \(k > 0 \) such that \((\mu \times \nu)(E) \geq k \) for every \(\mu \times \nu \)–non-null set \(E \in \mathcal{M} \).

Proof. Assume that \(L(P_1, Q_1)(X \times Y, \mu \times \nu) \subseteq L(P_2, Q_2)(X \times Y, \mu \times \nu) \). Then there exists \(C > 0 \) such that

\[
\| f \|_{P_2,Q_2;\mu,\nu} \leq C \| f \|_{P_1,Q_1;\mu,\nu} \tag{2.8}
\]
for all \(f \) in \(L(P_1, Q_1) (X \times Y, \mu \times \nu) \). Let \(E \in \mathcal{M} \) be a \(\mu \times \nu \)-non-null set and \((\mu \times \nu)(E) < \infty \). Then by taking \(\chi_E \) instead of \(f \) in (2.8), we get
\[
\mu \left(E_y \right) \frac{1}{\nu} \frac{\nu \left(E_x \right)}{\pi^2} \leq C_\mu \left(E_y \right) \frac{1}{\nu} \frac{\nu \left(E_x \right)}{\pi^2} = \mu \left(E_y \right) \frac{1}{\nu} \frac{\nu \left(E_x \right)}{\pi^2} \leq (\mu \times \nu)(E),
\]

where \(k = C \frac{\nu(E)}{\pi^2} \).
Conversely, let \(f \in L(P_1, Q_1) (X \times Y, \mu \times \nu) \) and
\[
E_n = \left\{ (x, y) \right\} \mid f(x, y) > n \}
\]
for all \(n \in \mathbb{N} \). Since \(Q_1 \leq P_1 \), we have
\[
L(P_1, Q_1) (X \times Y, \mu \times \nu) \subset L(P_1, P_1) (X \times Y, \mu \times \nu) = L^{p_1,p_1} (X \times Y, \mu \times \nu),
\]
where the space \(L^{p_1,p_1} (X \times Y, \mu \times \nu) \) is the Lebesgue space with mixed norm \(L^{p_1} (X \times Y, \mu \times \nu) \). Then there exists \(C > 0 \) such that
\[
\| f \|_{p_1, \mu \times \nu} \leq C \| f \|_{P_1, Q_1, \mu \times \nu}
\]
for all \(f \in L(P_1, Q_1) (X \times Y, \mu \times \nu) \). From the definition of \(E_n \), we write
\[
n^{p_1} \mu \left((E_n)_y \right) \leq \int_{(E_n)_y} |f_y|^{p_1} \, d\mu \leq \int_X |f_y|^{p_1} \, d\mu.
\]
Applying the same procedure to second variable, we have
\[
n^{p_1} \mu \left((E_n)_y \right) \nu \left((E_n)_x \right) \leq \int_X \int_Y |f_y|^{p_1} \, d\mu \, d\nu
\]
and
\[
n^{p_1} (\mu \times \nu)(E_n) \leq \| f \|_{p_1, \mu \times \nu}^{p_1} \leq \left(C \| f \|_{P_1, Q_1, \mu \times \nu} \right)^{p_1} < \infty
\]
for every \(n \in \mathbb{N} \). Thus by hypothesis, either \((\mu \times \nu)(E_n) = 0 \) or \((\mu \times \nu)(E_n) \geq k \). Moreover, since \(E_{n+1} \subset E_n \), \((\mu \times \nu)(E_1) < \infty \) and \(\bigcap_{n=1}^{\infty} E_n = \emptyset \), we get
\[
(\mu \times \nu)(E_n) \to 0.
\]
Thus there exists \(n_0 \in \mathbb{N} \) such that \(|f(x, y)| \leq n_0, \mu \times \nu \text{ a.e. for all } (x, y) \in X \times Y \). Then we write
\[
\int_{X \times Y} |f|^{p_2} \, (\mu \times \nu) \leq n_0^{p_2-p_1} \int_{X \times Y} |f|^{p_1} \, (\mu \times \nu).
\]
So \(f \in L^{p_2} (X \times Y, \mu \times \nu) = L(P_2, P_2) (X \times Y, \mu \times \nu) \) and from here \(L(P_1, Q_1) (X \times Y, \mu \times \nu) \subset L(P_2, P_2) (X \times Y, \mu \times \nu) \). Also since \(P_2 \leq Q_2 \), we obtain the desired result. \(\square \)

3. Wiener-Ditkin sets for Lorentz spaces with mixed norms

In this section we investigate the Wiener-Ditkin sets for Lorentz spaces with mixed norms and Lorentz spaces. Let \(X \) and \(Y \) be locally compact Abelian groups.
In the spirit of [7] a closed set \(A \) in \((X \times Y)^\wedge \) is said to be a Wiener-Ditkin set for \(L(P, Q) (X \times Y) \) if each \(f \in L(P, Q) (X \times Y) \) such that \(\hat{f} \) vanishes on \(A \) can be approximated in \(L(P, Q) (X \times Y) \) with functions \(f \ast F \) such that \(\hat{F} \) vanishes in some neighbourhood on \(A \).

For the next theorem, we need the following remark.
Remark. A Banach space X is called a (left) Banach module over a Banach algebra A if it is a (left) module over A in the algebraic sense and satisfies $\|ax\|_X \leq \|a\|_A \|x\|_X$ for all $a \in A$, $x \in X$. The closed linear span of $AX = \{ax : a \in A, x \in X\}$ in X is called essential part X_e of X. X is called essential if $X_e = X$. \[8\] A. SANDIKÇI

Corollary 3.3. \[8\] of Theorem 10 in \[12\], where T_z is translation operator. So it is easy two show that $L(P,Q)(X \times Y)$ is an essential Banach module over $L^1(X \times Y)$ by module factorization theorem.

Theorem 3.1. Let $1 < P < \infty$, $1 \leq Q < \infty$. If a closed set A in $(X \times Y)^\wedge$ is a Wiener-Ditkin set for $L^1(X \times Y)$, then it is a Wiener-Ditkin set for $L(P,Q)(X \times Y)$.

Proof. Suppose that $A \subset (X \times Y)^\wedge$ is a Wiener-Ditkin set for $L^1(X \times Y)$. Let $f \in L(P,Q)(X \times Y)$ such that \hat{f} vanishes on A. Since $L(P,Q)(X \times Y)$ is an essential Banach module over $L^1(X \times Y)$ by above remark, then there exists $\alpha \in I$ such that
\[
\|f - f \ast e_\alpha\|_{PQ} < \frac{\epsilon}{2}
\]
for any $\epsilon > 0$. Since $A \subset (X \times Y)^\wedge$ is a Wiener-Ditkin set for $L^1(X \times Y)$, then there exists $F_1 \in L^1(X \times Y)$ such that \hat{F}_1 vanishes on a neighbourhood of A. Again since $L(P,Q)(X \times Y)$ is an essential Banach module over $L^1(X \times Y)$, for the same $\epsilon > 0$, we write
\[
\|f - f \ast F_1\|_{PQ} < \frac{\epsilon}{2\|e_\alpha\|_1}
\]
Let us take $F = F_1 \ast e_\alpha$. Then $\hat{F} = \hat{F}_1 \hat{e}_\alpha$ and so \hat{F} vanishes on a neighbourhood of A. Thus we obtain
\[
\|f - f \ast F\|_{PQ} = \|f - f \ast e_\alpha + f \ast e_\alpha - f \ast e_\alpha \ast F_1\|_{PQ}
\leq \|f - f \ast e_\alpha\|_{PQ} + \|e_\alpha \ast (f - f \ast F_1)\|_{PQ}
\leq \|f - f \ast e_\alpha\|_{PQ} + \|e_\alpha\|_1 \|f - f \ast F_1\|_{PQ}
< \frac{\epsilon}{2} + \|e_\alpha\|_1 \frac{\epsilon}{2\|e_\alpha\|_1} = \epsilon.
\]
Hence A is a Wiener-Ditkin set for $L(P,Q)(X \times Y)$. \[\square\]

Since $L(P,Q) = L(p,q)$ when $P = p$ and $Q = q$, Theorem 3.1 can be stated for Lorentz space $L(p,q)$ as in the following.

Corollary 3.2. Let $1 < p < \infty$, $1 \leq q < \infty$. If a closed set $A \subset X$ is a Wiener-Ditkin set for $L^1(X)$, then it is a Wiener-Ditkin set for $L(p,q)$.

It is known that closed subgroups of \mathbb{R}^d are Wiener-Ditkin sets for weighted space $L^1_\alpha(\mathbb{R}^d)$ $(0 \leq \alpha < 1)$ from the Theorem in \[13\]. If $\alpha = 0$, then it is true for $L^1(\mathbb{R}^d)$. Namely, closed subgroups of \mathbb{R}^d are Wiener-Ditkin sets for $L^1(\mathbb{R}^d)$. So, we have the following corollaries by using Theorem 3.1 and Corollary 3.2, respectively.

Corollary 3.3. Closed subgroups of \mathbb{R}^{2d} are Wiener-Ditkin sets for $L(P,Q)(\mathbb{R}^{2d})$.

Corollary 3.4. Closed subgroups of \mathbb{R}^d are Wiener-Ditkin sets for $L(p,q)(\mathbb{R}^d)$.
References

AYŞE SАНĐIKÇI

DEPARTMENT OF MATHEMATICS, FACULTY OF ARTS AND SCIENCES, ONDOKUZ MAYIS UNIVERSITY, SAMSUN, TURKEY

Email address: ayeses@omu.edu.tr