JOURNAL OF MATHEMATICAL ANALYSIS ISSN: 2217-3412, URL: www.ilirias.com/jma Volume 8 Issue 5 (2017), Pages 145-160.

EMBEDDINGS OF NEAR VECTOR SPACES AND APPLICATIONS IN PRE-HILBERT SPACES, FILTRATIONS, MARTINGALES, AND METRIC SPACES

A. ABKAR, M. RASTGOO, M.B. KAZEMI, A. AZIZI

ABSTRACT. In this paper we introduce a family of embeddings j_n , $n \geq 2$, of a near vector space into a vector space. We give some examples for such embeddings and show that j_n 's invariant metric on a near vector space Sdefines an isometry on the vector space $R_n(S)$, and if S is a near vector lattice then j_n 's are join preserving on the vector lattices $R_n(S)$. Finally, we will find applications of this embeddings in Hilbert spaces, filtrations, martingales, and metric spaces.

1. INTRODUCTION

Initially Rådström in [6] proved that any near vector space S can be embedded into a vector space R(S) via an embedding j, moreover, if there exists an invariant metric on S, then R(S) admits a norm such that j is distance preserving. Later on, S. Bochner in [1] proved that any martingale $(f_i, \mathcal{E}_i)_{i \in \mathbb{N}}$ on a near vector space S induces a martingale $(j(f_i), \mathcal{E}_i)_{i \in \mathbb{N}}$ on the vector space R(S).

Recently, C.C.A. Labuschagne, A.L. Pinchuck and C.J. van Alten in [5] entered topics related to lattices in this discussion and showed that this embedding is join preserving and embeds a near vector lattice into a vector lattice. They also proved that if we have a Riesz metric on S, we can define a Riesz norm on R(S).

In this paper, we show that a near vector space S can be embedded into an innumerable vector spaces $R_n(S)$, (n = 2, 3, 4, ...) via j_n 's (see Definition 2.5). By investigating properties of $R_n(S)$ and j_n , we prove that these embeddings preserve the inner product and the basis. Finally, we shall provide some applications in the theory of filtrations, and martingales.

This paper is organized as follows: In Section 2, after introducing the embedding j_n and vector space $R_n(S)$, we study the impact of j_n on metric spaces, Banach spaces, Hilbert spaces and on invariant metrics. In Section 3, we study j_n on a

²⁰⁰⁰ Mathematics Subject Classification. 46B85; 46B99.

Key words and phrases. Near vector space, near vector lattice, ordered near vector space, invariant metric, inner product space, filtration, martingale.

 $[\]textcircled{O}2017$ Ilirias Research Institute, Prishtinë, Kosovë.

Submitted April 23, 2017. Published September 3, 2017.

Communicated by Romi Shamoyan.

partially ordered near vector space, and finally, in Section 4, we study MS-filtration and martingales.

2. The embeddings

In this section, for a given near vector space S, we shall construct countably many embeddings j_n , $n = 2, 3, \dots$, each of which will embed S into a vector space $R_n(S)$. We begin this section by recalling the definition of a near vector space.

Definition 2.1. A nonempty set S is said to be a near vector space provided that addition and scalar multiplication by positive numbers satisfy the following conditions; more precisely, addition $+: S \times S \longrightarrow S$ is defined in such a way that (S, +) is a cancellative commutative semigroup; i.e., for all $x, y, z \in S$:

$$x + z = y + z \Longrightarrow x = y,$$

$$x + y = y + x,$$

$$(x + y) + z = x + (y + z);$$

moreover, multiplication .: $\mathbb{R}_+ \times S \longrightarrow S$ by positive scalars is defined in such a way that for all $x, y \in S$ and $\lambda, \delta \in \mathbb{R}_+$:

$$\begin{split} \lambda x + \lambda y &= \lambda (x + y), \\ (\lambda + \delta) x &= \lambda x + \delta x, \\ (\lambda \delta) x &= \lambda (\delta x), \\ 1x &= x. \end{split}$$

Definition 2.2. Let S be a near vector space, for n = 2, 3, 4, ... we define \sim_n on $\underbrace{S \times S \times \cdots \times S}_{n-times}$ by

 $(x_1, x_2, ..., x_n) \sim_n (y_1, y_2, ..., y_n) \iff x_1 + y_2 + y_3 + \dots + y_n = y_1 + x_2 + x_3 + \dots + x_n.$ Clearly \sim_n is an equivalence relation on $\underbrace{S \times S \times \dots \times S}_{n-times}$. Let

 $\{[x_1]$

 $[x_1, x_2, ..., x_n] := \{(y_1, y_2, ..., y_n) \in S \times S \times \cdots \times S : (x_1, x_2, ..., x_n) \sim_n (y_1, y_2, ..., y_n)\},$ Now define the quotient

$$R_n(S) := (S \times S \times \dots \times S) / \sim_n =$$

, $x_2, \dots, x_n] : (x_1, x_2, \dots, x_n) \in S \times S \times \dots \times S \}.$

Also, on the quotient $R_n(S)$, define addition by $[x_1, x_2, ..., x_n] + [y_1, y_2, ..., y_n] = [x_1 + y_1, x_2 + y_2, ..., x_n + y_n]$ and, scalar multiplication $\cdot : \mathbb{R} \times R_n(S) \longrightarrow R_n(S)$ by

$$\lambda \cdot [x_1, x_2, \dots, x_n] := \begin{cases} [\lambda x_1, \lambda x_2, \dots, \lambda x_n], & \lambda \in \mathbb{R}_+, \\ [(n-1)x_1, x_1, x_1, \dots, x_1], & \lambda = 0, \\ -\lambda [(n-2)x_1 + x_2 + x_3 + \dots + x_n, x_1, x_1, \dots, x_1], & -\lambda \in \mathbb{R}_+ \end{cases}$$

Lemma 2.3. Let S be a near vector space. Then for any $x_1 \in S$, $[(n-1)x_1, x_1, ..., x_1]$ is the additive identity in $R_n(S)$.

Proof. For any $(x_1, x_2, ..., x_n) \in S \times S \times \cdots \times S$ we have

$$\begin{split} [x_1, x_2, ..., x_n] + [(n-1)x_1, x_1, x_1, ..., x_1] \\ &= [nx_1, x_1 + x_2, x_1 + x_3, ..., x_1 + x_n] = [x_1, x_2, ..., x_n], \end{split}$$

thus, we have a right neutral member, and by using commutative property, in the same way, we can verify that $[(n-1)x_1, x_1, x_1, ..., x_1]$ is a left neutral member. It can be easily proved that the neutral element is unique. Therefore $R_n(S)$ has a unique neutral member.

Lemma 2.4. Let S be a near vector space, then

$$-[x_1, x_2, \dots, x_n] := [(n-2)x_1 + x_2 + x_3 + \dots + x_n, x_1, x_1, \dots, x_1]$$

is the additive inverse of $[x_1, x_2, ..., x_n]$ in $R_n(S)$.

Proof. Let $[x_1, x_2, ..., x_n] \in R_n(S)$, then

$$[x_1, x_2, \dots, x_n] + [(n-2)x_1 + x_2 + x_3 + \dots + x_n, x_1, x_1, \dots, x_1]$$

= $[(n-1)x_1 + x_2 + x_3 + \dots + x_n , x_1 + x_2, x_1 + x_3, \dots, x_1 + x_n]$
= $[(n-1)x_1, x_1, x_1, \dots, x_1],$

thus, it is a right inverse for $[x_1, x_2, ..., x_n]$, and by using the commutative property, we can verify that $[(n-2)x_1 + x_2 + x_3 + \cdots + x_n, x_1, x_1, ..., x_1]$ is a left inverse as well. Now suppose $[w_1, w_2, ..., w_n] \in R_n(S)$ is another inverse for $[x_1, x_2, ..., x_n]$, so we have

$$[w_1, w_2, ..., w_n] + [x_1, x_2, ..., x_n] = [(n-1)x_1, x_1, x_1, ..., x_1],$$

or

$$[w_1 + x_1, w_2 + x_2, ..., w_n + x_n] = [(n-1)x_1, x_1, x_1, ..., x_1].$$

Thus

$$w_1 + x_1 + (n-1)x_1 = (n-1)x_1 + w_2 + x_2 + w_3 + x_3 + \dots + w_n + x_n,$$

hence

$$w_1 + (n-1)x_1 = (n-2)x_1 + x_2 + x_3 + \dots + x_n + w_2 + w_3 + \dots + w_n,$$

and finally

$$[w_1, w_2, \dots, w_n] = [(n-2)x_1 + x_2 + x_3 + \dots + x_n, x_1, x_1, \dots, x_1].$$

Therefore, each element has a unique inverse.

Definition 2.5. Let S be a near vector space. We define

$$j_n: S \longrightarrow R_n(S)$$

$$j_n(x) = [x + (n-1)z, z, z, ..., z] \quad \forall x, z \in S.$$
 (2.1)

Definition 2.6. If S is a near vector space and $d: S \times S \longrightarrow \mathbb{R}_+$ is a metric on S, then d is said to be an invariant metric on S, provided that

(1) addition and scalar multiplication by positive scalars are continuous operations in the topology defined by d,

(2) $d(\lambda x, \lambda y) = \lambda d(x, y)$ for all $\lambda \in \mathbb{R}_+$ and $x, y \in S$,

(3) d(x+z, y+z) = d(x, y) for all $x, y, z \in S$.

Definition 2.7. If S is a near vector space and d is an invariant metric on S, then we define

$$\|.\|_{dn}: R_n(S) \longrightarrow \mathbb{R}_+$$

$$\|[x_1, x_2, ..., x_n]\|_{dn} := d(x_1, x_2 + x_3 + \dots + x_n)$$
for all $[x_1, x_2, ..., x_n] \in R_n(S).$

$$(2.2)$$

Lemma 2.8. If S is a near vector space and d is an invariant metric on S, then $\|.\|_{dn}$ defined by (2.2) is a norm on $R_n(S)$.

Proof. Suppose that for $[x_1, x_2, ..., x_n]$ and $[y_1, y_2, ..., y_n] \in R_n(S)$ we have

$$[x_1, x_2, ..., x_n] = [y_1, y_2, ..., y_n]$$

Then $x_1 + y_2 + y_3 + \dots + y_n = y_1 + x_2 + x_3 + \dots + x_n$, and hence

$$\|[x_1, x_2, ..., x_n]\|_{dn} = d(x_1, x_2 + x_3 + \dots + x_n)$$

= $d(x_1 + y_1, y_1 + x_2 + x_3 + \dots + x_n)$
= $d(x_1 + y_1, x_1 + y_2 + y_3 + \dots + y_n)$
= $d(y_1, y_2 + y_3 + \dots + y_n)$
= $\|[y_1, y_2, ..., y_n]\|_{dn}$.

Thus the norm is well-defined. We also have

$$\begin{split} \| [x_1, x_2, \dots, x_n] + [y_1, y_2, \dots, y_n] \|_{dn} \\ &= \| [x_1 + y_1, x_2 + y_2, \dots, x_n + y_n] \|_{dn} \\ &= d(x_1 + y_1, \quad x_2 + y_2 + x_3 + y_3 + \dots + x_n + y_n) \\ &\leq d(x_1 + y_1, \quad x_1 + y_2 + y_3 + \dots + y_n) \\ &+ d(x_1 + y_2 + y_3 + \dots + y_n, \quad x_2 + y_2 + x_3 + y_3 + \dots + x_n + y_n) \\ &= d(y_1, \quad y_2 + y_3 + \dots + y_n) + d(x_1, \quad x_2 + x_3 + \dots + x_n) \\ &= \| [x_1, x_2, \dots, x_n] \|_{dn} + \| [y_1, y_2, \dots, y_n] \|_{dn}. \end{split}$$

Other properties of a norm are clearly satisfied.

Now we state and prove the main result of this section.

Theorem 2.9. Let S be a near vector space, then the following statements hold: (a) There exists a vector space $R_n(S)$ and a map $j_n : S \longrightarrow R_n(S)$ for $n = 2, 3, 4, \cdots$ such that (1) j_n is injective, (2) $j_n(\alpha x + \beta y) = \alpha j_n(x) + \beta j_n(y)$ for all $\alpha, \beta \in \mathbb{R}_+$ and $x, y \in S$, (3) $R_n(S) = j_n(S) - (j_n(S) + j_n(S) + \cdots + j_n(S))$ $:= \{j_n(x_1) - (j_n(x_2) + j_n(x_3) + \cdots + j_n(x_n)) : x_1, x_2, ..., x_n \in S\}.$

(b) If $d: S \times S \longrightarrow \mathbb{R}_+$ is an invariant metric, then there exists a norm $\|.\|_{dn}$ on $R_n(S)$ such that $d(x, y) = \|j_n(x) - j_n(y)\|_{dn}$ for all $x, y \in S$.

Proof. By Definition 2.2 and Lemmas 2.3 and 2.4 it is clear that $R_n(S)$ is a vector space with additive identity $[(n-1)x_1, x_1, x_1, ..., x_1]$ and additive inverse $-[x_1, x_2, ..., x_n] := [(n-2)x_1 + x_2 + x_3 + \cdots + x_n, x_1, x_1, ..., x_1].$

Note also that the map $j_n : S \longrightarrow R_n(S)$, defined by (2.1), has the desired properties. For (3) suppose that $x_1, x_2, ..., x_n \in S$ and $z \in S$,

$$j_n(x_1) - (j_n(x_2) + j_n(x_3) + \dots + j_n(x_n)) = [x_1 + (n-1)z, z, z, ..., z] - [x_2 + x_3 + \dots + x_n + (n-1)z, z, z, ..., z] = [x_1 + (n-1)z, z, z, ..., z] + [(n-2)(x_2 + x_3 + \dots + x_n + (n-1)z) + (n-1)z, x_2 + x_3 + \dots + x_n + (n-1)z, x_2 + x_3 + \dots + x_n + (n-1)z, ..., x_2 + x_3 + \dots + x_n + (n-1)z] = [x_1 + (n-1)z, x_2 + x_3 + \dots + x_n + z, z, z, ..., z] = [x_1 + (n-1)z, x_2 + z, x_3 + z, ..., x_n + z] = [x_1, x_2, ..., x_n].$$

Therefore

$$R_n(S) = j_n(S) - (j_n(S) + j_n(S) + \dots + j_n(S)).$$

To prove part (b), let d be an invariant metric on S, then $\|.\|_{dn}$, defined by (2.2) is a norm on $R_n(S)$. Moreover, by using Lemma 2.8 we prove that $\|.\|_{dn}$ has the desired property:

$$\begin{aligned} \|j_n(x) - j_n(y)\|_{dn} &= \|[x + (n-1)z, z, z, ..., z] - [y + (n-1)z, z, z, ..., z]\|_{dn} \\ &= \|[x + (n-1)z, z, z, ..., z] + [(n-2)(y + (n-1)z) \\ &+ z + \dots + z, y + (n-1)z, y + (n-1)z, ..., y + (n-1)z]\|_{dn} \\ &= \|[x + (n-2)y + n(n-1)z, y + nz, y + nz, ..., y + nz]\|_{dn} \\ &= d(x + (n-2)y + n(n-1)z, (n-1)y + (n-1)nz) \\ &= d(x + (n-2)y, (n-1)y) \\ &= d(x + (n-2)y, (n-2)y + y) \\ &= d(x, y). \end{aligned}$$

Example 2.10. Consider \mathbb{R}_+ with usual addition and scalar multiplication, we embed $(\mathbb{R}_+, +, .)$ into $R_n(\mathbb{R}_+)$. Define \sim_n on $\underbrace{\mathbb{R}_+ \times \mathbb{R}_+ \times \cdots \times \mathbb{R}_+}_{n-times}$ by

 $(x_1, x_2, \dots, x_n) \sim_n (y_1, y_2, \dots, y_n) \iff x_1 + y_2 + y_3 + \dots + y_n = y_1 + x_2 + x_3 + \dots + x_n.$

We consider $R_n(\mathbb{R}_+)$ as the equivalence classes of this equivalence relation and define addition and scalar multiplication on $R_n(\mathbb{R}_+)$ by

$$[x_1, x_2, ..., x_n] + [y_1, y_2, ..., y_n] = [x_1 + y_1, x_2 + y_2, ..., x_n + y_n],$$
$$\lambda \cdot [x_1, x_2, ..., x_n] := \begin{cases} [\lambda x_1, \lambda x_2, ..., \lambda x_n], & \lambda \in \mathbb{R}_+, \\ [(n-1)x_1, x_1, x_1, ..., x_1], & \lambda = 0, \\ -\lambda \big(- [x_1, x_2, ..., x_n] \big), & -\lambda \in \mathbb{R}_+. \end{cases}$$

In this case $(R_n(\mathbb{R}_+), +, .)$ is a vector space with additive identity $[(n-1)x_1, x_1, x_1, ..., x_1]$ and additive inverse $-[x_1, x_2, ..., x_n] := [(n-2)x_1 + x_2 + x_3 + \cdots + x_n, x_1, x_1, ..., x_1]$,

for any $(x_1, x_2, ..., x_n) \in \underbrace{\mathbb{R}_+ \times \mathbb{R}_+ \times \cdots \times \mathbb{R}_+}_{n-times}$. Now, we can embed \mathbb{R}_+ , for n =

 $2, 3, 4, \dots$, into $(R_n(\mathbb{R}_+), +, .)$ with the following embedding:

 $j_n(x) = [x + (n-1)z, z, z, ..., z]$,

for all $x, z \in \mathbb{R}_+$.

Note that d(x, y) = |x - y| is an invariant metric on \mathbb{R}_+ , and $\|.\|_{dn}$ which is defined as below, is a norm on $R_n(\mathbb{R}_+)$

$$||[x_1, x_2, ..., x_n]||_{dn} = |x_1 - (x_2 + x_3 + \dots + x_n)|.$$

This embedding, preserves distance, namely:

$$d(x, y) = |x - y| = d_n (j_n(x), j_n(y)) = ||j_n(x) - j_n(y)||_{dn},$$

where d_n is the induced metric from $||j_n(x) - j_n(y)||_{dn}$.

Theorem 2.11. Let V be a vector space and $\{\alpha_1, \alpha_2, ..., \alpha_k\}$ be a basis for V. Then

$$\{j_n(\alpha_1), j_n(\alpha_2), ..., j_n(\alpha_k)\}$$

is a basis for $R_n(V)$.

Proof. The proof follows easily from the following statements: (1) If V is a vector space, then $j_n(V)$ is onto, because, for any $[x_1, x_2, ..., x_n] \in R_n(V)$

$$j_n(x_1 - x_2 - x_3 - \dots - x_n) = [x_1 - x_2 - x_3 - \dots - x_n, 0, 0, \dots, 0]$$
$$= [x_1, x_2, \dots, x_n].$$

(2) The set $\{j_n(\alpha_1), j_n(\alpha_2), ..., j_n(\alpha_k)\}$ is linearly independent.

In the following theorem, we prove that each j_n preserves inner products and completeness.

Theorem 2.12. Suppose that V is an inner product space over F. Then the following assertions hold:

(a) There is an inner product on $R_n(V)$ such that j_n preserves the inner product. (b) V is a Hilbert space if and only if $R_n(V)$ is a Hilbert space.

(c) If V or $R_n(V)$ is finite dimensional, then j_n is continuous on V.

(d) If V is a Hilbert space, then $(x_k)_{k\in\mathbb{N}}$ is an orthonormal basis for V if and only if $(j_n(x_k))_{k\in\mathbb{N}}$ is an orthonormal basis for $R_n(V)$.

Proof. (a) Suppose that \langle , \rangle is an inner product on V; define \langle , \rangle_n for

$$[x_1, x_2, ..., x_n], [y_1, y_2, ..., y_n] \in R_n(V)$$

by:

 $\langle [x_1, x_2, ..., x_n], [y_1, y_2, ..., y_n] \rangle_n = \langle x_1 + y_2 + y_3 + \dots + y_n, y_1 + x_2 + x_3 + \dots , x_n \rangle.$ It is easy to verify that

$$\langle [x_1, x_2, ..., x_n], [y_1, y_2, ..., y_n] \rangle_n = \langle x_1 - x_2 - x_3 - \dots - x_n, y_1 - y_2 - y_3 - \dots - y_n \rangle$$

So that $\langle j_n(x), j_n(y) \rangle = \langle [x, 0, 0, ..., 0], [y, 0, 0, ..., 0] \rangle_n = \langle x, y \rangle$. The proof of (b) is easy and (c) follows from [7] Theorem 7B. (d) Suppose $[y_1, y_2, ..., y_n] \in R_n(V)$ is a vector that satisfies the condition

$$\langle [y_1, y_2, ..., y_n], j_n(x_k) \rangle = 0$$

for all $k \in \mathbb{N}$. Then

$$\langle y_1 - y_2 - y_3 - \dots - y_n, x_k \rangle = 0$$

so

$$y_1 - y_2 - y_3 - \dots - y_n = 0$$

or

 $y_1 = y_2 + y_3 + \dots + y_n.$

Therefore

 $[y_1, y_2, \dots, y_n] = 0_{R_n(V)}$

Similarly, if $x \in V$ is a vector that satisfies the condition $\langle x, x_k \rangle = 0$ for all $k \in \mathbb{N}$, then $\langle j_n(x), j_n(x_k) \rangle = 0$ and so $j_n(x) = 0_{R_n(V)}$, therefore x = 0.

3. Near vector lattices

This section is devoted to the study of partially ordered near vector spaces, as well as vector lattices.

Definition 3.1. A partially ordered set (P, \leq) is called a join-semilattice if the least upper bound (join) of x and y, denoted $x \lor y$, exists for all $x, y \in P$. Moreover, if it has the greatest lower bound (meet) of x and y; denoted $x \land y$, then P is called a lattice.

Definition 3.2. Let S be a near vector space. If (S, \leq) is a partially ordered set such that \leq is compatible with addition and multiplication by positive scalars; i.e., for all x, y,

$$x \le y \Longrightarrow \begin{cases} x + z \le y + z, \\ \alpha x \le \alpha y. \end{cases}$$

Then S is called an ordered near vector space. If S is an ordered near vector space and (S, \leq) is a join-semilattice for which

 $(x \lor y) + z = (x+z) \lor (y+z), \quad x, y, z \in S,$

then S is called a near vector lattice.

A Riesz space, a lattice-ordered vector space or a vector lattice is defined similarly.

Definition 3.3. Let $d : S \times S \longrightarrow \mathbb{R}_+$ be an invariant metric on a near vector lattice S. Then d is said to be a Riesz metric on S provided that

(i) $x \le y \le z \Longrightarrow d(x, y) \le d(x, z)$, and

(ii) $d(x, y) = d(2(x \lor y), x+y)$ for all $x, y, z \in S$.

Moreover if $\|\cdot\|: E \longrightarrow \mathbb{R}_+$ is a (semi) norm, then $\|\cdot\|: E \longrightarrow \mathbb{R}_+$ is called a Riesz (semi) norm, provided that $x, y \in E$ and $0 \le y \le x$, then $\|y\| \le \|x\|$, and $\||x\|\| = \|x\|$ for all $x \in E$.

Let (S, \leq) be an ordered near vector space, we define

 $[x_1, x_2, ..., x_n] \leq_n [y_1, y_2, ..., y_n] \iff x_1 + y_2 + y_3 + \dots + y_n \leq y_1 + x_2 + x_3 + \dots + x_n,$ for all $[x_1, x_2, ..., x_n], [y_1, y_2, ..., y_n] \in R_n(S).$

Lemma 3.4. Let (S, \leq) be an ordered near vector space, then $(R_n(S), \leq_n)$ is an ordered vector space.

Proof. For all $[x_1, x_2, ..., x_n], [y_1, y_2, ..., y_n], [z_1, z_2, ..., z_n] \in R_n(S)$ if $[x_1, x_2, ..., x_n] \leq_n [y_1, y_2, ..., y_n] \leq_n [z_1, z_2, ..., z_n]$ then we have

 $x_1 + y_2 + y_3 + \dots + y_n \le y_1 + x_2 + x_3 + \dots + x_n$

and

$$y_1 + z_2 + z_3 + \dots + z_n \le z_1 + y_2 + y_3 + \dots + y_n$$

which imply

 $x_1 + y_2 + y_3 + \dots + y_n + z_2 + z_3 + \dots + z_n \le y_1 + x_2 + x_3 + \dots + x_n + z_2 + z_3 + \dots + z_n$ and

 $y_1 + z_2 + z_3 + \dots + z_n + x_2 + x_3 + \dots + x_n \le z_1 + y_2 + y_3 + \dots + y_n + x_2 + x_3 + \dots + x_n.$ From these inequalities we get

 $x_1 + y_2 + y_3 + \dots + y_n + z_2 + z_3 + \dots + z_n \le z_1 + y_2 + y_3 + \dots + y_n + x_2 + x_3 + \dots + x_n.$ Thus

$$[x_1 + y_2 + y_3 + \dots + y_n, x_2 + y_2, x_3 + y_3, \dots, x_n + y_n] \leq_n [z_1, z_2, \dots, z_n]$$

and, $[x_1, x_2, ..., x_n] \leq_n [z_1, z_2, ..., z_n]$. Other properties of an ordered vector space easily follow.

If E is a vector lattice, then $E_+ := \{x \in E : x \ge 0\}$ denotes the positive cone of E. Furthermore, $x^+ := x \lor 0, x^- := (-x) \lor 0$ and $|x| := x \lor (-x)$ are the positive part, negative part and absolute value of $x \in E$, respectively.

Theorem 3.5. If S is a near vector lattice, then we have: (a) $R_n(S)$ is a vector lattice, with positive cone

$$R(S)_{+} := \{ [x_1, x_2, ..., x_n] : x_2 + x_3 + \dots + x_n \le x_1 \},\$$

in which the following equalities hold:

- (1) $[x_1, x_2, ..., x_n]^+ = [x_1 \lor (x_2 + x_3 + \dots + x_n), x_2, x_3, ..., x_n],$
- (2) $[x_1, x_2, ..., x_n]^- = [(x_1 \lor (x_2 + x_3 + \dots + x_n)) + (n-2)x_1, x_1, x_1, ..., x_1],$
- (3) $|[x_1, x_2, ..., x_n]| = [2(x_1 \lor (x_2 + x_3 + \dots + x_n)), x_1 + x_2, x_3, x_4, ..., x_n],$
- (4) $[x_1, x_2, ..., x_n] \lor [y_1, y_2, ..., y_n] = [(x_1 + y_2 + y_3 + \dots + y_n) \lor (y_1 + x_2 + x_3 + \dots + x_n), x_2 + y_2, x_3 + y_3, ..., x_n + y_n],$
- (5) $[x_1, x_2, ..., x_n] \wedge [y_1, y_2, ..., y_n] = [x_1 + x_3 + x_4 + \dots + x_n + y_1, (x_1 + y_2 + y_3 + \dots + y_n) \vee (y_1 + x_2 + x_3 + \dots + x_n), x_3, x_4, ..., x_n],$
- $(6) \quad [x_1, x_2, ..., x_n] \land -[x_1, x_2, ..., x_n] = -|[x_1, x_2, ..., x_n]|,$
- (7) $-[x_1, x_2, ..., x_n] \wedge [(n-1)x_1, x_1, x_1, ..., x_1] = -[x_1, x_2, ..., x_n] [x_1, x_2, ..., x_n]^-.$
- (b) The embedding $j_n: S \longrightarrow R_n(S)$ is join preserving.

(c) If $d: S \times S \longrightarrow \mathbb{R}_+$ is an invariant metric, then d is a Riesz metric on S if and only if $\|.\|_{dn}$ is a Riesz norm on the vector lattice $R_n(S)$.

Proof. To prove (1), we note that $[x_1 \lor (x_2 + x_3 + \dots + x_n), x_2, x_3, \dots, x_n]$ is an upper bound for $\{[x_1, x_2, \dots, x_n], [(n-1)x_1, x_1, x_1, \dots, x_1]\}$; since

i) $x_2 + x_3 + \dots + x_n \le x_1 \lor (x_2 + x_3 + \dots + x_n)$ we obtain $(n-1)x_1 + x_2 + x_3, \dots + x_n \le (x_1 \lor (x_2 + x_3 + \dots + x_n)) + (n-1)x_1$, so $[(n-1)x_1, x_1, x_1, \dots, x_1] \le_n [x_1 \lor (x_2 + x_3 + \dots + x_n), x_2, x_3, \dots, x_n].$

ii) $x_1 \le x_1 \lor (x_2 + x_3 + \dots + x_n)$, so $x_1 + x_2 + \dots + x_n \le (x_1 \lor (x_2 + x_3 + \dots + x_n)) + x_2 + x_3 + \dots + x_n$ therefore $[x_1, x_2, \dots, x_n] \le_n [x_1 \lor (x_2 + x_3 + \dots + x_n), x_2, x_3, \dots, x_n]$.

iii) If $[y_1, y_2, ..., y_n]$ is also an upper bound for

$$\{[x_1, x_2, ..., x_n], [(n-1)x_1, x_1, x_1, ..., x_1]\},\$$

then $[x_1, x_2, ..., x_n] \leq_n [y_1, y_2, ..., y_n]$, so

 $x_1 + y_2 + y_3 + \dots + y_n \le y_1 + x_2 + x_3 + \dots + x_n.$

Hence $[x_2 + x_3 + \dots + x_n, x_2, x_3, \dots, x_n] \leq_n [y_1, y_2, \dots, y_n]$, which implies that

$$x_2 + x_3 + \dots + x_n + y_2 + y_3 + \dots + y_n \le y_1 + x_2 + x_3 + \dots + x_n.$$

Therefore, from these inequalities we conclude that $(x_1+y_2+y_3+\dots+y_n)\vee(x_2+x_3+\dots+x_n+y_2+y_3+\dots+y_n) \leq y_1+x_2+x_3+\dots+x_n$, so $(x_1\vee(x_2+x_3+\dots+x_n))+(y_2+y_3+\dots+y_n) \leq y_1+x_2+x_3+\dots+x_n$, hence $[x_1\vee(x_2+x_3+\dots+x_n),x_2,x_3,\dots,x_n] \leq_n [y_1,y_2,\dots,y_n]$, therefore $[x_1,x_2,\dots,x_n]^+ = [x_1\vee x_2+x_3+\dots+x_n,x_2,x_3,\dots,x_n].$

To prove (2), note that

$$[x_1, x_2, ..., x_n]^- = [(n-2)x_1 + x_2 + x_3 + \dots + x_n, x_1, x_1, ..., x_1]^+$$

= $[((n-2)x_1 + x_2 + x_3 + \dots + x_n) \lor (n-1)x_1, x_1, x_1, ..., x_1]$
= $[((n-2)x_1 + x_2 + \dots + x_n) \lor ((n-2) + x_1) + x_1, x_1, ..., x_1]$
= $[(x_1 \lor (x_2 + x_3 + \dots + x_n)) + (n-2)x_1, x_1, x_1, ..., x_1].$

This also proves that $R_n(S)$ is a vector lattice. It is clear that $R_n(S)$ is a vector lattice with positive cone $R(S)_+ := \{[x_1, x_2, ..., x_n] : x_2 + x_3 + \cdots + x_n \leq x_1\}$. For (3), if E is a vector lattice, we make use of the following well-known equality

(see [4], p. 17) in the sequel:

 $2(x \lor y) - (x+y) = |x-y|$, so $2(x \lor 0) - (x+0) = |x-0|$ for all $x, y \in E$. Therefore $|x| = 2x^+ - x$ for all $x \in E$.

Since, $(x - y)^+ = x \lor y - y$ for all $x, y \in E$ (see [5]) we conclude that $x \lor y = (x - y)^+ + y$. So (4) is proved.

Parts (5) and (6) can be proved by using the fact that, $x \vee y + x \wedge y = x + y$ for all $x, y \in E$ (see [5]) because $x \wedge y = x + y - (x \vee y)$ so

$$[x_1, x_2, ..., x_n] \land -[x_1, x_2, ..., x_n] = -|[x_1, x_2, ..., x_n]|.$$

Now (4) and (5) imply that $R_n(S)$ is a vector lattice. It is clear that $R_n(S)$ is a vector lattice with positive cone $R(S)_+ := \{ [x_1, x_2, ..., x_n] : x_2 + x_3 + \cdots + x_n \leq x_1 \}.$

To prove (7) we use the fact that $x \lor y + x \land y = x + y$ for all $x, y \in E$ (see [5]), so if x := -x and y := 0 then we have

$$-[x_1, x_2, ..., x_n] \wedge [(n-1)x_1, x_1, x_1, ..., x_1] = -[x_1, x_2, ..., x_n] - [x_1, x_2, ..., x_n]^-.$$

As for part (b), let $x, y \in S$. Then for any $z \in S$:

$$\begin{aligned} j_n(x) \lor j_n(y) &= [x + (n-1)z, z, z, ..., z] \lor [y + (n-1)z, z, z, ..., z] \\ &= [(x + (2(n-1))z) \lor (y + 2(n-1)z), 2z, 2z, ..., 2z] \\ &= [(x \lor y) + (2(n-1))z, 2z, 2z, ..., 2z] \\ &= [(x \lor y) + (n-1)z, z, z, ..., z] \\ &= j_n(x \lor y). \end{aligned}$$

To prove (c), suppose that d is a Riesz metric on S and $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in S$ and

$$[y_2 + y_3 + \dots + y_n, y_2, y_3, \dots, y_n] \leq_n [x_1, x_2, \dots, x_n] \leq_n [y_1, y_2, \dots, y_n],$$

then $x_1 + y_2 + y_3 + \dots + y_n \le y_1 + x_2 + x_3 + \dots + x_n$ and,

$$x_2 + x_3 + \dots + x_n + y_2 + y_3 + \dots + y_n \le x_1 + y_2 + y_3 + \dots + y_n$$

It now follows that

 $\begin{aligned} &x_2 + x_3 + \dots + x_n + y_2 + y_3 + \dots + y_n \leq x_1 + y_2 + y_3 + \dots + y_n \leq y_1 + x_2 + x_3 + \dots + x_n, \\ &\text{so} \\ &d(x_2 + x_3 + \dots + x_n + y_2 + y_3 + \dots + y_n, \ x_1 + y_2 + y_3 + \dots + y_n) \\ &\leq d(x_2 + x_3 + \dots + x_n + y_2 + y_3 + \dots + y_n, \ y_1 + x_2 + x_3 + \dots + x_n), \text{ hence} \\ &d(x_2 + x_3 + \dots + x_n, \ x_1) \leq d(y_2 + y_3 + \dots + y_n, \ y_1), \text{ thus} \\ &d(x_1, \ x_2 + x_3 + \dots + x_n) \leq d(y_1, \ y_2 + y_3 + \dots + y_n), \text{ and finally} \\ &\|[x_1, x_2, \dots, x_n]\|_{dn} \leq_n \|[y_1, y_2, \dots, y_n]\|_{dn}. \end{aligned}$

And from the fact that

$$|[x_1, x_2, ..., x_n]| = [2(x_1 \lor (x_2 + x_3 + \dots + x_n)), x_1 + x_2, x_3, x_4, ..., x_n],$$

we have

$$\begin{aligned} \|[x_1, x_2, ..., x_n]\|_{dn} &= d(x_1, x_2 + x_3 + \dots + x_n) \\ &= d(2(x_1 \lor (x_2 + x_3 + \dots + x_n)), x_1 + x_2 + \dots + x_n) \\ &= \|[2(x_1 \lor (x_2 + \dots + x_n)), x_1 + x_2, x_3, ..., x_n]\|_{dn} \\ &= \||[x_1, x_2, ..., x_n]|\|_{dn}. \end{aligned}$$

Therefore $\|.\|_{dn}$ is a Riesz norm on $R_n(S)$. Conversely, if $\|.\|_{dn}$ is a Riesz norm on $R_n(S)$, $x, y, z \in S$ and $x \leq y \leq z$, then for all $x_1, x_2, ..., x_{2n-6} \in S$ if $y \leq z$, then

 $x + 2y + z + x_1 + x_2 + \dots + x_{2n-6} \le x + y + 2z + x_1 + x_2 + \dots + x_{2n-6}.$

Hence,

$$[y + x_{n-3} + x_{n-2} + \dots + x_{2n-6}, x, x_{n-3}, x_{n-2}, \dots, x_{2n-6}]$$

$$\leq_n [y + 2z + x_1 + x_2 + \dots + x_{n-4}, x, y, z, x_1, x_2, \dots, x_{n-4}],$$

 \mathbf{SO}

$$\| [y + x_{n-3} + x_{n-2} + \dots + x_{2n-6}, x, x_{n-3}, x_{n-2}, \dots, x_{2n-6}] \|_{dn}$$

$$\leq_n \| [y + 2z + x_1 + x_2 + \dots + x_{n-4}, x, y, z, x_1, x_2, \dots, x_{n-4}] \|_{dn},$$

and

$$d(y + x_{n-3} + x_{n-2} + \dots + x_{2n-6}, x + x_{n-3} + x_{n-2} + \dots + x_{2n-6}) \le d(y + x_{n-3} + x_{n-2} + \dots + x_{2n-6}) \le d(y + x_{n-3} + x_{n-2} + \dots + x_{2n-6}) \le d(y + x_{n-3} + x_{n-3} + x_{n-2} + \dots + x_{2n-6}) \le d(y + x_{n-3} + x_$$

$$d(y+2z+x_1+x_2+\cdots+x_{n-4},\ x+y+z+x_1+x_2+\cdots+x_{n-4}).$$

Therefore $d(x, y) \leq d(x, z)$. Moreover,

$$d(x_1, x_2 + x_3 + \dots + x_n) = \| [x_1, x_2, \dots, x_n] \|_{dn}$$

= $\| | [x_1, x_2, \dots, x_n] | \|_{dn}$
= $\| [2(x_1 \lor (x_2 + \dots + x_n)), x_1 + x_2, x_3, \dots, x_n] \|_{dn}$
= $d(2(x_1 \lor (x_2 + \dots + x_n)), x_1 + \dots + x_n)$

which shows that d is a Riesz metric on S.

By the same argument as in the previous theorem we obtain the following theorem.

Theorem 3.6. If S is a vector lattice, then the followings hold:

- (1) $[x_1, x_2, ..., x_n]^+ = [x_1 \lor (x_2 + x_3 + \dots + x_n), x_2 + x_3 + \dots + x_n, 0, 0, ..., 0],$
- (2) $[x_1, x_2, ..., x_n]^- = [(x_1 \lor (x_2 + x_3 + \dots + x_n)), x_1, 0, 0, ..., 0],$
- (3) $|[x_1, x_2, ..., x_n]| = [2(x_1 \lor (x_2 + x_3 + \dots + x_n)), x_1 + x_2 + \dots + x_n, 0, 0, ..., 0],$
- (4) $[x_1, x_2, \dots, x_n] \vee [y_1, y_2, \dots, y_n] = [(x_1 + y_2 + y_3 + \dots + y_n) \\ \vee (y_1 + x_2 + x_3 + \dots + x_n), x_2 + x_3 + \dots + x_n, y_2 + y_3 + \dots + y_n, 0, 0, \dots, 0],$
- (5) $[x_1, x_2, ..., x_n] \wedge [y_1, y_2, ..., y_n] = [x_1 + y_1, (x_1 + y_2 + y_3 + \dots + y_n) \\ \vee (y_1 + x_2 + x_3 + \dots + x_n), 0, 0, ..., 0].$

Example 3.7. As in the previous example, consider \mathbb{R}_+ with the usual ordering and the join \lor given by $x \lor y = \max\{x, y\}$. Now we have a vector lattice. Moreover, $R_n(\mathbb{R}_+)$ for each n = 2, 3, 4, ... is a vector lattice and embedding j_n which is join preserving:

 $[x_1, x_2, ..., x_n] \le_n [y_1, y_2, ..., y_n] \Longleftrightarrow x_1 + y_2 + y_3 + \dots + y_n \le y_1 + x_2 + x_3 + \dots + x_n,$

 $[x_1, x_2, \dots, x_n] \lor [y_1, y_2, \dots, y_n] = [max\{(x_1 + y_2 + y_3 + \dots + y_n), (y_1 + x_2 + x_3 + \dots + x_n)\}, x_2 + y_2, x_3 + y_3, \dots, x_n + y_n],$ $[x_1, x_2, \dots, x_n] \land [y_1, y_2, \dots, y_n] = [x_1 + x_3 + x_4 + \dots + x_n + y_1, max\{(x_1 + y_2 + y_3 + \dots + y_n) \lor (y_1 + x_2 + x_3 + \dots + x_n)\}, x_3, x_4, \dots, x_n].$

Note that the metric defined on \mathbb{R}_+ is a Riesz metric and the norm on $R_n(\mathbb{R}_+)$ for each n = 2, 3, 4, ..., is a Riesz norm.

Theorem 3.8. Let S_1 and S_2 be near vector spaces and $T: S_1 \longrightarrow S_2$ be addition preserving. Define $\hat{T}: R_n(S_1) \longrightarrow R_n(S_2)$ by

$$T([x_1, x_2, ..., x_n]) = [T(x_1), T(x_2), ..., T(x_n)]$$
 for all $x_1, x_2, ..., x_n \in S_1$.

(a) If T is \mathbb{R}_+ -linear, then \hat{T} is linear.

(b) If d_1 is an invariant metric on S_1 , d_2 is an invariant metric on S_2 and T is non-expansive, then $\|\hat{T}\| \leq 1$.

Proof. For (a) we only need to prove if $\alpha \in \mathbb{R}_+$, then

$$\hat{T}(\alpha[x_1, x_2, ..., x_n]) = \hat{T}(-\alpha[(n-2)x_1 + x_2 + x_3 + \dots + x_n, x_1, x_1, ..., x_1])$$

= $\hat{T}([(-\alpha(n-2))x_1 - \alpha x_2 - \alpha x_3 - \dots - \alpha x_n, -\alpha x_1, -\alpha x_1, ..., -\alpha x_1])$
= $[(-\alpha(n-2))(T(x_1)) - \alpha(T(x_2) + T(x_3) + \dots + T(x_n)), -\alpha T(x_1), -\alpha T(x_2), ..., -\alpha T(x_n)] = \alpha[T(x_1), T(x_2), ..., T(x_n)]$
= $\alpha \hat{T}([x_1, x_2, ..., x_n]).$

For (b) first we define:

$$\|\hat{T}\| := \sup\{\|\hat{T}[x_1, x_2, ..., x_n]\|_{d_2} : \|[x_1, x_2, ..., x_n]\|_{d_1} \le 1\}$$

where

$$\begin{aligned} \|\hat{T}[x_1, x_2, ..., x_n]\|_{d_2} &= d_2 \big(T(x_1), T(x_2) + T(x_3) + \dots + T(x_n) \big) \\ &\leq d_1(x_1, x_2 + x_3 + \dots + x_n) \\ &= \| [x_1, x_2, ..., x_n] \|_{d_1} \\ &< 1. \end{aligned}$$

Since T is non-expansive. So

$$\|T\| \le 1$$

Let S_2 be a near vector lattice and S_1 a nonempty subset of S_2 . Then S_1 is said to be a sub-near vector lattice of S_2 provided that S_1 is closed under the operations addition, multiplication by positive scalars and join. The notion of sub-near vector space is defined similarly.

Corollary 3.9. If S_1 is a sub-near vector space (lattice) of a near vector space (lattice) S_2 , then $R_n(S_1)$ is a vector subspace (sublattice) of $R_n(S_2)$.

Proof. Since S_1 is closed under addition and multiplication operations, it is clear that $R_n(S_1)$ is closed under this operations, so that $R_n(S_1)$ is a vector sublattice of $R_n(S_2)$.

4. FILTRATION, MARTINGALES AND METRIC SPACES

In this section we study the embedding theorem on filtration and Martingales.

Definition 4.1. Let (P,d) be a metric space and f be a function on P. Then f is called a non-expansive idempotent if for each x and y in P, $d(f(x), f(y)) \leq d(x, y)$ and f(f(x)) = f(x).

Definition 4.2. Let (X, d) be a metric space and f be a linear function on X. Then f is called a contractive linear projection if for each x and y in X, d(f(x), f(y)) < d(x, y) and f(f(x)) = f(x).

Definition 4.3. Let X be a Banach space. If $T_i : X \longrightarrow X$ is a contractive linear projection and $T_i = T_i T_k = T_k T_i$ for each $i \leq k$ where $i, k \in \mathbb{N}$, then the sequence of projections (T_i) is called a BS-filtration on X. If (T_i) is a BS-filtration on X, the pair (f_i, T_i) is called a martingale in X if $T_i f_k = f_i$ for each $i \leq k$, and $(f_i) \subseteq X$.

This motivates the following definition.

Definition 4.4. Let (P, d) be a complete metric space. A Sequence (\mathcal{E}_i) of nonexpansive idempotents on P is called an MS-filtration on P if we have

$$\mathcal{E}_i \mathcal{E}_k = \mathcal{E}_k \mathcal{E}_i = \mathcal{E}_i \quad \forall i \leq k.$$

Moreover if there exists $(f_i) \subseteq P$ such that $f_i = \mathcal{E}_i f_k$ for all $i \leq k$, then (f_i, \mathcal{E}_i) is called a martingale in P.

It is obvious that $\mathcal{R}(\mathcal{E}_i) \subseteq \mathcal{R}(\mathcal{E}_{i+1})$ where (\mathcal{E}_i) is an MS-filtration on P and $\mathcal{R}(\mathcal{E}_i)$ denotes the range of \mathcal{E}_i .

Definition 4.5. In Definition 4.4 if we replace (P, d) by (S, d) where S is a complete near vector space with respect to the invariant metric d, each (\mathcal{E}_i) is \mathbb{R}_+ -linear, and each $\mathcal{R}(\mathcal{E}_i)$ is a (closed) near vector subspace of S, then this set is denoted by (S, d, \mathcal{E}_i) and is called a complete MS-filtration space.

Lemma 4.6. Let (S, d, \mathcal{E}_i) be a complete MS-filtration space, then $(\tilde{\mathcal{E}}_{in})$ is a BS-filtration on $\tilde{R}_n(S)$, where n = 2, 3, 4, ... and each $(\tilde{\mathcal{E}}_{in})$ is the continuous extension of $\hat{\mathcal{E}}_{in}$ defined by

$$\hat{\mathcal{E}}_{in}([x_1, x_2, \dots, x_n]) = [\mathcal{E}_i x_1, \mathcal{E}_i x_2, \dots, \mathcal{E}_i x_n]$$

Moreover, $\overline{\bigcup_{i=1}^{\infty} \mathcal{R}(\tilde{\mathcal{E}}_{in}|_{j_n(S)})} = j_n(\overline{\bigcup_{i=1}^{\infty} \mathcal{R}(\mathcal{E}_i)})$; the former closure is the $\|.\|_{dn}$ -closure in $\tilde{R}_n(S)$ and the latter is the d-closure in S.

Proof. Since \mathcal{E}_i is \mathbb{R}_+ -linear and non-expansive, it follows from Theorem 3.8 that $\hat{\mathcal{E}}_{in}$ is linear and $\|\hat{\mathcal{E}}_{in}\| \leq 1$. As $\mathcal{E}_i \mathcal{E}_k = \mathcal{E}_k \mathcal{E}_i = \mathcal{E}_i$ for all $i \leq k$, then $\hat{\mathcal{E}}_{in} \hat{\mathcal{E}}_{kn} = \hat{\mathcal{E}}_{kn} \hat{\mathcal{E}}_{in} = \hat{\mathcal{E}}_{in}$ for all $i \leq k$.

As $(\tilde{\mathcal{E}}_{in})$ is the continuous extension to $\tilde{R}_n(S)$ of $\hat{\mathcal{E}}_{in}$, it follows that $(\tilde{\mathcal{E}}_{in})$ is a linear contractive projection with $\|\tilde{\mathcal{E}}_i\| \leq 1$ and $\tilde{\mathcal{E}}_i \tilde{\mathcal{E}}_k = \tilde{\mathcal{E}}_k \tilde{\mathcal{E}}_i = \tilde{\mathcal{E}}_i$ for all $i \leq k$. Consequently, $(\tilde{\mathcal{E}}_{in})$ is a BS-filtration on $\tilde{R}_n(S)$.

It remains to show that $\overline{\bigcup_{i=1}^{\infty} \mathcal{R}(\tilde{\mathcal{E}}_{in}|_{j_n(S)})} = j_n(\overline{\bigcup_{i=1}^{\infty} \mathcal{R}(\mathcal{E}_i)})$. We first note that $\mathcal{R}(\tilde{\mathcal{E}}_{in}|_{j_n(S)}) = j_n(\mathcal{R}(\mathcal{E}_i))$ for all $i \in \mathbb{N}$, because

Let $[k + (n-1)w, w, w, ..., w] \in \mathcal{R}(\tilde{\mathcal{E}}_{in}|_{j_n(S)})$. Then, there are $x, z \in S$ such that $\tilde{\mathcal{E}}_{in}(z) = \hat{\mathcal{E}}_{in}(z) = w$ and $\tilde{\mathcal{E}}_{in}(x) = \hat{\mathcal{E}}_{in}(x) = k$. Thus

$$\begin{aligned} [k + (n-1)w, w, w, ..., w] &= \hat{\mathcal{E}}_{in} ([x + (n-1)z, z, z, ..., z]) \\ &= \hat{\mathcal{E}}_{in} ([x + (n-1)z, z, z, ..., z]) \\ &= [\mathcal{E}_i(x) + (n-1)\mathcal{E}_i(z), \mathcal{E}_i(z), \mathcal{E}_i(z), ..., \mathcal{E}_i(z)] \\ &= j_n (\mathcal{E}_i(x)) \in j_n (\mathcal{R}(\mathcal{E}_i)). \end{aligned}$$

Let $[k + (n-1)w, w, w, ..., w] \in j_n(\mathcal{R}(\mathcal{E}_i))$. Then, there are $x, z \in S$ such that $\tilde{\mathcal{E}}_{in}(z) = \hat{\mathcal{E}}_{in}(z) = w$ and $\tilde{\mathcal{E}}_{in}(x) = \hat{\mathcal{E}}_{in}(x) = k$. Thus

$$\begin{aligned} [k + (n-1)w, w, w, ..., w] &= [\mathcal{E}_i(x) + (n-1)\mathcal{E}_i(z), \mathcal{E}_i(z), \mathcal{E}_i(z), ..., \mathcal{E}_i(z)] \\ &= [\mathcal{E}_i(x + (n-1)z), \mathcal{E}_i(z), \mathcal{E}_i(z), ..., \mathcal{E}_i(z)] \\ &= \hat{\mathcal{E}}_{in}([x + (n-1)z, z, z, ..., z]) \\ &= \tilde{\mathcal{E}}_{in}([x + (n-1)z, z, z, ..., z]) \in \mathcal{R}(\tilde{\mathcal{E}}_{in}| j_n(S)). \end{aligned}$$

Consequently, $\overline{\bigcup_{i=1}^{\infty} \mathcal{R}(\tilde{\mathcal{E}}_{in}|_{j_n(S)})} = \overline{\bigcup_{i=1}^{\infty} j_n(\mathcal{R}(\mathcal{E}_i))}$. By the completeness of S and the continuity of j_n , it is readily verified that $\overline{\bigcup_{i=1}^{\infty} j_n(\mathcal{R}(\mathcal{E}_i))} = j_n(\overline{\bigcup_{i=1}^{\infty} \mathcal{R}(\mathcal{E}_i)})$. Thus $\overline{\bigcup_{i=1}^{\infty} \mathcal{R}(\tilde{\mathcal{E}}_{in}|j_n(S))} = j_n(\overline{\bigcup_{i=1}^{\infty} \mathcal{R}(\mathcal{E}_i)})$.

Lemma 4.7. Let (S, d, \mathcal{E}_i) be a complete MS-filtration space, then (f_i, \mathcal{E}_i) is a martingale in S (and (f_i) is d-convergent) if and only if $(j_n(f_i), \tilde{\mathcal{E}}_{in})$ is a martingale in $\tilde{R}_n(S)$ (and $j_n((f_i))$ is $\|.\|_d$ -convergent).

Proof. Recall that $j_n(x) = [x + (n-1)z, z, z, ..., z]$ for all $x \in S$ and for any $z \in S$. If (f_i, \mathcal{E}_i) is a martingale in S, then $(j_n(f_i), \tilde{\mathcal{E}}_{in})$ is a martingale in $\tilde{R}_n(S)$, because, for $i \leq k$,

$$\begin{split} \tilde{\mathcal{E}}_{in} j_n(f_k) &= \hat{\mathcal{E}}_{in} [f_k + (n-1)z, z, z, ..., z] \\ &= [\mathcal{E}_i f_k + (n-1)\mathcal{E}_i z, \mathcal{E}_i z, \mathcal{E}_i z, ..., \mathcal{E}_i z] \\ &= [f_i + (n-1)z, z, z, ..., z] \\ &= j_n(f_i). \end{split}$$

Conversely, suppose $(j_n(f_i), \tilde{\mathcal{E}}_{in})$ is a martingale in $\tilde{R}_n(S)$. Then, for $i \leq k$ we have $\tilde{\mathcal{E}}_k(j_n(f_i)) = j_n(f_i)$, so $[\mathcal{E}_k f_i + (n-1)\mathcal{E}_k z, \mathcal{E}_k z, \mathcal{E}_k z, \dots, \mathcal{E}_k z] = [f_i + (n-1)z, z, z, \dots, z]$, and hence $\mathcal{E}_k f_i + (n-1)\mathcal{E}_k z + (n-1)z = f_i + (n-1)z + (n-1)\mathcal{E}_k z$. Therefore $\mathcal{E}_k f_i = f_i$, from which we conclude that $\mathcal{E}_i f_k = f_i$; this in turn means that $(j_n(f_i), \tilde{\mathcal{E}}_{in})$ is a martingale in S. It now follows that the martingale (f_i, \mathcal{E}_i) is d-convergent if and only if the martingale $(j_n(f_i), \tilde{\mathcal{E}}_{in})$ is $\|.\|_{dn}$ -convergent in $R_n(S)$, because

$$\begin{split} \lim_{i \to \infty} \|j_n(f_i) - j_n(f)\|_{dn} &= \lim_{i \to \infty} \|[f_i + (n-1)z, z, ..., z] - [f + (n-1)z, z, ..., z]\|_{dn} \\ &= \lim_{i \to \infty} \|[f_i + (n-1)z, z, z, ..., z] \\ &+ [(n-2)f + (n-1)(n-1)z, f + (n-1)z, ..., f + (n-1)z]\|_{dn} \\ &= \lim_{i \to \infty} \|[f_i + (n-2)f, f, ..., f]\|_{dn} \\ &= \lim_{i \to \infty} d(f_i + (n-2)f, (n-1)f) \\ &= \lim_{i \to \infty} d(f_i, f). \end{split}$$

This completes the proof.

Definition 4.8. Let (S, d, \mathcal{E}_i) be a complete MS-filtration space. Denote by $\mathcal{M}_d(S, \mathcal{E}_i)$ the set of all martingales (f_i, \mathcal{E}_i) in S for which (f_i) is d-convergent. Define $d_{\mathcal{M}}$ by

$$d_{\mathcal{M}}((f_i, \mathcal{E}_i), (g_i, \mathcal{E}_i)) = \sup_{i \in \mathbb{N}} d(f_i, g_i)$$

for all $(f_i, \mathcal{E}_i), (g_i, \mathcal{E}_i) \in \mathcal{M}_d(S, \mathcal{E}_i)$. Define addition and positive scalar multiplication on $\mathcal{M}_d(S, \mathcal{E}_i)$, by

$$(f_i, \mathcal{E}_i) + (g_i, \mathcal{E}_i) = (f_i + g_i, \mathcal{E}_i), \quad \lambda(f_i, \mathcal{E}_i) = (\lambda f_i, \mathcal{E}_i)$$

for all $(f_i, \mathcal{E}_i), (g_i, \mathcal{E}_i) \in \mathcal{M}_d(S, \mathcal{E}_i)$ and $\lambda \in \mathbb{R}_+$.

It is readily verified that $(\mathcal{M}_d(S, \mathcal{E}_i), d_{\mathcal{M}})$ is a metric space and $\mathcal{M}_d(S, \mathcal{E}_i)$ is a near vector space. We use Rådström's embedding result on the complete MSfiltration spaces (S, d, \mathcal{E}_i) and $\mathcal{M}_d(S, \mathcal{E}_i)$. The first problem to deal with is the fact that $R_n(S)$ need not be norm complete. So, instead of $R_n(S)$ we consider its norm completion $\tilde{R}_n(S)$.

Definition 4.9. Let X be a Banach space and $(T_i)_{i\in\mathbb{N}}$ be a BS-filtration on X. Denote by $\mathcal{M}_{nc}(X,T_i)$ the set of martingales (f_i,T_i) in X for which (f_i) is norm convergent. The addition and scalar multiplication are defined by

$$(f_i, T_i) + (g_i, T_i) = (f_i + g_i, T_i), \qquad \lambda(f_i, T_i) = (\lambda f_i, T_i)$$

for each $(f_i, T_i), (g_i, T_i) \in \mathcal{M}_{nc}(X, T_i)$ and $\lambda \in \mathbb{R}$. Moreover, the norm in the vector space $\mathcal{M}_{nc}(X, T_i)$ is defined by

$$\|(f_i, T_i)\|_{\mathcal{M}} = \sup_{i \in \mathbb{N}} \|f_i\|.$$

Note that $\|.\|_{\mathcal{M}}$ is a norm on $\mathcal{M}_{nc}(X, T_i)$ which makes $\mathcal{M}_{nc}(X, T_i)$ into a Banach space (see [3]). The following result shows how $\mathcal{M}_d(S, \mathcal{E}_i)$ and $\mathcal{M}_{nc}(X, T_i)$ are related via the Rådström completion of S.

Theorem 4.10. Let (S, d, \mathcal{E}_i) be a complete MS-filtration space and $(f_i, e_i) \in M_d(S, E_i)$. Then the map $K : \mathcal{M}_d(S, \mathcal{E}_i) \longrightarrow \mathcal{M}_{nc}(\tilde{R}_n(S), \tilde{\mathcal{E}}_{in})$ defined by

$$K((f_i, \mathcal{E}_i)) = (j_n(f_i), \tilde{\mathcal{E}}_{in})$$

is an \mathbb{R}_+ -linear isometry (into) and $\mathcal{M}_d(S, \mathcal{E}_i)$ is complete.

Proof. It is clear that K is injective and \mathbb{R}_+ -linear. We verify that K is an isometry. Let $(f_i, \mathcal{E}_i), (g_i, \mathcal{E}_i) \in \mathcal{M}_d(S, \mathcal{E}_i)$. Then

$$\begin{aligned} d_{\mathcal{M}}\big((f_{i},\mathcal{E}_{i}),(g_{i},\mathcal{E}_{i})\big) &= \sup_{i\in N} d(f_{i},g_{i}) \\ &= \sup_{i\in N} d\big(f_{i} + (n-2)g_{i} + n(n-1)z, (n-1)g_{i} + ((n-1)n)z\big) \\ &= \sup_{i\in N} \|[f_{i} + (n-2)g_{i} + n(n-1)z,g_{i} + nz,...,g_{i} + nz]\|_{dn} \\ &= \sup_{i\in N} \|[f_{i} + (n-1)z,z,...,z] + [(n-2)g_{i} \\ &+ (n-1)(n-1)z,g_{i} + (n-1)z,...,g_{i} + (n-1)z]\|_{dn} \\ &= \sup_{i\in N} \|[f_{i} + (n-1)z,z,...,z] - [g_{i} + (n-1)z,z,...,z]\|_{dn} \\ &= \|\big(([f_{i} + (n-1)z,z,...,z] - [g_{i} + (n-1)z,z,...,z]),\tilde{\mathcal{E}}_{in}\big)\|_{\mathcal{M}} \\ &= \|\big((j_{n}(f_{i}),\tilde{\mathcal{E}}_{in}) - (j_{n}(g_{i}),\tilde{\mathcal{E}}_{in})\|_{\mathcal{M}}. \end{aligned}$$

Since $\mathcal{M}_{nc}(\tilde{R}_n(S), \tilde{\mathcal{E}}_{in})$ is complete and $j_n(S)$ is closed in $\tilde{R}_n(S)$, it follows that $\mathcal{M}_d(S, \mathcal{E}_i)$ is complete.

References

- 1. S. Bochner, Partial ordering in the theory of martingales, Ann. of Math. 62(1955), 162-169.
- W.W.L Chen, Linear functional analysis, Macquarie University, Balaclava, Australia, (2008).
 S.F. Cullender, C.C.A. Labuschagne, A description of norm-convergent martingales on vector
- valued L^p-spaces, J. Math. Anal. Appl. 23(2006), 119–130.
 C.C.A. Labuschagne, A Banach lattice approach to convergent integrably bounded set-valued martingales and their positive parts, J. Math. Anal. Appl. 342(2008), 780–797.
- C.C.A. Labuschagne, A.L. Pinchuck, C.J. van Alten, A vector lattice version of Rådström's embedding theorem, Quaest. Math. 30(2007), 285–308.
- H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3(1952), 165–169.
- 7. A.C. Zaanen, Introduction to Operator Theory in Riesz Space, Springer-Verlag, Berlin, (1997).

A. Abkar

Department of Mathemathics, Imam Khomeini International University, Qazvin 34149, Iran

E-mail address: abkar@sci.ikiu.ac.ir

M. Rastgoo

Department of Mathemathics, Imam Khomeini International University, Qazvin 34149, Iran

E-mail address: m.rastgoo89@gmail.com

M.B. KAZEMI

DEPARTMENT OF MATHEMATHICS, UNIVERSITY OF ZANJAN, P. O. BOX 45195-313, ZANJAN, IRAN *E-mail address:* mbkazemi@znu.ac.ir

A. Azizi

Department of Mathemathics, Imam Khomeini International University, Qazvin 34149, Iran

E-mail address: azizi@sci.ikiu.ac.ir