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EMBEDDINGS OF NEAR VECTOR SPACES AND

APPLICATIONS IN PRE-HILBERT SPACES, FILTRATIONS,

MARTINGALES, AND METRIC SPACES

A. ABKAR, M. RASTGOO, M.B. KAZEMI, A. AZIZI

Abstract. In this paper we introduce a family of embeddings jn, n ≥ 2,
of a near vector space into a vector space. We give some examples for such

embeddings and show that jn’s invariant metric on a near vector space S

defines an isometry on the vector space Rn(S), and if S is a near vector lattice
then jn’s are join preserving on the vector lattices Rn(S). Finally, we will find

applications of this embeddings in Hilbert spaces, filtrations, martingales, and
metric spaces.

1. Introduction

Initially R̊adström in [6] proved that any near vector space S can be embedded
into a vector space R(S) via an embedding j, moreover, if there exists an invariant
metric on S, then R(S) admits a norm such that j is distance preserving. Later
on, S. Bochner in [1] proved that any martingale (fi, Ei)i∈N on a near vector space
S induces a martingale

(
j(fi), Ei

)
i∈N on the vector space R(S).

Recently, C.C.A. Labuschagne, A.L. Pinchuck and C.J. van Alten in [5] entered
topics related to lattices in this discussion and showed that this embedding is join
preserving and embeds a near vector lattice into a vector lattice. They also proved
that if we have a Riesz metric on S, we can define a Riesz norm on R(S).

In this paper, we show that a near vector space S can be embedded into an
innumerable vector spaces Rn(S), (n = 2, 3, 4, ...) via jn’s (see Definition 2.5). By
investigating properties of Rn(S) and jn, we prove that these embeddings preserve
the inner product and the basis. Finally, we shall provide some applications in the
theory of filtrations, and martingales.

This paper is organized as follows: In Section 2, after introducing the embedding
jn and vector space Rn(S), we study the impact of jn on metric spaces, Banach
spaces, Hilbert spaces and on invariant metrics. In Section 3, we study jn on a
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partially ordered near vector space, and finally, in Section 4, we study MS-filtration
and martingales.

2. The embeddings

In this section, for a given near vector space S, we shall construct countably
many embeddings jn, n = 2, 3, · · · , each of which will embed S into a vector space
Rn(S). We begin this section by recalling the definition of a near vector space.

Definition 2.1. A nonempty set S is said to be a near vector space provided that
addition and scalar multiplication by positive numbers satisfy the following condi-
tions; more precisely, addition + : S×S −→ S is defined in such a way that (S,+)
is a cancellative commutative semigroup; i.e., for all x, y, z ∈ S :

x+ z = y + z =⇒ x = y,

x+ y = y + x,

(x+ y) + z = x+ (y + z);

moreover, multiplication . : R+ × S −→ S by positive scalars is defined in such a
way that for all x, y ∈ S and λ, δ ∈ R+:

λx+ λy = λ(x+ y),

(λ+ δ)x = λx+ δx,

(λδ)x = λ(δx),

1x = x.

Definition 2.2. Let S be a near vector space, for n = 2, 3, 4, ... we define ∼n on
S × S × · · · × S︸ ︷︷ ︸

n−times

by

(x1, x2, ..., xn) ∼n (y1, y2, ..., yn) ⇐⇒ x1+y2+y3+· · ·+yn = y1+x2+x3+· · ·+xn.
Clearly ∼n is an equivalence relation on S × S × · · · × S︸ ︷︷ ︸

n−times

. Let

[x1, x2, ..., xn] := {(y1, y2, ..., yn) ∈ S×S×· · ·×S : (x1, x2, ..., xn) ∼n (y1, y2, ..., yn)},
Now define the quotient

Rn(S) := (S × S × · · · × S)/ ∼n=

{[x1, x2, ..., xn] : (x1, x2, ..., xn) ∈ S × S × · · · × S}.
Also, on the quotient Rn(S), define addition by
[x1, x2, ..., xn]+[y1, y2, ..., yn] = [x1+y1, x2+y2, ..., xn+yn] and, scalar multiplication
· : R×Rn(S) −→ Rn(S) by

λ·[x1, x2, ..., xn] :=


[λx1, λx2, ..., λxn], λ ∈ R+,

[(n− 1)x1, x1, x1, ..., x1], λ = 0,

−λ[(n− 2)x1 + x2 + x3 + ...+ xn, x1, x1, ..., x1], −λ ∈ R+.

Lemma 2.3. Let S be a near vector space. Then for any x1 ∈ S, [(n−1)x1, x1, ..., x1]
is the additive identity in Rn(S).
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Proof. For any (x1, x2, ..., xn) ∈ S × S × · · · × S we have

[x1, x2, ..., xn] + [(n− 1)x1, x1, x1, ..., x1]

= [nx1, x1 + x2, x1 + x3, ..., x1 + xn] = [x1, x2, ..., xn],

thus, we have a right neutral member, and by using commutative property, in the
same way, we can verify that [(n − 1)x1, x1, x1, ..., x1] is a left neutral member. It
can be easily proved that the neutral element is unique. Therefore Rn(S) has a
unique neutral member. �

Lemma 2.4. Let S be a near vector space, then

−[x1, x2, ..., xn] := [(n− 2)x1 + x2 + x3 + · · ·+ xn, x1, x1, ..., x1]

is the additive inverse of [x1, x2, ..., xn] in Rn(S).

Proof. Let [x1, x2, ..., xn] ∈ Rn(S), then

[x1, x2, ..., xn] + [(n− 2)x1 + x2 + x3 + · · ·+ xn, x1, x1, ..., x1]

= [(n− 1)x1 + x2 + x3 + · · ·+ xn , x1 + x2, x1 + x3, ..., x1 + xn]

= [(n− 1)x1, x1, x1, ..., x1],

thus, it is a right inverse for [x1, x2, ..., xn], and by using the commutative property,
we can verify that [(n− 2)x1 + x2 + x3 + · · ·+ xn, x1, x1, ..., x1] is a left inverse as
well. Now suppose [w1, w2, ..., wn] ∈ Rn(S) is another inverse for [x1, x2, ..., xn], so
we have

[w1, w2, ..., wn] + [x1, x2, ..., xn] = [(n− 1)x1, x1, x1, ..., x1],

or

[w1 + x1, w2 + x2, ..., wn + xn] = [(n− 1)x1, x1, x1, ..., x1].

Thus

w1 + x1 + (n− 1)x1 = (n− 1)x1 + w2 + x2 + w3 + x3 + · · ·+ wn + xn,

hence

w1 + (n− 1)x1 = (n− 2)x1 + x2 + x3 + · · ·+ xn + w2 + w3 + · · ·+ wn,

and finally

[w1, w2, ..., wn] = [(n− 2)x1 + x2 + x3 + · · ·+ xn, x1, x1, ..., x1].

Therefore, each element has a unique inverse. �

Definition 2.5. Let S be a near vector space. We define

jn : S −→ Rn(S)

jn(x) = [x+ (n− 1)z, z, z, ..., z] ∀x, z ∈ S. (2.1)

Definition 2.6. If S is a near vector space and d : S × S −→ R+ is a metric on
S, then d is said to be an invariant metric on S, provided that
(1) addition and scalar multiplication by positive scalars are continuous operations
in the topology defined by d,
(2) d(λx, λy) = λd(x, y) for all λ ∈ R+ and x, y ∈ S,
(3) d(x+ z, y + z) = d(x, y) for all x, y, z ∈ S.
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Definition 2.7. If S is a near vector space and d is an invariant metric on S,
then we define

‖.‖dn: Rn(S) −→ R+

‖[x1, x2, ..., xn]‖dn := d(x1, x2 + x3 + · · ·+ xn) (2.2)

for all [x1, x2, ..., xn] ∈ Rn(S).

Lemma 2.8. If S is a near vector space and d is an invariant metric on S, then
‖.‖dn defined by (2.2) is a norm on Rn(S).

Proof. Suppose that for [x1, x2, ..., xn] and [y1, y2, ..., yn] ∈ Rn(S) we have

[x1, x2, ..., xn] = [y1, y2, ..., yn].

Then x1 + y2 + y3 + · · ·+ yn = y1 + x2 + x3 + · · ·+ xn, and hence

‖[x1, x2, ..., xn]‖dn = d(x1, x2 + x3 + · · ·+ xn)

= d(x1 + y1, y1 + x2 + x3 + · · ·+ xn)

= d(x1 + y1, x1 + y2 + y3 + · · ·+ yn)

= d(y1, y2 + y3 + · · ·+ yn)

= ‖[y1, y2, ..., yn]‖dn.
Thus the norm is well-defined. We also have

‖[x1, x2, ..., xn] + [y1, y2, ..., yn]‖dn
= ‖[x1 + y1, x2 + y2, ..., xn + yn]‖dn

= d(x1 + y1, x2 + y2 + x3 + y3 + · · ·+ xn + yn)

≤ d(x1 + y1, x1 + y2 + y3 + · · ·+ yn)

+ d(x1 + y2 + y3 + · · ·+ yn, x2 + y2 + x3 + y3 + · · ·+ xn + yn)

= d(y1, y2 + y3 + · · ·+ yn) + d(x1, x2 + x3 + · · ·+ xn)

= ‖[x1, x2, ..., xn]‖dn + ‖[y1, y2, ..., yn]‖dn.
Other properties of a norm are clearly satisfied. �

Now we state and prove the main result of this section.

Theorem 2.9. Let S be a near vector space, then the following statements hold:
(a) There exists a vector space Rn(S) and a map jn : S −→ Rn(S) for n =
2, 3, 4, · · · such that
(1) jn is injective,
(2) jn(αx+ βy) = αjn(x) + βjn(y) for all α, β ∈ R+ and x, y ∈ S,
(3)

Rn(S) = jn(S)−
(
jn(S) + jn(S) + · · ·+ jn(S)

)
:= {jn(x1)−

(
jn(x2) + jn(x3) + · · ·+ jn(xn)

)
: x1, x2, ..., xn ∈ S}.

(b) If d : S × S −→ R+ is an invariant metric, then there exists a norm ‖.‖dn on
Rn(S) such that d(x, y) = ‖jn(x)− jn(y)‖dn for all x, y ∈ S.

Proof. By Definition 2.2 and Lemmas 2.3 and 2.4 it is clear that Rn(S) is a
vector space with additive identity [(n − 1)x1, x1, x1, ..., x1] and additive inverse
−[x1, x2, ..., xn] := [(n− 2)x1 + x2 + x3 + · · ·+ xn, x1, x1, ..., x1].
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Note also that the map jn : S −→ Rn(S), defined by (2.1), has the desired proper-
ties. For (3) suppose that x1, x2, ..., xn ∈ S and z ∈ S,

jn(x1)−
(
jn(x2) + jn(x3) + · · ·+ jn(xn)

)
= [x1 + (n− 1)z, z, z, ..., z]

− [x2 + x3 + · · ·+ xn + (n− 1)z, z, z, ..., z]

= [x1 + (n− 1)z, z, z, ..., z]

+[(n−2)(x2+x3+ · · ·+xn+(n−1)z)+(n−1)z, x2+x3+ · · ·+xn+(n−1)z, x2+x3

+ · · ·+ xn + (n− 1)z, ..., x2 + x3 + · · ·+ xn + (n− 1)z]

= [x1 + (n− 1)z, x2 + x3 + · · ·+ xn + z, z, z, ..., z]

= [x1 + (n− 1)z, x2 + z, x3 + z, ..., xn + z] = [x1, x2, ..., xn].

Therefore

Rn(S) = jn(S)−
(
jn(S) + jn(S) + · · ·+ jn(S)

)
.

To prove part (b), let d be an invariant metric on S, then ‖.‖dn, defined by (2.2)
is a norm on Rn(S). Moreover, by using Lemma 2.8 we prove that ‖.‖dn has the
desired property:

‖jn(x)− jn(y)‖dn =‖[x+ (n− 1)z, z, z, ..., z]− [y + (n− 1)z, z, z, ..., z]‖dn
= ‖[x+ (n− 1)z, z, z, ..., z] + [(n− 2)

(
y + (n− 1)z

)
+ z + · · ·+ z, y + (n− 1)z, y + (n− 1)z, ..., y + (n− 1)z]‖dn
= ‖[x+ (n− 2)y + n(n− 1)z, y + nz, y + nz, ..., y + nz]‖dn
= d
(
x+ (n− 2)y + n(n− 1)z, (n− 1)y + (n− 1)nz

)
= d
(
x+ (n− 2)y, (n− 1)y

)
= d
(
x+ (n− 2)y, (n− 2)y + y

)
= d(x, y).

�

Example 2.10. Consider R+ with usual addition and scalar multiplication, we
embed (R+,+, .) into Rn(R+). Define ∼n on R+ × R+ × · · · × R+︸ ︷︷ ︸

n−times

by

(x1, x2, ..., xn) ∼n (y1, y2, ..., yn) ⇐⇒ x1+y2+y3+· · ·+yn = y1+x2+x3+· · ·+xn.

We consider Rn(R+) as the equivalence classes of this equivalence relation and
define addition and scalar multiplication on Rn(R+) by

[x1, x2, ..., xn] + [y1, y2, ..., yn] = [x1 + y1, x2 + y2, ..., xn + yn],

λ · [x1, x2, ..., xn] :=



[λx1, λx2, ..., λxn], λ ∈ R+,

[(n− 1)x1, x1, x1, ..., x1], λ = 0,

−λ
(
− [x1, x2, ..., xn]

)
, −λ ∈ R+.

In this case (Rn(R+),+, .) is a vector space with additive identity [(n−1)x1, x1, x1, ..., x1]
and additive inverse −[x1, x2, ..., xn] := [(n−2)x1 +x2 +x3 + · · ·+xn, x1, x1, ..., x1],



150 A. ABKAR, M. RASTGOO, M.B. KAZEMI, A. AZIZI

for any (x1, x2, ..., xn) ∈ R+ × R+ × · · · × R+︸ ︷︷ ︸
n−times

. Now, we can embed R+, for n =

2, 3, 4, ..., into (Rn(R+),+, .) with the following embedding:

jn(x) = [x+ (n− 1)z, z, z, ..., z] ,

for all x, z ∈ R+.
Note that d(x, y) = |x− y| is an invariant metric on R+, and ‖.‖dn which is defined
as bellow, is a norm on Rn(R+)

‖[x1, x2, ..., xn]‖dn = |x1 − (x2 + x3 + · · ·+ xn)|.

This embedding, preserves distance, namely:

d(x, y) = |x− y|
= dn

(
jn(x), jn(y)

)
= ‖jn(x)− jn(y)‖dn,

where dn is the induced metric from ‖jn(x)− jn(y)‖dn.

Theorem 2.11. Let V be a vector space and {α1, α2, ..., αk} be a basis for V . Then

{jn(α1), jn(α2), ..., jn(αk)}

is a basis for Rn(V ).

Proof. The proof follows easily from the following statements:
(1) If V is a vector space, then jn(V ) is onto, because, for any [x1, x2, ..., xn] ∈
Rn(V )

jn(x1 − x2 − x3 − · · · − xn) = [x1 − x2 − x3 − · · · − xn, 0, 0, ..., 0]

= [x1, x2, ..., xn].

(2) The set {jn(α1), jn(α2), ..., jn(αk)} is linearly independent. �

In the following theorem, we prove that each jn preserves inner products and
completeness.

Theorem 2.12. Suppose that V is an inner product space over F . Then the
following assertions hold:
(a) There is an inner product on Rn(V ) such that jn preserves the inner product.
(b) V is a Hilbert space if and only if Rn(V ) is a Hilbert space.
(c) If V or Rn(V ) is finite dimensional, then jn is continuous on V .
(d) If V is a Hilbert space, then (xk)k∈N is an orthonormal basis for V if and only
if
(
jn(xk)

)
k∈N is an orthonormal basis for Rn(V ).

Proof. (a) Suppose that 〈 , 〉 is an inner product on V ; define 〈 , 〉n for

[x1, x2, ..., xn], [y1, y2, ..., yn] ∈ Rn(V )

by:

〈[x1, x2, ..., xn], [y1, y2, ..., yn]〉n = 〈x1 + y2 + y3 + · · ·+ yn, y1 + x2 + x3 + · · · , xn〉.

It is easy to verify that

〈[x1, x2, ..., xn], [y1, y2, ..., yn]〉n = 〈x1 − x2 − x3 − · · · − xn, y1 − y2 − y3 − · · · − yn〉.
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So that 〈jn(x), jn(y)〉 = 〈[x, 0, 0, ..., 0], [y, 0, 0, ..., 0]〉n = 〈x, y〉.
The proof of (b) is easy and (c) follows from [7] Theorem 7B.
(d) Suppose [y1, y2, ..., yn] ∈ Rn(V ) is a vector that satisfies the condition

〈[y1, y2, ..., yn], jn(xk)〉 = 0

for all k ∈ N. Then

〈y1 − y2 − y3 − · · · − yn, xk〉 = 0

so

y1 − y2 − y3 − · · · − yn = 0

or

y1 = y2 + y3 + · · ·+ yn.

Therefore

[y1, y2, ..., yn] = 0Rn(V ).

Similarly, if x ∈ V is a vector that satisfies the condition 〈x, xk〉 = 0 for all k ∈ N,
then 〈jn(x), jn(xk)〉 = 0 and so jn(x) = 0Rn(V ), therefore x = 0. �

3. Near vector lattices

This section is devoted to the study of partially ordered near vector spaces, as
well as vector lattices.

Definition 3.1. A partially ordered set (P,≤) is called a join-semilattice if the
least upper bound (join) of x and y, denoted x∨y, exists for all x, y ∈ P. Moreover,
if it has the greatest lower bound (meet) of x and y; denoted x∧ y, then P is called
a lattice.

Definition 3.2. Let S be a near vector space. If (S,≤) is a partially ordered set
such that ≤ is compatible with addition and multiplication by positive scalars; i.e.,
for all x, y,

x, y ∈ S and α ∈ R+,

x ≤ y =⇒
{
x+ z ≤ y + z,
αx ≤ αy.

Then S is called an ordered near vector space. If S is an ordered near vector space
and (S,≤) is a join-semilattice for which

(x ∨ y) + z = (x+ z) ∨ (y + z), x, y, z ∈ S,

then S is called a near vector lattice.

A Riesz space, a lattice-ordered vector space or a vector lattice is defined simi-
larly.

Definition 3.3. Let d : S × S −→ R+ be an invariant metric on a near vector
lattice S. Then d is said to be a Riesz metric on S provided that
(i) x ≤ y ≤ z =⇒ d(x, y) ≤ d(x, z), and
(ii) d(x, y) = d

(
2(x ∨ y), x+ y

)
for all x, y, z ∈ S.

Moreover if ‖.‖: E −→ R+ is a (semi) norm, then ‖·‖: E −→ R+ is called a Riesz
(semi) norm, provided that x, y ∈ E and 0 ≤ y ≤ x, then ‖y‖≤ ‖x‖, and ‖|x|‖= ‖x‖
for all x ∈ E.
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Let (S,≤) be an ordered near vector space, we define

[x1, x2, ..., xn] ≤n [y1, y2, ..., yn]⇐⇒ x1 +y2 +y3 + · · ·+yn ≤ y1 +x2 +x3 + · · ·+xn,

for all [x1, x2, ..., xn], [y1, y2, ..., yn] ∈ Rn(S).

Lemma 3.4. Let (S,≤) be an ordered near vector space, then
(
Rn(S),≤n

)
is an

ordered vector space.

Proof. For all [x1, x2, ..., xn], [y1, y2, ..., yn], [z1, z2, ..., zn] ∈ Rn(S) if
[x1, x2, ..., xn] ≤n [y1, y2, ..., yn] ≤n [z1, z2, ..., zn] then we have

x1 + y2 + y3 + · · ·+ yn ≤ y1 + x2 + x3 + · · ·+ xn

and
y1 + z2 + z3 + · · ·+ zn ≤ z1 + y2 + y3 + · · ·+ yn

which imply

x1 +y2 +y3 + · · ·+yn +z2 +z3 + · · ·+zn ≤ y1 +x2 +x3 + · · ·+xn +z2 +z3 + · · ·+zn

and

y1+z2+z3+ · · ·+zn+x2+x3+ · · ·+xn ≤ z1+y2+y3+ · · ·+yn+x2+x3+ · · ·+xn.
From these inequalities we get

x1 +y2 +y3 + · · ·+yn +z2 +z3 + · · ·+zn ≤ z1 +y2 +y3 + · · ·+yn +x2 +x3 + · · ·+xn.

Thus

[x1 + y2 + y3 + · · ·+ yn, x2 + y2, x3 + y3, ..., xn + yn] ≤n [z1, z2, ..., zn],

and, [x1, x2, ..., xn] ≤n [z1, z2, ..., zn]. Other properties of an ordered vector space
easily follow. �

If E is a vector lattice, then E+ := {x ∈ E : x ≥ 0} denotes the positive cone of
E. Furthermore, x+ := x ∨ 0, x− := (−x) ∨ 0 and |x| := x ∨ (−x) are the positive
part, negative part and absolute value of x ∈ E, respectively.

Theorem 3.5. If S is a near vector lattice, then we have:
(a) Rn(S) is a vector lattice, with positive cone

R(S)+ := {[x1, x2, ..., xn] : x2 + x3 + · · ·+ xn ≤ x1},
in which the following equalities hold:

(1) [x1, x2, ..., xn]
+

= [x1 ∨ (x2 + x3 + · · ·+ xn), x2, x3, ..., xn],

(2) [x1, x2, ..., xn]
−

= [
(
x1 ∨ (x2 + x3 + · · ·+ xn)

)
+ (n− 2)x1, x1, x1, ..., x1],

(3) |[x1, x2, ..., xn]| = [2(x1 ∨ (x2 + x3 + · · ·+ xn)), x1 + x2, x3, x4, ..., xn],
(4) [x1, x2, ..., xn] ∨ [y1, y2, ..., yn] = [(x1 + y2 + y3 + · · ·+ yn)

∨(y1 + x2 + x3 + · · ·+ xn), x2 + y2, x3 + y3, ..., xn + yn],
(5) [x1, x2, ..., xn] ∧ [y1, y2, ..., yn] = [x1 + x3 + x4 + · · ·+ xn + y1,

(x1 + y2 + y3 + · · ·+ yn) ∨ (y1 + x2 + x3 + · · ·+ xn), x3, x4, ..., xn],
(6) [x1, x2, ..., xn] ∧ −[x1, x2, ..., xn] = −|[x1, x2, ..., xn]|,
(7) −[x1, x2, ..., xn] ∧ [(n− 1)x1, x1, x1, ..., x1] = −[x1, x2, ..., xn]−

[x1, x2, ..., xn]
−
.

(b) The embedding jn : S −→ Rn(S) is join preserving.
(c) If d : S×S −→ R+ is an invariant metric, then d is a Riesz metric on S if and
only if ‖.‖dn is a Riesz norm on the vector lattice Rn(S).
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Proof. To prove (1), we note that [x1∨(x2+x3+ · · ·+xn), x2, x3, ..., xn] is an upper
bound for {[x1, x2, ..., xn], [(n− 1)x1, x1, x1, ..., x1]}; since

i) x2 + x3 + · · ·+ xn ≤ x1 ∨ (x2 + x3 + · · ·+ xn) we obtain
(n− 1)x1 + x2 + x3, ...+ xn ≤

(
x1 ∨ (x2 + x3 + · · ·+ xn)

)
+ (n− 1)x1, so

[(n− 1)x1, x1, x1, ..., x1] ≤n [x1 ∨ (x2 + x3 + · · ·+ xn), x2, x3, ..., xn].

ii) x1 ≤ x1 ∨ (x2 + x3 + · · ·+ xn), so
x1 + x2 + · · ·+ xn ≤

(
x1 ∨ (x2 + x3 + · · ·+ xn)

)
+ x2 + x3 + · · ·+ xn

therefore [x1, x2, ..., xn] ≤n [x1 ∨ (x2 + x3 + · · ·+ xn), x2, x3, ..., xn].

iii) If [y1, y2, ..., yn] is also an upper bound for

{[x1, x2, ..., xn], [(n− 1)x1, x1, x1, ..., x1]},

then [x1, x2, ..., xn] ≤n [y1, y2, ..., yn], so

x1 + y2 + y3 + · · ·+ yn ≤ y1 + x2 + x3 + · · ·+ xn.

Hence [x2 + x3 + · · ·+ xn, x2, x3, ..., xn] ≤n [y1, y2, ..., yn], which implies that

x2 + x3 + · · ·+ xn + y2 + y3 + · · ·+ yn ≤ y1 + x2 + x3 + · · ·+ xn.

Therefore, from these inequalities we conclude that
(x1+y2+y3+· · ·+yn)∨(x2+x3+· · ·+xn+y2+y3+· · ·+yn) ≤ y1+x2+x3+· · ·+xn,
so(
x1 ∨ (x2 + x3 + · · ·+ xn)

)
+ (y2 + y3 + · · ·+ yn) ≤ y1 + x2 + x3 + · · ·+ xn, hence

[x1 ∨ (x2 + x3 + · · ·+ xn), x2, x3, ..., xn] ≤n [y1, y2, ..., yn], therefore

[x1, x2, ..., xn]
+

= [x1 ∨ x2 + x3 + · · ·+ xn, x2, x3, ..., xn].

To prove (2), note that

[x1, x2, ..., xn]
−

= [(n− 2)x1 + x2 + x3 + · · ·+ xn, x1, x1, ..., x1]
+

= [
(
(n− 2)x1 + x2 + x3 + · · ·+ xn

)
∨ (n− 1)x1, x1, x1, ..., x1]

= [
(
(n− 2)x1 + x2 + · · ·+ xn

)
∨
(
(n− 2) + x1

)
+ x1, x1, ..., x1]

= [
(
x1 ∨ (x2 + x3 + · · ·+ xn)

)
+ (n− 2)x1, x1, x1, ..., x1].

This also proves that Rn(S) is a vector lattice. It is clear that Rn(S) is a vector
lattice with positive cone R(S)+ := {[x1, x2, ..., xn] : x2 + x3 + · · ·+ xn ≤ x1}.
For (3), if E is a vector lattice, we make use of the following well-known equality
(see [4], p. 17) in the sequel:
2(x∨y)−(x+y) = |x− y|, so 2(x∨0)−(x+0) = |x− 0| for all x, y ∈ E. Therefore
|x| = 2x+ − x for all x ∈ E.
Since, (x − y)+ = x ∨ y − y for all x, y ∈ E

(
see [5]

)
we conclude that x ∨ y =

(x− y)+ + y. So (4) is proved.
Parts (5) and (6) can be proved by using the fact that, x∨ y+ x∧ y = x+ y for all
x, y ∈ E (see [5]) because x ∧ y = x+ y − (x ∨ y) so

[x1, x2, ..., xn] ∧ −[x1, x2, ..., xn] = −|[x1, x2, ..., xn]|.

Now (4) and (5) imply that Rn(S) is a vector lattice. It is clear that Rn(S) is a vec-
tor lattice with positive cone R(S)+ := {[x1, x2, ..., xn] : x2 + x3 + · · ·+ xn ≤ x1}.
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To prove (7) we use the fact that x ∨ y + x ∧ y = x+ y for all x, y ∈ E (see [5]), so
if x := −x and y := 0 then we have

−[x1, x2, ..., xn] ∧ [(n− 1)x1, x1, x1, ..., x1] = −[x1, x2, ..., xn]− [x1, x2, ..., xn]
−
.

As for part (b), let x, y ∈ S. Then for any z ∈ S:

jn(x) ∨ jn(y) = [x+ (n− 1)z, z, z, ..., z] ∨ [y + (n− 1)z, z, z, ..., z]
= [
(
x+

(
2(n− 1)

)
z
)
∨
(
y + 2(n− 1)z

)
, 2z, 2z, ..., 2z]

= [(x ∨ y) +
(
2(n− 1)

)
z, 2z, 2z, ..., 2z]

= [(x ∨ y) + (n− 1)z, z, z, ..., z]
= jn(x ∨ y).

To prove (c), suppose that d is a Riesz metric on S and x1, x2, ..., xn, y1, y2, ..., yn ∈
S and

[y2 + y3 + · · ·+ yn, y2, y3, ..., yn] ≤n [x1, x2, ..., xn] ≤n [y1, y2, ..., yn],

then x1 + y2 + y3 + · · ·+ yn ≤ y1 + x2 + x3 + · · ·+ xn and,

x2 + x3 + · · ·+ xn + y2 + y3 + · · ·+ yn ≤ x1 + y2 + y3 + · · ·+ yn.

It now follows that
x2+x3+ · · ·+xn+y2+y3+ · · ·+yn ≤ x1+y2+y3+ · · ·+yn ≤ y1+x2+x3+ · · ·+xn,
so
d(x2 + x3 + · · ·+ xn + y2 + y3 + · · ·+ yn, x1 + y2 + y3 + · · ·+ yn)
≤ d(x2 + x3 + · · ·+ xn + y2 + y3 + · · ·+ yn, y1 + x2 + x3 + · · ·+ xn), hence
d(x2 + x3 + · · ·+ xn, x1) ≤ d(y2 + y3 + · · ·+ yn, y1), thus
d(x1, x2 + x3 + · · ·+ xn) ≤ d(y1, y2 + y3 + · · ·+ yn), and finally
‖[x1, x2, ..., xn]‖dn ≤n ‖[y1, y2, ..., yn]‖dn.

And from the fact that

|[x1, x2, ..., xn]| = [2(x1 ∨ (x2 + x3 + · · ·+ xn)), x1 + x2, x3, x4, ..., xn],

we have

‖[x1, x2, ..., xn]‖dn = d(x1, x2 + x3 + · · ·+ xn)
= d(2(x1 ∨ (x2 + x3 + · · ·+ xn)), x1 + x2 + · · ·+ xn)
= ‖[2(x1 ∨ (x2 + · · ·+ xn)), x1 + x2, x3, ..., xn]‖dn
= ‖|[x1, x2, ..., xn]|‖dn.

Therefore ‖.‖dn is a Riesz norm on Rn(S).
Conversely, if ‖.‖dn is a Riesz norm on Rn(S), x, y, z ∈ S and x ≤ y ≤ z, then for
all x1, x2, ..., x2n−6 ∈ S if y ≤ z, then

x+ 2y + z + x1 + x2 + · · ·+ x2n−6 ≤ x+ y + 2z + x1 + x2 + · · ·+ x2n−6.

Hence,

[y + xn−3 + xn−2 + · · ·+ x2n−6, x, xn−3, xn−2, ..., x2n−6]

≤n [y + 2z + x1 + x2 + · · ·+ xn−4, x, y, z, x1, x2, ..., xn−4],

so

‖[y + xn−3 + xn−2 + · · ·+ x2n−6, x, xn−3, xn−2, ..., x2n−6]‖dn
≤n ‖[y + 2z + x1 + x2 + · · ·+ xn−4, x, y, z, x1, x2, ..., xn−4]‖dn,
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and

d(y + xn−3 + xn−2 + · · ·+ x2n−6, x+ xn−3 + xn−2 + · · ·+ x2n−6) ≤

d(y + 2z + x1 + x2 + · · ·+ xn−4, x+ y + z + x1 + x2 + · · ·+ xn−4).

Therefore d(x, y) ≤ d(x, z). Moreover,

d(x1, x2 + x3 + · · ·+ xn) = ‖[x1, x2, ..., xn]‖dn
= ‖|[x1, x2, ..., xn]|‖dn
= ‖[2(x1 ∨ (x2 + · · ·+ xn)), x1 + x2, x3, ..., xn]‖dn
= d(2(x1 ∨ (x2 + · · ·+ xn)), x1 + · · ·+ xn)

which shows that d is a Riesz metric on S. �

By the same argument as in the previous theorem we obtain the following theo-
rem.

Theorem 3.6. If S is a vector lattice, then the followings hold:
(1) [x1, x2, ..., xn]

+
= [x1 ∨ (x2 + x3 + · · ·+ xn), x2 + x3 + · · ·+ xn, 0, 0, ..., 0],

(2) [x1, x2, ..., xn]
−

= [
(
x1 ∨ (x2 + x3 + · · ·+ xn)

)
, x1, 0, 0, ..., 0],

(3) |[x1, x2, ..., xn]| = [2
(
x1∨ (x2 +x3 + · · ·+xn)

)
, x1 +x2 + · · ·+xn, 0, 0, ..., 0],

(4) [x1, x2, ..., xn] ∨ [y1, y2, ..., yn] = [(x1 + y2 + y3 + · · ·+ yn)
∨(y1 +x2 +x3 + · · ·+xn), x2 +x3 + · · ·+xn, y2 +y3 + · · ·+yn, 0, 0, ..., 0],

(5) [x1, x2, ..., xn] ∧ [y1, y2, ..., yn] = [x1 + y1, (x1 + y2 + y3 + · · ·+ yn)
∨ (y1 + x2 + x3 + · · ·+ xn), 0, 0, ..., 0].

Example 3.7. As in the previous example, consider R+ with the usual ordering
and the join ∨ given by x∨y = max{x, y}. Now we have a vector lattice. Moreover,
Rn(R+) for each n = 2, 3, 4, ... is a vector lattice and embedding jn which is join
preserving:

[x1, x2, ..., xn] ≤n [y1, y2, ..., yn]⇐⇒ x1 +y2 +y3 + · · ·+yn ≤ y1 +x2 +x3 + · · ·+xn,

[x1, x2, ..., xn] ∨ [y1, y2, ..., yn] = [max{(x1 + y2 + y3 + · · ·+ yn), (y1 +x2 +x3 + · · ·+
xn)}, x2 + y2, x3 + y3, ..., xn + yn],
[x1, x2, ..., xn] ∧ [y1, y2, ..., yn] = [x1 + x3 + x4 + · · ·+ xn + y1,max{(x1 + y2 + y3 +
· · ·+ yn) ∨ (y1 + x2 + x3 + · · ·+ xn)}, x3, x4, ..., xn].

Note that the metric defined on R+ is a Riesz metric and the norm on Rn(R+)
for each n = 2, 3, 4, ..., is a Riesz norm.

Theorem 3.8. Let S1 and S2 be near vector spaces and T : S1 −→ S2 be addition
preserving. Define T̂ : Rn(S1) −→ Rn(S2) by

T̂ ([x1, x2, ..., xn]) = [T (x1), T (x2), ..., T (xn)] for all x1, x2, ..., xn ∈ S1.

(a) If T is R+-linear, then T̂ is linear.
(b) If d1 is an invariant metric on S1, d2 is an invariant metric on S2 and T is

non-expansive, then ‖T̂‖≤ 1 .
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Proof. For (a) we only need to prove if α ∈ R+, then

T̂
(
α[x1, x2, ..., xn]

)
= T̂

(
− α[(n− 2)x1 + x2 + x3 + · · ·+ xn, x1, x1, ..., x1]

)
= T̂

(
[
(
− α(n− 2)

)
x1 − αx2 − αx3 − · · · − αxn,−αx1,−αx1, ...,−αx1]

)
= [
(
− α(n− 2)

)(
T (x1)

)
− α

(
T (x2) + T (x3) + · · ·+ T (xn)

)
,−αT (x1),

− αT (x2), ...,−αT (xn)] = α[T (x1), T (x2), ..., T (xn)]

= αT̂ ([x1, x2, ..., xn]).

For (b) first we define:

‖T̂‖:= sup{‖T̂ [x1, x2, ..., xn]‖d2
: ‖[x1, x2, ..., xn]‖d1

≤ 1}

where

‖T̂ [x1, x2, ..., xn]‖d2
= d2

(
T (x1), T (x2) + T (x3) + · · ·+ T (xn)

)
≤ d1(x1, x2 + x3 + · · ·+ xn)
= ‖[x1, x2, ..., xn]‖d1

≤ 1.

Since T is non-expansive. So

‖T̂‖ ≤ 1.

�

Let S2 be a near vector lattice and S1 a nonempty subset of S2. Then S1 is said
to be a sub-near vector lattice of S2 provided that S1 is closed under the operations
addition, multiplication by positive scalars and join. The notion of sub-near vector
space is defined similarly.

Corollary 3.9. If S1 is a sub-near vector space (lattice) of a near vector space
(lattice) S2, then Rn(S1) is a vector subspace (sublattice) of Rn(S2).

Proof. Since S1 is closed under addition and multiplication operations, it is clear
that Rn(S1) is closed under this operations, so that Rn(S1) is a vector sublattice
of Rn(S2). �

4. Filtration, martingales and metric spaces

In this section we study the embedding theorem on filtration and Martingales.

Definition 4.1. Let (P, d) be a metric space and f be a function on P . Then f is
called a non-expansive idempotent if for each x and y in P , d

(
f(x), f(y)

)
≤ d(x, y)

and f(f(x)) = f(x).

Definition 4.2. Let (X, d) be a metric space and f be a linear function on X. Then
f is called a contractive linear projection if for each x and y in X, d

(
f(x), f(y)

)
<

d(x, y) and f(f(x)) = f(x).

Definition 4.3. Let X be a Banach space. If Ti : X −→ X is a contractive linear
projection and Ti = TiTk = TkTi for each i ≤ k where i, k ∈ N, then the sequence of
projections (Ti) is called a BS-filtration on X. If (Ti) is a BS-filtration on X, the
pair (fi, Ti) is called a martingale in X if Tifk = fi for each i ≤ k, and (fi) ⊆ X.

This motivates the following definition.
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Definition 4.4. Let (P, d) be a complete metric space. A Sequence (Ei) of non-
expansive idempotents on P is called an MS-filtration on P if we have

EiEk = EkEi = Ei ∀i ≤ k.
Moreover if there exists (fi) ⊆ P such that fi = Eifk for all i ≤ k, then (fi, Ei) is
called a martingale in P .

It is obvious that R(Ei) ⊆ R(Ei+1) where (Ei) is an MS-filtration on P and R(Ei)
denotes the range of Ei.

Definition 4.5. In Definition 4.4 if we replace (P, d) by (S, d) where S is a complete
near vector space with respect to the invariant metric d, each (Ei) is R+-linear, and
each R(Ei) is a (closed) near vector subspace of S, then this set is denoted by(
S, d, Ei

)
and is called a complete MS-filtration space.

Lemma 4.6. Let
(
S, d, Ei

)
be a complete MS-filtration space, then (Ẽin) is a BS-

filtration on R̃n(S), where n = 2, 3, 4, ... and each (Ẽin) is the continuous extension

of Êin defined by

Êin([x1, x2, ..., xn]) = [Eix1, Eix2, ..., Eixn].

Moreover,
⋃∞

i=1R
(
Ẽin|jn(S)

)
= jn

(⋃∞
i=1R(Ei)

)
; the former closure is the ‖.‖dn

-closure in R̃n(S) and the latter is the d-closure in S.

Proof. Since Ei is R+-linear and non-expansive, it follows from Theorem 3.8 that

Êin is linear and ‖Êin‖ ≤ 1. As EiEk = EkEi = Ei for all i ≤ k, then ÊinÊkn =

ÊknÊin = Êin for all i ≤ k.
As (Ẽin) is the continuous extension to R̃n(S) of Êin, it follows that (Ẽin) is a

linear contractive projection with ‖Ẽi‖ ≤ 1 and ẼiẼk = ẼkẼi = Ẽi for all i ≤ k.

Consequently, (Ẽin) is a BS-filtration on R̃n(S).

It remains to show that
⋃∞

i=1R
(
Ẽin|jn(S)

)
= jn

(⋃∞
i=1R(Ei)

)
. We first note that

R
(
Ẽin|jn(S)

)
= jn

(
R(Ei)

)
for all i ∈ N, because

Let [k + (n − 1)w,w,w, ..., w] ∈ R
(
Ẽin|jn(S)

)
. Then, there are x, z ∈ S such that

Ẽin(z) = Êin(z) = w and Ẽin(x) = Êin(x) = k. Thus

[k + (n− 1)w,w,w, ..., w] = Ẽin
(
[x+ (n− 1)z, z, z, ..., z]

)
= Êin

(
[x+ (n− 1)z, z, z, ..., z]

)
= [Ei(x) + (n− 1)Ei(z), Ei(z), Ei(z), ..., Ei(z)]
= jn

(
Ei(x)

)
∈ jn

(
R(Ei)

)
.

Let [k + (n − 1)w,w,w, ..., w] ∈ jn
(
R(Ei)

)
. Then, there are x, z ∈ S such that

Ẽin(z) = Êin(z) = w and Ẽin(x) = Êin(x) = k. Thus

[k + (n− 1)w,w,w, ..., w] = [Ei(x) + (n− 1)Ei(z), Ei(z), Ei(z), ..., Ei(z)]
= [Ei(x+ (n− 1)z), Ei(z), Ei(z), ..., Ei(z)]
= Êin

(
[x+ (n− 1)z, z, z, ..., z]

)
= Ẽin

(
[x+ (n− 1)z, z, z, ..., z]

)
∈ R

(
Ẽin| jn(S)

)
.

Consequently,
⋃∞

i=1R
(
Ẽin|jn(S)

)
=
⋃∞

i=1 jn
(
R(Ei)

)
. By the completeness of S and

the continuity of jn, it is readily verified that
⋃∞

i=1 jn
(
R(Ei)

)
= jn

(⋃∞
i=1R(Ei)

)
.

Thus
⋃∞

i=1R
(
Ẽin|jn(S)

)
= jn

(⋃∞
i=1R(Ei)

)
. �
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Lemma 4.7. Let
(
S, d, Ei

)
be a complete MS-filtration space, then (fi, Ei) is a

martingale in S (and (fi) is d-convergent) if and only if
(
jn(fi), Ẽin

)
is a martingale

in R̃n(S) (and jn
(
(fi)

)
is ‖.‖d-convergent).

Proof. Recall that jn(x) = [x+ (n− 1)z, z, z, ..., z] for all x ∈ S and for any z ∈ S.

If (fi, Ei) is a martingale in S, then
(
jn(fi), Ẽin

)
is a martingale in R̃n(S), because,

for i ≤ k,

Ẽinjn(fk) = Êin[fk + (n− 1)z, z, z, ..., z]
= [Eifk + (n− 1)Eiz, Eiz, Eiz, ..., Eiz]
= [fi + (n− 1)z, z, z, ..., z]
= jn(fi).

Conversely, suppose
(
jn(fi), Ẽin

)
is a martingale in R̃n(S). Then, for i ≤ k we have

Ẽk
(
jn(fi)

)
= jn(fi), so [Ekfi+(n−1)Ekz, Ekz, Ekz, ..., Ekz] = [fi+(n−1)z, z, z, ..., z],

and hence Ekfi+(n−1)Ekz+(n−1)z = fi+(n−1)z+(n−1)Ekz. Therefore Ekfi = fi,

from which we conclude that Eifk = fi; this in turn means that
(
jn(fi), Ẽin

)
is a

martingale in S. It now follows that the martingale (fi, Ei) is d-convergent if and

only if the martingale
(
jn(fi), Ẽin

)
is ‖.‖dn-convergent in Rn(S), because

lim
i→∞

‖jn(fi)− jn(f)‖dn = lim
i→∞

‖[fi + (n− 1)z, z, ..., z]− [f + (n− 1)z, z, ..., z]‖dn
= lim

i→∞
‖[fi + (n− 1)z, z, z, ..., z]

+[(n− 2)f + (n− 1)(n− 1)z, f + (n− 1)z, ...,
f + (n− 1)z]‖dn

= lim
i→∞

‖[fi + (n− 2)f, f, ..., f ]‖dn
= lim

i→∞
d
(
fi + (n− 2)f, (n− 1)f

)
= lim

i→∞
d(fi, f).

This completes the proof. �

Definition 4.8. Let
(
S, d, Ei

)
be a complete MS-filtration space. Denote byMd(S, Ei)

the set of all martingales (fi, Ei) in S for which (fi) is d-convergent. Define dM by

dM
(
(fi, Ei), (gi, Ei)

)
= sup

i∈N
d(fi, gi)

for all (fi, Ei), (gi, Ei) ∈ Md(S, Ei). Define addition and positive scalar multiplica-
tion on Md(S, Ei), by

(fi, Ei) + (gi, Ei) = (fi + gi, Ei), λ(fi, Ei) = (λfi, Ei)

for all (fi, Ei), (gi, Ei) ∈Md(S, Ei) and λ ∈ R+.

It is readily verified that
(
Md(S, Ei), dM

)
is a metric space and Md(S, Ei) is

a near vector space. We use R̊adström’s embedding result on the complete MS-
filtration spaces

(
S, d, Ei

)
andMd(S, Ei). The first problem to deal with is the fact

that Rn(S) need not be norm complete. So, instead of Rn(S) we consider its norm

completion R̃n(S).

Definition 4.9. Let X be a Banach space and (Ti)i∈N be a BS-filtration on X.
Denote by Mnc(X,Ti) the set of martingales (fi, Ti) in X for which (fi) is norm
convergent. The addition and scalar multiplication are defined by

(fi, Ti) + (gi, Ti) = (fi + gi, Ti), λ(fi, Ti) = (λfi, Ti)
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for each (fi, Ti), (gi, Ti) ∈Mnc(X,Ti) and λ ∈ R. Moreover, the norm in the vector
space Mnc(X,Ti) is defined by

‖(fi, Ti)‖M = sup
i∈N
‖fi‖.

Note that ‖.‖M is a norm onMnc(X,Ti) which makesMnc(X,Ti) into a Banach
space (see [3]). The following result shows how Md(S, Ei) and Mnc(X,Ti) are
related via the R̊adström completion of S.

Theorem 4.10. Let
(
S, d, Ei

)
be a complete MS-filtration space and (fi, ei) ∈

Md(S,Ei). Then the map K :Md(S, Ei) −→Mnc

(
R̃n(S), Ẽin

)
defined by

K
(
(fi, Ei)

)
=
(
jn(fi), Ẽin

)
is an R+-linear isometry (into) and Md(S, Ei) is complete.

Proof. It is clear that K is injective and R+-linear. We verify that K is an isometry.
Let (fi, Ei), (gi, Ei) ∈Md(S, Ei). Then

dM
(
(fi, Ei), (gi, Ei)

)
= sup

i∈N
d(fi, gi)

= sup
i∈N

d
(
fi + (n− 2)gi + n(n− 1)z, (n− 1)gi +

(
(n− 1)n

)
z
)

= sup
i∈N
‖[fi + (n− 2)gi + n(n− 1)z, gi + nz, ..., gi + nz]‖dn

= sup
i∈N
‖[fi + (n− 1)z, z, ..., z] + [(n− 2)gi

+ (n− 1)(n− 1)z, gi + (n− 1)z, ..., gi + (n− 1)z]‖dn
= sup

i∈N
‖[fi + (n− 1)z, z, ..., z]− [gi + (n− 1)z, z, ..., z]‖dn

= ‖
(
([fi + (n− 1)z, z, ..., z]− [gi + (n− 1)z, z, ..., z]), Ẽin

)
‖M

= ‖
(
jn(fi), Ẽin

)
−
(
jn(gi), Ẽin

)
‖M.

Since Mnc(R̃n(S), Ẽin) is complete and jn(S) is closed in R̃n(S), it follows that
Md(S, Ei) is complete. �
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