EMBEDDINGS OF NEAR VECTOR SPACES AND APPLICATIONS IN PRE-HILBERT SPACES, FILTRATIONS, MARTINGALES, AND METRIC SPACES

A. ABKAR, M. RASTGOO, M.B. KAZEMI, A. AZIZI

Abstract

In this paper we introduce a family of embeddings $j_{n}, n \geq 2$, of a near vector space into a vector space. We give some examples for such embeddings and show that j_{n} 's invariant metric on a near vector space S defines an isometry on the vector space $R_{n}(S)$, and if S is a near vector lattice then j_{n} 's are join preserving on the vector lattices $R_{n}(S)$. Finally, we will find applications of this embeddings in Hilbert spaces, filtrations, martingales, and metric spaces.

1. Introduction

Initially Rådström in [6] proved that any near vector space S can be embedded into a vector space $R(S)$ via an embedding j, moreover, if there exists an invariant metric on S, then $R(S)$ admits a norm such that j is distance preserving. Later on, S . Bochner in 1 proved that any martingale $\left(f_{i}, \mathcal{E}_{i}\right)_{i \in \mathbb{N}}$ on a near vector space S induces a martingale $\left(j\left(f_{i}\right), \mathcal{E}_{i}\right)_{i \in \mathbb{N}}$ on the vector space $R(S)$.

Recently, C.C.A. Labuschagne, A.L. Pinchuck and C.J. van Alten in 5] entered topics related to lattices in this discussion and showed that this embedding is join preserving and embeds a near vector lattice into a vector lattice. They also proved that if we have a Riesz metric on S, we can define a Riesz norm on $R(S)$.

In this paper, we show that a near vector space S can be embedded into an innumerable vector spaces $R_{n}(S),(n=2,3,4, \ldots)$ via j_{n} 's (see Definition 2.5). By investigating properties of $R_{n}(S)$ and j_{n}, we prove that these embeddings preserve the inner product and the basis. Finally, we shall provide some applications in the theory of filtrations, and martingales.

This paper is organized as follows: In Section 2, after introducing the embedding j_{n} and vector space $R_{n}(S)$, we study the impact of j_{n} on metric spaces, Banach spaces, Hilbert spaces and on invariant metrics. In Section 3, we study j_{n} on a

[^0]partially ordered near vector space, and finally, in Section 4, we study MS-filtration and martingales.

2. The embeddings

In this section, for a given near vector space S, we shall construct countably many embeddings $j_{n}, n=2,3, \cdots$, each of which will embed S into a vector space $R_{n}(S)$. We begin this section by recalling the definition of a near vector space.
Definition 2.1. A nonempty set S is said to be a near vector space provided that addition and scalar multiplication by positive numbers satisfy the following conditions; more precisely, addition $+: S \times S \longrightarrow S$ is defined in such a way that $(S,+)$ is a cancellative commutative semigroup; i.e., for all $x, y, z \in S$:

$$
\begin{gathered}
x+z=y+z \Longrightarrow x=y \\
x+y=y+x \\
(x+y)+z=x+(y+z)
\end{gathered}
$$

moreover, multiplication . : $\mathbb{R}_{+} \times S \longrightarrow S$ by positive scalars is defined in such a way that for all $x, y \in S$ and $\lambda, \delta \in \mathbb{R}_{+}$:

$$
\begin{gathered}
\lambda x+\lambda y=\lambda(x+y) \\
(\lambda+\delta) x=\lambda x+\delta x \\
(\lambda \delta) x=\lambda(\delta x) \\
1 x=x
\end{gathered}
$$

Definition 2.2. Let S be a near vector space, for $n=2,3,4, \ldots$ we define \sim_{n} on $\underbrace{S \times S \times \cdots \times S}_{n-\text { times }}$ by
$\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sim_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \Longleftrightarrow x_{1}+y_{2}+y_{3}+\cdots+y_{n}=y_{1}+x_{2}+x_{3}+\cdots+x_{n}$.
Clearly \sim_{n} is an equivalence relation on $\underbrace{S \times S \times \cdots \times S}_{n-\text { times }}$. Let
$\left[x_{1}, x_{2}, \ldots, x_{n}\right]:=\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in S \times S \times \cdots \times S:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sim_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\}$,
Now define the quotient

$$
\begin{array}{r}
R_{n}(S):=(S \times S \times \cdots \times S) / \sim_{n}= \\
\left\{\left[x_{1}, x_{2}, \ldots, x_{n}\right]:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in S \times S \times \cdots \times S\right\}
\end{array}
$$

Also, on the quotient $R_{n}(S)$, define addition by
$\left[x_{1}, x_{2}, \ldots, x_{n}\right]+\left[y_{1}, y_{2}, \ldots, y_{n}\right]=\left[x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right]$ and, scalar multiplication $\cdot: \mathbb{R} \times R_{n}(S) \longrightarrow R_{n}(S)$ by
$\lambda \cdot\left[x_{1}, x_{2}, \ldots, x_{n}\right]:= \begin{cases}{\left[\lambda x_{1}, \lambda x_{2}, \ldots, \lambda x_{n}\right],} & \lambda \in \mathbb{R}_{+}, \\ {\left[(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right],} & \lambda=0, \\ -\lambda\left[(n-2) x_{1}+x_{2}+x_{3}+\ldots+x_{n}, x_{1}, x_{1}, \ldots, x_{1}\right], & -\lambda \in \mathbb{R}_{+} .\end{cases}$

Lemma 2.3. Let S be a near vector space. Then for any $x_{1} \in S,\left[(n-1) x_{1}, x_{1}, \ldots, x_{1}\right]$ is the additive identity in $R_{n}(S)$.

Proof. For any $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in S \times S \times \cdots \times S$ we have

$$
\begin{aligned}
{\left[x_{1}, x_{2}, \ldots, x_{n}\right]+[(n-1)} & \left.x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right] \\
& =\left[n x_{1}, x_{1}+x_{2}, x_{1}+x_{3}, \ldots, x_{1}+x_{n}\right]=\left[x_{1}, x_{2}, \ldots, x_{n}\right]
\end{aligned}
$$

thus, we have a right neutral member, and by using commutative property, in the same way, we can verify that $\left[(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right]$ is a left neutral member. It can be easily proved that the neutral element is unique. Therefore $R_{n}(S)$ has a unique neutral member.

Lemma 2.4. Let S be a near vector space, then

$$
-\left[x_{1}, x_{2}, \ldots, x_{n}\right]:=\left[(n-2) x_{1}+x_{2}+x_{3}+\cdots+x_{n}, x_{1}, x_{1}, \ldots, x_{1}\right]
$$

is the additive inverse of $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ in $R_{n}(S)$.
Proof. Let $\left[x_{1}, x_{2}, \ldots, x_{n}\right] \in R_{n}(S)$, then

$$
\begin{aligned}
{\left[x_{1}, x_{2}, \ldots, x_{n}\right]+\left[(n-2) x_{1}+x_{2}+x_{3}+\cdots+x_{n}, x_{1}, x_{1}, \ldots, x_{1}\right] }
\end{aligned} \quad \begin{aligned}
=\left[(n-1) x_{1}+x_{2}+x_{3}+\cdots+x_{n}\right. & \left., x_{1}+x_{2}, x_{1}+x_{3}, \ldots, x_{1}+x_{n}\right] \\
& =\left[(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right]
\end{aligned}
$$

thus, it is a right inverse for $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, and by using the commutative property, we can verify that $\left[(n-2) x_{1}+x_{2}+x_{3}+\cdots+x_{n}, x_{1}, x_{1}, \ldots, x_{1}\right]$ is a left inverse as well. Now suppose $\left[w_{1}, w_{2}, \ldots, w_{n}\right] \in R_{n}(S)$ is another inverse for $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, so we have

$$
\left[w_{1}, w_{2}, \ldots, w_{n}\right]+\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\left[(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right]
$$

or

$$
\left[w_{1}+x_{1}, w_{2}+x_{2}, \ldots, w_{n}+x_{n}\right]=\left[(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right]
$$

Thus

$$
w_{1}+x_{1}+(n-1) x_{1}=(n-1) x_{1}+w_{2}+x_{2}+w_{3}+x_{3}+\cdots+w_{n}+x_{n}
$$

hence

$$
w_{1}+(n-1) x_{1}=(n-2) x_{1}+x_{2}+x_{3}+\cdots+x_{n}+w_{2}+w_{3}+\cdots+w_{n}
$$

and finally

$$
\left[w_{1}, w_{2}, \ldots, w_{n}\right]=\left[(n-2) x_{1}+x_{2}+x_{3}+\cdots+x_{n}, x_{1}, x_{1}, \ldots, x_{1}\right]
$$

Therefore, each element has a unique inverse.
Definition 2.5. Let S be a near vector space. We define

$$
\begin{gather*}
j_{n}: S \longrightarrow R_{n}(S) \\
j_{n}(x)=[x+(n-1) z, z, z, \ldots, z] \quad \forall x, z \in S . \tag{2.1}
\end{gather*}
$$

Definition 2.6. If S is a near vector space and $d: S \times S \longrightarrow \mathbb{R}_{+}$is a metric on S, then d is said to be an invariant metric on S, provided that
(1) addition and scalar multiplication by positive scalars are continuous operations in the topology defined by d,
(2) $d(\lambda x, \lambda y)=\lambda d(x, y)$ for all $\lambda \in \mathbb{R}_{+}$and $x, y \in S$,
(3) $d(x+z, y+z)=d(x, y)$ for all $x, y, z \in S$.

Definition 2.7. If S is a near vector space and d is an invariant metric on S, then we define

$$
\begin{gather*}
\|\cdot\|_{d n}: R_{n}(S) \longrightarrow \mathbb{R}_{+} \\
\left\|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\|_{d n}:=d\left(x_{1}, x_{2}+x_{3}+\cdots+x_{n}\right) \tag{2.2}
\end{gather*}
$$

for all $\left[x_{1}, x_{2}, \ldots, x_{n}\right] \in R_{n}(S)$.
Lemma 2.8. If S is a near vector space and d is an invariant metric on S, then $\|.\|_{d n}$ defined by 2.2 is a norm on $R_{n}(S)$.

Proof. Suppose that for $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\left[y_{1}, y_{2}, \ldots, y_{n}\right] \in R_{n}(S)$ we have

$$
\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\left[y_{1}, y_{2}, \ldots, y_{n}\right]
$$

Then $x_{1}+y_{2}+y_{3}+\cdots+y_{n}=y_{1}+x_{2}+x_{3}+\cdots+x_{n}$, and hence

$$
\begin{aligned}
\left\|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\|_{d n} & =d\left(x_{1}, x_{2}+x_{3}+\cdots+x_{n}\right) \\
& =d\left(x_{1}+y_{1}, y_{1}+x_{2}+x_{3}+\cdots+x_{n}\right) \\
& =d\left(x_{1}+y_{1}, x_{1}+y_{2}+y_{3}+\cdots+y_{n}\right) \\
& =d\left(y_{1}, y_{2}+y_{3}+\cdots+y_{n}\right) \\
& =\left\|\left[y_{1}, y_{2}, \ldots, y_{n}\right]\right\|_{d n} .
\end{aligned}
$$

Thus the norm is well-defined. We also have

$$
\begin{aligned}
& \left\|\left[x_{1}, x_{2}, \ldots, x_{n}\right]+\left[y_{1}, y_{2}, \ldots, y_{n}\right]\right\|_{d n} \\
& \quad=\left\|\left[x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right]\right\|_{d n} \\
& =d\left(x_{1}+y_{1}, \quad x_{2}+y_{2}+x_{3}+y_{3}+\cdots+x_{n}+y_{n}\right) \\
& \leq d\left(x_{1}+y_{1}, \quad x_{1}+y_{2}+y_{3}+\cdots+y_{n}\right) \\
& +d\left(x_{1}+y_{2}+y_{3}+\cdots+y_{n}, \quad x_{2}+y_{2}+x_{3}+y_{3}+\cdots+x_{n}+y_{n}\right) \\
& =d\left(y_{1}, \quad y_{2}+y_{3}+\cdots+y_{n}\right)+d\left(x_{1}, \quad x_{2}+x_{3}+\cdots+x_{n}\right) \\
& \quad=\left\|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\|_{d n}+\left\|\left[y_{1}, y_{2}, \ldots, y_{n}\right]\right\|_{d n} .
\end{aligned}
$$

Other properties of a norm are clearly satisfied.
Now we state and prove the main result of this section.
Theorem 2.9. Let S be a near vector space, then the following statements hold:
(a) There exists a vector space $R_{n}(S)$ and a map $j_{n}: S \longrightarrow R_{n}(S)$ for $n=$ $2,3,4, \cdots$ such that
(1) j_{n} is injective,
(2) $j_{n}(\alpha x+\beta y)=\alpha j_{n}(x)+\beta j_{n}(y)$ for all $\alpha, \beta \in \mathbb{R}_{+}$and $x, y \in S$,

$$
\begin{align*}
R_{n}(S) & =j_{n}(S)-\left(j_{n}(S)+j_{n}(S)+\cdots+j_{n}(S)\right) \tag{3}\\
& :=\left\{j_{n}\left(x_{1}\right)-\left(j_{n}\left(x_{2}\right)+j_{n}\left(x_{3}\right)+\cdots+j_{n}\left(x_{n}\right)\right): x_{1}, x_{2}, \ldots, x_{n} \in S\right\} .
\end{align*}
$$

(b) If $d: S \times S \longrightarrow \mathbb{R}_{+}$is an invariant metric, then there exists a norm $\|\cdot\|_{d n}$ on $R_{n}(S)$ such that $d(x, y)=\left\|j_{n}(x)-j_{n}(y)\right\|_{d n}$ for all $x, y \in S$.

Proof. By Definition 2.2 and Lemmas 2.3 and 2.4 it is clear that $R_{n}(S)$ is a vector space with additive identity $\left[(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right]$ and additive inverse $-\left[x_{1}, x_{2}, \ldots, x_{n}\right]:=\left[(n-2) x_{1}+x_{2}+x_{3}+\cdots+x_{n}, x_{1}, x_{1}, \ldots, x_{1}\right]$.

Note also that the map $j_{n}: S \longrightarrow R_{n}(S)$, defined by 2.1), has the desired properties. For (3) suppose that $x_{1}, x_{2}, \ldots, x_{n} \in S$ and $z \in S$,

$$
\begin{gathered}
j_{n}\left(x_{1}\right)-\left(j_{n}\left(x_{2}\right)+j_{n}\left(x_{3}\right)+\cdots+j_{n}\left(x_{n}\right)\right)=\left[x_{1}+(n-1) z, z, z, \ldots, z\right] \\
-\left[x_{2}+x_{3}+\cdots+x_{n}+(n-1) z, z, z, \ldots, z\right] \\
\quad=\left[x_{1}+(n-1) z, z, z, \ldots, z\right] \\
+\left[(n-2)\left(x_{2}+x_{3}+\cdots+x_{n}+(n-1) z\right)+(n-1) z, x_{2}+x_{3}+\cdots+x_{n}+(n-1) z, x_{2}+x_{3}\right. \\
\left.+\cdots+x_{n}+(n-1) z, \ldots, x_{2}+x_{3}+\cdots+x_{n}+(n-1) z\right] \\
=\left[x_{1}+(n-1) z, x_{2}+x_{3}+\cdots+x_{n}+z, z, z, \ldots, z\right] \\
\quad=\left[x_{1}+(n-1) z, x_{2}+z, x_{3}+z, \ldots, x_{n}+z\right]=\left[x_{1}, x_{2}, \ldots, x_{n}\right]
\end{gathered}
$$

Therefore

$$
R_{n}(S)=j_{n}(S)-\left(j_{n}(S)+j_{n}(S)+\cdots+j_{n}(S)\right)
$$

To prove part (b), let d be an invariant metric on S, then $\|\cdot\|_{d n}$, defined by 2.2 , is a norm on $R_{n}(S)$. Moreover, by using Lemma 2.8 we prove that $\|\cdot\|_{d n}$ has the desired property:

$$
\begin{aligned}
\left\|j_{n}(x)-j_{n}(y)\right\|_{d n}= & \|[x+(n-1) z, z, z, \ldots, z]-[y+(n-1) z, z, z, \ldots, z]\|_{d n} \\
& =\|[x+(n-1) z, z, z, \ldots, z]+[(n-2)(y+(n-1) z) \\
& +z+\cdots+z, y+(n-1) z, y+(n-1) z, \ldots, y+(n-1) z] \|_{d n} \\
& =\|[x+(n-2) y+n(n-1) z, y+n z, y+n z, \ldots, y+n z]\|_{d n} \\
& =d(x+(n-2) y+n(n-1) z,(n-1) y+(n-1) n z) \\
& =d(x+(n-2) y,(n-1) y) \\
& =d(x+(n-2) y,(n-2) y+y) \\
& =d(x, y) .
\end{aligned}
$$

Example 2.10. Consider \mathbb{R}_{+}with usual addition and scalar multiplication, we $\operatorname{embed}\left(\mathbb{R}_{+},+,.\right)$into $R_{n}\left(\mathbb{R}_{+}\right)$. Define \sim_{n} on $\underbrace{\mathbb{R}_{+} \times \mathbb{R}_{+} \times \cdots \times \mathbb{R}_{+}}$by $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sim_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \Longleftrightarrow x_{1}+y_{2}+y_{3}+\cdots+y_{n}=y_{1}+x_{2}+x_{3}+\cdots+x_{n}$.
We consider $R_{n}\left(\mathbb{R}_{+}\right)$as the equivalence classes of this equivalence relation and define addition and scalar multiplication on $R_{n}\left(\mathbb{R}_{+}\right)$by

$$
\begin{gathered}
{\left[x_{1}, x_{2}, \ldots, x_{n}\right]+\left[y_{1}, y_{2}, \ldots, y_{n}\right]=\left[x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right],} \\
\lambda \cdot\left[x_{1}, x_{2}, \ldots, x_{n}\right]:= \begin{cases}{\left[\lambda x_{1}, \lambda x_{2}, \ldots, \lambda x_{n}\right],} & \lambda \in \mathbb{R}_{+}, \\
{\left[(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right],} & \lambda=0 \\
-\lambda\left(-\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right), & -\lambda \in \mathbb{R}_{+}\end{cases}
\end{gathered}
$$

In this case $\left(R_{n}\left(\mathbb{R}_{+}\right),+,.\right)$is a vector space with additive identity $\left[(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right]$ and additive inverse $-\left[x_{1}, x_{2}, \ldots, x_{n}\right]:=\left[(n-2) x_{1}+x_{2}+x_{3}+\cdots+x_{n}, x_{1}, x_{1}, \ldots, x_{1}\right]$,
for any $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \underbrace{\mathbb{R}_{+} \times \mathbb{R}_{+} \times \cdots \times \mathbb{R}_{+}}_{n-\text { times }}$. Now, we can embed \mathbb{R}_{+}, for $n=$ $2,3,4, \ldots$, into $\left(R_{n}\left(\mathbb{R}_{+}\right),+,.\right)$with the following embedding:

$$
j_{n}(x)=[x+(n-1) z, z, z, \ldots, z]
$$

for all $x, z \in \mathbb{R}_{+}$.
Note that $d(x, y)=|x-y|$ is an invariant metric on \mathbb{R}_{+}, and $\|\cdot\|_{d n}$ which is defined as bellow, is a norm on $R_{n}\left(\mathbb{R}_{+}\right)$

$$
\left\|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\|_{d n}=\left|x_{1}-\left(x_{2}+x_{3}+\cdots+x_{n}\right)\right|
$$

This embedding, preserves distance, namely:

$$
\begin{aligned}
d(x, y) & =|x-y| \\
& =d_{n}\left(j_{n}(x), j_{n}(y)\right) \\
& =\left\|j_{n}(x)-j_{n}(y)\right\|_{d n}
\end{aligned}
$$

where d_{n} is the induced metric from $\left\|j_{n}(x)-j_{n}(y)\right\|_{d n}$.
Theorem 2.11. Let V be a vector space and $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$ be a basis for V. Then

$$
\left\{j_{n}\left(\alpha_{1}\right), j_{n}\left(\alpha_{2}\right), \ldots, j_{n}\left(\alpha_{k}\right)\right\}
$$

is a basis for $R_{n}(V)$.
Proof. The proof follows easily from the following statements:
(1) If V is a vector space, then $j_{n}(V)$ is onto, because, for any $\left[x_{1}, x_{2}, \ldots, x_{n}\right] \in$ $R_{n}(V)$

$$
\begin{aligned}
j_{n}\left(x_{1}-x_{2}-x_{3}-\cdots-x_{n}\right) & =\left[x_{1}-x_{2}-x_{3}-\cdots-x_{n}, 0,0, \ldots, 0\right] \\
& =\left[x_{1}, x_{2}, \ldots, x_{n}\right]
\end{aligned}
$$

(2) The set $\left\{j_{n}\left(\alpha_{1}\right), j_{n}\left(\alpha_{2}\right), \ldots, j_{n}\left(\alpha_{k}\right)\right\}$ is linearly independent.

In the following theorem, we prove that each j_{n} preserves inner products and completeness.

Theorem 2.12. Suppose that V is an inner product space over F. Then the following assertions hold:
(a) There is an inner product on $R_{n}(V)$ such that j_{n} preserves the inner product.
(b) V is a Hilbert space if and only if $R_{n}(V)$ is a Hilbert space.
(c) If V or $R_{n}(V)$ is finite dimensional, then j_{n} is continuous on V.
(d) If V is a Hilbert space, then $\left(x_{k}\right)_{k \in \mathbb{N}}$ is an orthonormal basis for V if and only if $\left(j_{n}\left(x_{k}\right)\right)_{k \in \mathbb{N}}$ is an orthonormal basis for $R_{n}(V)$.

Proof. (a) Suppose that \langle,$\rangle is an inner product on V$; define \langle,\rangle_{n} for

$$
\left[x_{1}, x_{2}, \ldots, x_{n}\right],\left[y_{1}, y_{2}, \ldots, y_{n}\right] \in R_{n}(V)
$$

by:
$\left\langle\left[x_{1}, x_{2}, \ldots, x_{n}\right],\left[y_{1}, y_{2}, \ldots, y_{n}\right]\right\rangle_{n}=\left\langle x_{1}+y_{2}+y_{3}+\cdots+y_{n}, y_{1}+x_{2}+x_{3}+\cdots, x_{n}\right\rangle$.
It is easy to verify that

$$
\left\langle\left[x_{1}, x_{2}, \ldots, x_{n}\right],\left[y_{1}, y_{2}, \ldots, y_{n}\right]\right\rangle_{n}=\left\langle x_{1}-x_{2}-x_{3}-\cdots-x_{n}, y_{1}-y_{2}-y_{3}-\cdots-y_{n}\right\rangle
$$

So that $\left\langle j_{n}(x), j_{n}(y)\right\rangle=\langle[x, 0,0, \ldots, 0],[y, 0,0, \ldots, 0]\rangle_{n}=\langle x, y\rangle$.
The proof of (b) is easy and (c) follows from [7] Theorem 7B.
(d) Suppose $\left[y_{1}, y_{2}, \ldots, y_{n}\right] \in R_{n}(V)$ is a vector that satisfies the condition

$$
\left\langle\left[y_{1}, y_{2}, \ldots, y_{n}\right], j_{n}\left(x_{k}\right)\right\rangle=0
$$

for all $k \in \mathbb{N}$. Then

$$
\left\langle y_{1}-y_{2}-y_{3}-\cdots-y_{n}, x_{k}\right\rangle=0
$$

so

$$
y_{1}-y_{2}-y_{3}-\cdots-y_{n}=0
$$

or

$$
y_{1}=y_{2}+y_{3}+\cdots+y_{n} .
$$

Therefore

$$
\left[y_{1}, y_{2}, \ldots, y_{n}\right]=0_{R_{n}(V)}
$$

Similarly, if $x \in V$ is a vector that satisfies the condition $\left\langle x, x_{k}\right\rangle=0$ for all $k \in \mathbb{N}$, then $\left\langle j_{n}(x), j_{n}\left(x_{k}\right)\right\rangle=0$ and so $j_{n}(x)=0_{R_{n}(V)}$, therefore $x=0$.

3. Near vector lattices

This section is devoted to the study of partially ordered near vector spaces, as well as vector lattices.

Definition 3.1. A partially ordered set (P, \leq) is called a join-semilattice if the least upper bound (join) of x and y, denoted $x \vee y$, exists for all $x, y \in P$. Moreover, if it has the greatest lower bound (meet) of x and y; denoted $x \wedge y$, then P is called a lattice.

Definition 3.2. Let S be a near vector space. If (S, \leq) is a partially ordered set such that \leq is compatible with addition and multiplication by positive scalars; i.e., for all x, y,

$$
x \leq y \Longrightarrow\left\{\begin{array}{l}
x+z \leq y+z \\
\alpha x \leq \alpha y
\end{array}\right.
$$

Then S is called an ordered near vector space. If S is an ordered near vector space and (S, \leq) is a join-semilattice for which

$$
(x \vee y)+z=(x+z) \vee(y+z), \quad x, y, z \in S
$$

then S is called a near vector lattice.
A Riesz space, a lattice-ordered vector space or a vector lattice is defined similarly.

Definition 3.3. Let $d: S \times S \longrightarrow \mathbb{R}_{+}$be an invariant metric on a near vector lattice S. Then d is said to be a Riesz metric on S provided that
(i) $x \leq y \leq z \Longrightarrow d(x, y) \leq d(x, z)$, and
(ii) $d(x, y)=d(2(x \vee y), x+y)$ for all $x, y, z \in S$.

Moreover if $\|\cdot\|: E \longrightarrow \mathbb{R}_{+}$is a (semi) norm, then $\|\cdot\|: E \longrightarrow \mathbb{R}_{+}$is called a Riesz (semi) norm, provided that $x, y \in E$ and $0 \leq y \leq x$, then $\|y\| \leq\|x\|$, and $\||x|\|=\|x\|$ for all $x \in E$.

Let (S, \leq) be an ordered near vector space, we define
$\left[x_{1}, x_{2}, \ldots, x_{n}\right] \leq_{n}\left[y_{1}, y_{2}, \ldots, y_{n}\right] \Longleftrightarrow x_{1}+y_{2}+y_{3}+\cdots+y_{n} \leq y_{1}+x_{2}+x_{3}+\cdots+x_{n}$, for all $\left[x_{1}, x_{2}, \ldots, x_{n}\right],\left[y_{1}, y_{2}, \ldots, y_{n}\right] \in R_{n}(S)$.
Lemma 3.4. Let (S, \leq) be an ordered near vector space, then $\left(R_{n}(S), \leq_{n}\right)$ is an ordered vector space.

Proof. For all $\left[x_{1}, x_{2}, \ldots, x_{n}\right],\left[y_{1}, y_{2}, \ldots, y_{n}\right],\left[z_{1}, z_{2}, \ldots, z_{n}\right] \in R_{n}(S)$ if $\left[x_{1}, x_{2}, \ldots, x_{n}\right] \leq_{n}\left[y_{1}, y_{2}, \ldots, y_{n}\right] \leq_{n}\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ then we have

$$
x_{1}+y_{2}+y_{3}+\cdots+y_{n} \leq y_{1}+x_{2}+x_{3}+\cdots+x_{n}
$$

and

$$
y_{1}+z_{2}+z_{3}+\cdots+z_{n} \leq z_{1}+y_{2}+y_{3}+\cdots+y_{n}
$$

which imply
$x_{1}+y_{2}+y_{3}+\cdots+y_{n}+z_{2}+z_{3}+\cdots+z_{n} \leq y_{1}+x_{2}+x_{3}+\cdots+x_{n}+z_{2}+z_{3}+\cdots+z_{n}$ and
$y_{1}+z_{2}+z_{3}+\cdots+z_{n}+x_{2}+x_{3}+\cdots+x_{n} \leq z_{1}+y_{2}+y_{3}+\cdots+y_{n}+x_{2}+x_{3}+\cdots+x_{n}$.
From these inequalities we get
$x_{1}+y_{2}+y_{3}+\cdots+y_{n}+z_{2}+z_{3}+\cdots+z_{n} \leq z_{1}+y_{2}+y_{3}+\cdots+y_{n}+x_{2}+x_{3}+\cdots+x_{n}$.
Thus

$$
\left[x_{1}+y_{2}+y_{3}+\cdots+y_{n}, x_{2}+y_{2}, x_{3}+y_{3}, \ldots, x_{n}+y_{n}\right] \leq_{n}\left[z_{1}, z_{2}, \ldots, z_{n}\right]
$$

and, $\left[x_{1}, x_{2}, \ldots, x_{n}\right] \leq_{n}\left[z_{1}, z_{2}, \ldots, z_{n}\right]$. Other properties of an ordered vector space easily follow.

If E is a vector lattice, then $E_{+}:=\{x \in E: x \geq 0\}$ denotes the positive cone of E. Furthermore, $x^{+}:=x \vee 0, x^{-}:=(-x) \vee 0$ and $|x|:=x \vee(-x)$ are the positive part, negative part and absolute value of $x \in E$, respectively.
Theorem 3.5. If S is a near vector lattice, then we have:
(a) $R_{n}(S)$ is a vector lattice, with positive cone

$$
R(S)_{+}:=\left\{\left[x_{1}, x_{2}, \ldots, x_{n}\right]: x_{2}+x_{3}+\cdots+x_{n} \leq x_{1}\right\}
$$

in which the following equalities hold:
(1) $\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{+}=\left[x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right), x_{2}, x_{3}, \ldots, x_{n}\right]$,
(2) $\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{-}=\left[\left(x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right)\right)+(n-2) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right]$,
(3) $\left|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right|=\left[2\left(x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right)\right), x_{1}+x_{2}, x_{3}, x_{4}, \ldots, x_{n}\right]$,
(4) $\left[x_{1}, x_{2}, \ldots, x_{n}\right] \vee\left[y_{1}, y_{2}, \ldots, y_{n}\right]=\left[\left(x_{1}+y_{2}+y_{3}+\cdots+y_{n}\right)\right.$

$$
\left.\vee\left(y_{1}+x_{2}+x_{3}+\cdots+x_{n}\right), x_{2}+y_{2}, x_{3}+y_{3}, \ldots, x_{n}+y_{n}\right]
$$

(5) $\left[x_{1}, x_{2}, \ldots, x_{n}\right] \wedge\left[y_{1}, y_{2}, \ldots, y_{n}\right]=\left[x_{1}+x_{3}+x_{4}+\cdots+x_{n}+y_{1}\right.$,
$\left.\left(x_{1}+y_{2}+y_{3}+\cdots+y_{n}\right) \vee\left(y_{1}+x_{2}+x_{3}+\cdots+x_{n}\right), x_{3}, x_{4}, \ldots, x_{n}\right]$,
(6) $\left[x_{1}, x_{2}, \ldots, x_{n}\right] \wedge-\left[x_{1}, x_{2}, \ldots, x_{n}\right]=-\left|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right|$,
(7) $\quad-\left[x_{1}, x_{2}, \ldots, x_{n}\right] \wedge\left[(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right]=-\left[x_{1}, x_{2}, \ldots, x_{n}\right]-$ $\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{-}$.
(b) The embedding $j_{n}: S \longrightarrow R_{n}(S)$ is join preserving.
(c) If $d: S \times S \longrightarrow \mathbb{R}_{+}$is an invariant metric, then d is a Riesz metric on S if and only if $\|\cdot\|_{d n}$ is a Riesz norm on the vector lattice $R_{n}(S)$.

Proof. To prove (1), we note that $\left[x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right), x_{2}, x_{3}, \ldots, x_{n}\right]$ is an upper bound for $\left\{\left[x_{1}, x_{2}, \ldots, x_{n}\right],\left[(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right]\right\}$; since
i) $x_{2}+x_{3}+\cdots+x_{n} \leq x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right)$ we obtain $(n-1) x_{1}+x_{2}+x_{3}, \ldots+x_{n} \leq\left(x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right)\right)+(n-1) x_{1}$, so $\left[(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right] \leq_{n}\left[x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right), x_{2}, x_{3}, \ldots, x_{n}\right]$.
ii) $x_{1} \leq x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right)$, so
$x_{1}+x_{2}+\cdots+x_{n} \leq\left(x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right)\right)+x_{2}+x_{3}+\cdots+x_{n}$
therefore $\left[x_{1}, x_{2}, \ldots, x_{n}\right] \leq_{n}\left[x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right), x_{2}, x_{3}, \ldots, x_{n}\right]$.
iii) If $\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ is also an upper bound for

$$
\left\{\left[x_{1}, x_{2}, \ldots, x_{n}\right],\left[(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right]\right\}
$$

then $\left[x_{1}, x_{2}, \ldots, x_{n}\right] \leq_{n}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$, so

$$
x_{1}+y_{2}+y_{3}+\cdots+y_{n} \leq y_{1}+x_{2}+x_{3}+\cdots+x_{n}
$$

Hence $\left[x_{2}+x_{3}+\cdots+x_{n}, x_{2}, x_{3}, \ldots, x_{n}\right] \leq_{n}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$, which implies that

$$
x_{2}+x_{3}+\cdots+x_{n}+y_{2}+y_{3}+\cdots+y_{n} \leq y_{1}+x_{2}+x_{3}+\cdots+x_{n}
$$

Therefore, from these inequalities we conclude that

$$
\begin{aligned}
& \left(x_{1}+y_{2}+y_{3}+\cdots+y_{n}\right) \vee\left(x_{2}+x_{3}+\cdots+x_{n}+y_{2}+y_{3}+\cdots+y_{n}\right) \leq y_{1}+x_{2}+x_{3}+\cdots+x_{n}, \\
& \text { so } \\
& \left(x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right)\right)+\left(y_{2}+y_{3}+\cdots+y_{n}\right) \leq y_{1}+x_{2}+x_{3}+\cdots+x_{n} \text {, hence } \\
& {\left[x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right), x_{2}, x_{3}, \ldots, x_{n}\right] \leq_{n}\left[y_{1}, y_{2}, \ldots, y_{n}\right] \text {, therefore }} \\
& {\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{+}=\left[x_{1} \vee x_{2}+x_{3}+\cdots+x_{n}, x_{2}, x_{3}, \ldots, x_{n}\right] \text {. }}
\end{aligned}
$$

To prove (2), note that

$$
\begin{aligned}
{\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{-} } & =\left[(n-2) x_{1}+x_{2}+x_{3}+\cdots+x_{n}, x_{1}, x_{1}, \ldots, x_{1}\right]^{+} \\
& =\left[\left((n-2) x_{1}+x_{2}+x_{3}+\cdots+x_{n}\right) \vee(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right] \\
& =\left[\left((n-2) x_{1}+x_{2}+\cdots+x_{n}\right) \vee\left((n-2)+x_{1}\right)+x_{1}, x_{1}, \ldots, x_{1}\right] \\
& =\left[\left(x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right)\right)+(n-2) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right] .
\end{aligned}
$$

This also proves that $R_{n}(S)$ is a vector lattice. It is clear that $R_{n}(S)$ is a vector lattice with positive cone $R(S)_{+}:=\left\{\left[x_{1}, x_{2}, \ldots, x_{n}\right]: x_{2}+x_{3}+\cdots+x_{n} \leq x_{1}\right\}$.
For (3), if E is a vector lattice, we make use of the following well-known equality (see [4, p. 17) in the sequel:
$2(x \vee y)-(x+y)=|x-y|$, so $2(x \vee 0)-(x+0)=|x-0|$ for all $x, y \in E$. Therefore $|x|=2 x^{+}-x$ for all $x \in E$.
Since, $(x-y)^{+}=x \vee y-y$ for all $x, y \in E$ (see [5]) we conclude that $x \vee y=$ $(x-y)^{+}+y$. So (4) is proved.
Parts (5) and (6) can be proved by using the fact that, $x \vee y+x \wedge y=x+y$ for all $x, y \in E$ (see [5]) because $x \wedge y=x+y-(x \vee y)$ so

$$
\left[x_{1}, x_{2}, \ldots, x_{n}\right] \wedge-\left[x_{1}, x_{2}, \ldots, x_{n}\right]=-\left|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right| .
$$

Now (4) and (5) imply that $R_{n}(S)$ is a vector lattice. It is clear that $R_{n}(S)$ is a vector lattice with positive cone $R(S)_{+}:=\left\{\left[x_{1}, x_{2}, \ldots, x_{n}\right]: x_{2}+x_{3}+\cdots+x_{n} \leq x_{1}\right\}$.

To prove (7) we use the fact that $x \vee y+x \wedge y=x+y$ for all $x, y \in E$ (see [5]), so if $x:=-x$ and $y:=0$ then we have

$$
-\left[x_{1}, x_{2}, \ldots, x_{n}\right] \wedge\left[(n-1) x_{1}, x_{1}, x_{1}, \ldots, x_{1}\right]=-\left[x_{1}, x_{2}, \ldots, x_{n}\right]-\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{-}
$$

As for part (b), let $x, y \in S$. Then for any $z \in S$:

$$
\begin{aligned}
j_{n}(x) \vee j_{n}(y) & =[x+(n-1) z, z, z, \ldots, z] \vee[y+(n-1) z, z, z, \ldots, z] \\
& =[(x+(2(n-1)) z) \vee(y+2(n-1) z), 2 z, 2 z, \ldots, 2 z] \\
& =[(x \vee y)+(2(n-1)) z, 2 z, 2 z, \ldots, 2 z] \\
& =[(x \vee y)+(n-1) z, z, z, \ldots, z] \\
& =j_{n}(x \vee y) .
\end{aligned}
$$

To prove (c), suppose that d is a Riesz metric on S and $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in$ S and

$$
\left[y_{2}+y_{3}+\cdots+y_{n}, y_{2}, y_{3}, \ldots, y_{n}\right] \leq_{n}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \leq_{n}\left[y_{1}, y_{2}, \ldots, y_{n}\right]
$$

then $x_{1}+y_{2}+y_{3}+\cdots+y_{n} \leq y_{1}+x_{2}+x_{3}+\cdots+x_{n}$ and,

$$
x_{2}+x_{3}+\cdots+x_{n}+y_{2}+y_{3}+\cdots+y_{n} \leq x_{1}+y_{2}+y_{3}+\cdots+y_{n}
$$

It now follows that

$$
\begin{aligned}
& x_{2}+x_{3}+\cdots+x_{n}+y_{2}+y_{3}+\cdots+y_{n} \leq x_{1}+y_{2}+y_{3}+\cdots+y_{n} \leq y_{1}+x_{2}+x_{3}+\cdots+x_{n}, \\
& \text { so } \\
& d\left(x_{2}+x_{3}+\cdots+x_{n}+y_{2}+y_{3}+\cdots+y_{n}, x_{1}+y_{2}+y_{3}+\cdots+y_{n}\right) \\
& \leq d\left(x_{2}+x_{3}+\cdots+x_{n}+y_{2}+y_{3}+\cdots+y_{n}, y_{1}+x_{2}+x_{3}+\cdots+x_{n}\right) \text {, hence } \\
& d\left(x_{2}+x_{3}+\cdots+x_{n}, x_{1}\right) \leq d\left(y_{2}+y_{3}+\cdots+y_{n}, y_{1}\right) \text {, thus } \\
& d\left(x_{1}, x_{2}+x_{3}+\cdots+x_{n}\right) \leq d\left(y_{1}, y_{2}+y_{3}+\cdots+y_{n}\right) \text {, and finally } \\
& \left\|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\|_{d n} \leq_{n}\left\|\left[y_{1}, y_{2}, \ldots, y_{n}\right]\right\|_{d n} .
\end{aligned}
$$

And from the fact that

$$
\left|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right|=\left[2\left(x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right)\right), x_{1}+x_{2}, x_{3}, x_{4}, \ldots, x_{n}\right]
$$

we have

$$
\begin{aligned}
\left\|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\|_{d n} & =d\left(x_{1}, x_{2}+x_{3}+\cdots+x_{n}\right) \\
& =d\left(2\left(x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right)\right), x_{1}+x_{2}+\cdots+x_{n}\right) \\
& =\left\|\left[2\left(x_{1} \vee\left(x_{2}+\cdots+x_{n}\right)\right), x_{1}+x_{2}, x_{3}, \ldots, x_{n}\right]\right\|_{d n} \\
& =\|\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right] \mid \|_{d n} .\right.
\end{aligned}
$$

Therefore $\|\cdot\|_{d n}$ is a Riesz norm on $R_{n}(S)$.
Conversely, if $\|\cdot\|_{d n}$ is a Riesz norm on $R_{n}(S), x, y, z \in S$ and $x \leq y \leq z$, then for all $x_{1}, x_{2}, \ldots, x_{2 n-6} \in S$ if $y \leq z$, then

$$
x+2 y+z+x_{1}+x_{2}+\cdots+x_{2 n-6} \leq x+y+2 z+x_{1}+x_{2}+\cdots+x_{2 n-6}
$$

Hence,

$$
\begin{gathered}
{\left[y+x_{n-3}+x_{n-2}+\cdots+x_{2 n-6}, x, x_{n-3}, x_{n-2}, \ldots, x_{2 n-6}\right]} \\
\leq_{n}\left[y+2 z+x_{1}+x_{2}+\cdots+x_{n-4}, x, y, z, x_{1}, x_{2}, \ldots, x_{n-4}\right]
\end{gathered}
$$

so

$$
\begin{aligned}
& \left\|\left[y+x_{n-3}+x_{n-2}+\cdots+x_{2 n-6}, x, x_{n-3}, x_{n-2}, \ldots, x_{2 n-6}\right]\right\|_{d n} \\
& \leq_{n}\left\|\left[y+2 z+x_{1}+x_{2}+\cdots+x_{n-4}, x, y, z, x_{1}, x_{2}, \ldots, x_{n-4}\right]\right\|_{d n}
\end{aligned}
$$

and

$$
\begin{aligned}
& d\left(y+x_{n-3}+x_{n-2}+\cdots+x_{2 n-6}, x+x_{n-3}+x_{n-2}+\cdots+x_{2 n-6}\right) \leq \\
& d\left(y+2 z+x_{1}+x_{2}+\cdots+x_{n-4}, x+y+z+x_{1}+x_{2}+\cdots+x_{n-4}\right)
\end{aligned}
$$

Therefore $d(x, y) \leq d(x, z)$. Moreover,

$$
\begin{aligned}
d\left(x_{1}, x_{2}+x_{3}+\cdots+x_{n}\right) & =\left\|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\|_{d n} \\
& =\left\|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\|_{d n} \\
& =\left\|\left[2\left(x_{1} \vee\left(x_{2}+\cdots+x_{n}\right)\right), x_{1}+x_{2}, x_{3}, \ldots, x_{n}\right]\right\|_{d n} \\
& =d\left(2\left(x_{1} \vee\left(x_{2}+\cdots+x_{n}\right)\right), x_{1}+\cdots+x_{n}\right)
\end{aligned}
$$

which shows that d is a Riesz metric on S.
By the same argument as in the previous theorem we obtain the following theorem.

Theorem 3.6. If S is a vector lattice, then the followings hold:
(1) $\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{+}=\left[x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right), x_{2}+x_{3}+\cdots+x_{n}, 0,0, \ldots, 0\right]$,
(2) $\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{-}=\left[\left(x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right)\right), x_{1}, 0,0, \ldots, 0\right]$,
(3) $\left|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right|=\left[2\left(x_{1} \vee\left(x_{2}+x_{3}+\cdots+x_{n}\right)\right), x_{1}+x_{2}+\cdots+x_{n}, 0,0, \ldots, 0\right]$,
(4) $\left[x_{1}, x_{2}, \ldots, x_{n}\right] \vee\left[y_{1}, y_{2}, \ldots, y_{n}\right]=\left[\left(x_{1}+y_{2}+y_{3}+\cdots+y_{n}\right)\right.$
$\left.\vee\left(y_{1}+x_{2}+x_{3}+\cdots+x_{n}\right), x_{2}+x_{3}+\cdots+x_{n}, y_{2}+y_{3}+\cdots+y_{n}, 0,0, \ldots, 0\right]$,

$$
\begin{align*}
& {\left[x_{1}, x_{2}, \ldots, x_{n}\right] \wedge\left[y_{1}, y_{2}, \ldots, y_{n}\right]=\left[x_{1}+y_{1},\left(x_{1}+y_{2}+y_{3}+\cdots+y_{n}\right)\right.} \tag{5}\\
& \left.\quad \vee\left(y_{1}+x_{2}+x_{3}+\cdots+x_{n}\right), 0,0, \ldots, 0\right]
\end{align*}
$$

Example 3.7. As in the previous example, consider \mathbb{R}_{+}with the usual ordering and the join \vee given by $x \vee y=\max \{x, y\}$. Now we have a vector lattice. Moreover, $R_{n}\left(\mathbb{R}_{+}\right)$for each $n=2,3,4, \ldots$ is a vector lattice and embedding j_{n} which is join preserving:
$\left[x_{1}, x_{2}, \ldots, x_{n}\right] \leq_{n}\left[y_{1}, y_{2}, \ldots, y_{n}\right] \Longleftrightarrow x_{1}+y_{2}+y_{3}+\cdots+y_{n} \leq y_{1}+x_{2}+x_{3}+\cdots+x_{n}$,
$\left[x_{1}, x_{2}, \ldots, x_{n}\right] \vee\left[y_{1}, y_{2}, \ldots, y_{n}\right]=\left[\max \left\{\left(x_{1}+y_{2}+y_{3}+\cdots+y_{n}\right),\left(y_{1}+x_{2}+x_{3}+\cdots+\right.\right.\right.$ $\left.\left.\left.x_{n}\right)\right\}, x_{2}+y_{2}, x_{3}+y_{3}, \ldots, x_{n}+y_{n}\right]$,
$\left[x_{1}, x_{2}, \ldots, x_{n}\right] \wedge\left[y_{1}, y_{2}, \ldots, y_{n}\right]=\left[x_{1}+x_{3}+x_{4}+\cdots+x_{n}+y_{1}, \max \left\{\left(x_{1}+y_{2}+y_{3}+\right.\right.\right.$ $\left.\left.\left.\cdots+y_{n}\right) \vee\left(y_{1}+x_{2}+x_{3}+\cdots+x_{n}\right)\right\}, x_{3}, x_{4}, \ldots, x_{n}\right]$.

Note that the metric defined on \mathbb{R}_{+}is a Riesz metric and the norm on $R_{n}\left(\mathbb{R}_{+}\right)$ for each $n=2,3,4, \ldots$, is a Riesz norm.

Theorem 3.8. Let S_{1} and S_{2} be near vector spaces and $T: S_{1} \longrightarrow S_{2}$ be addition preserving. Define $\hat{T}: R_{n}\left(S_{1}\right) \longrightarrow R_{n}\left(S_{2}\right)$ by

$$
\hat{T}\left(\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right)=\left[T\left(x_{1}\right), T\left(x_{2}\right), \ldots, T\left(x_{n}\right)\right] \quad \text { for all } x_{1}, x_{2}, \ldots, x_{n} \in S_{1}
$$

(a) If T is \mathbb{R}_{+}-linear, then \hat{T} is linear.
(b) If d_{1} is an invariant metric on S_{1}, d_{2} is an invariant metric on S_{2} and T is non-expansive, then $\|\hat{T}\| \leq 1$

Proof. For (a) we only need to prove if $\alpha \in \mathbb{R}_{+}$, then

$$
\begin{gathered}
\hat{T}\left(\alpha\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right)=\hat{T}\left(-\alpha\left[(n-2) x_{1}+x_{2}+x_{3}+\cdots+x_{n}, x_{1}, x_{1}, \ldots, x_{1}\right]\right) \\
=\hat{T}\left(\left[(-\alpha(n-2)) x_{1}-\alpha x_{2}-\alpha x_{3}-\cdots-\alpha x_{n},-\alpha x_{1},-\alpha x_{1}, \ldots,-\alpha x_{1}\right]\right) \\
=\left[(-\alpha(n-2))\left(T\left(x_{1}\right)\right)-\alpha\left(T\left(x_{2}\right)+T\left(x_{3}\right)+\cdots+T\left(x_{n}\right)\right),-\alpha T\left(x_{1}\right)\right. \\
\left.-\alpha T\left(x_{2}\right), \ldots,-\alpha T\left(x_{n}\right)\right]=\alpha\left[T\left(x_{1}\right), T\left(x_{2}\right), \ldots, T\left(x_{n}\right)\right] \\
=\alpha \hat{T}\left(\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right)
\end{gathered}
$$

For (b) first we define:

$$
\|\hat{T}\|:=\sup \left\{\left\|\hat{T}\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\|_{d_{2}}:\left\|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\|_{d_{1}} \leq 1\right\}
$$

where

$$
\begin{aligned}
\left\|\hat{T}\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\|_{d_{2}} & =d_{2}\left(T\left(x_{1}\right), T\left(x_{2}\right)+T\left(x_{3}\right)+\cdots+T\left(x_{n}\right)\right) \\
& \leq d_{1}\left(x_{1}, x_{2}+x_{3}+\cdots+x_{n}\right) \\
& =\left\|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\|_{d_{1}} \\
& \leq 1
\end{aligned}
$$

Since T is non-expansive. So

$$
\|\hat{T}\| \leq 1
$$

Let S_{2} be a near vector lattice and S_{1} a nonempty subset of S_{2}. Then S_{1} is said to be a sub-near vector lattice of S_{2} provided that S_{1} is closed under the operations addition, multiplication by positive scalars and join. The notion of sub-near vector space is defined similarly.

Corollary 3.9. If S_{1} is a sub-near vector space (lattice) of a near vector space (lattice) S_{2}, then $R_{n}\left(S_{1}\right)$ is a vector subspace (sublattice) of $R_{n}\left(S_{2}\right)$.

Proof. Since S_{1} is closed under addition and multiplication operations, it is clear that $R_{n}\left(S_{1}\right)$ is closed under this operations, so that $R_{n}\left(S_{1}\right)$ is a vector sublattice of $R_{n}\left(S_{2}\right)$.

4. Filtration, martingales and metric spaces

In this section we study the embedding theorem on filtration and Martingales.
Definition 4.1. Let (P, d) be a metric space and f be a function on P. Then f is called a non-expansive idempotent if for each x and y in $P, d(f(x), f(y)) \leq d(x, y)$ and $f(f(x))=f(x)$.

Definition 4.2. Let (X, d) be a metric space and f be a linear function on X. Then f is called a contractive linear projection if for each x and y in $X, d(f(x), f(y))<$ $d(x, y)$ and $f(f(x))=f(x)$.
Definition 4.3. Let X be a Banach space. If $T_{i}: X \longrightarrow X$ is a contractive linear projection and $T_{i}=T_{i} T_{k}=T_{k} T_{i}$ for each $i \leq k$ where $i, k \in \mathbb{N}$, then the sequence of projections $\left(T_{i}\right)$ is called a BS-filtration on X. If $\left(T_{i}\right)$ is a $B S$-filtration on X, the pair $\left(f_{i}, T_{i}\right)$ is called a martingale in X if $T_{i} f_{k}=f_{i}$ for each $i \leq k$, and $\left(f_{i}\right) \subseteq X$.

This motivates the following definition.

Definition 4.4. Let (P, d) be a complete metric space. A Sequence $\left(\mathcal{E}_{i}\right)$ of nonexpansive idempotents on P is called an $M S$-filtration on P if we have

$$
\mathcal{E}_{i} \mathcal{E}_{k}=\mathcal{E}_{k} \mathcal{E}_{i}=\mathcal{E}_{i} \quad \forall i \leq k
$$

Moreover if there exists $\left(f_{i}\right) \subseteq P$ such that $f_{i}=\mathcal{E}_{i} f_{k}$ for all $i \leq k$, then $\left(f_{i}, \mathcal{E}_{i}\right)$ is called a martingale in P.

It is obvious that $\mathcal{R}\left(\mathcal{E}_{i}\right) \subseteq \mathcal{R}\left(\mathcal{E}_{i+1}\right)$ where $\left(\mathcal{E}_{i}\right)$ is an MS-filtration on P and $\mathcal{R}\left(\mathcal{E}_{i}\right)$ denotes the range of \mathcal{E}_{i}.

Definition 4.5. In Definition 4.4 if we replace (P, d) by (S, d) where S is a complete near vector space with respect to the invariant metric d, each $\left(\mathcal{E}_{i}\right)$ is \mathbb{R}_{+}-linear, and each $\mathcal{R}\left(\mathcal{E}_{i}\right)$ is a (closed) near vector subspace of S, then this set is denoted by $\left(S, d, \mathcal{E}_{i}\right)$ and is called a complete $M S$-filtration space.

Lemma 4.6. Let $\left(S, d, \mathcal{E}_{i}\right)$ be a complete $M S$-filtration space, then $\left(\tilde{\mathcal{E}}_{i n}\right)$ is a $B S$ filtration on $\tilde{R}_{n}(S)$, where $n=2,3,4, \ldots$ and each $\left(\tilde{\mathcal{E}}_{\text {in }}\right)$ is the continuous extension of $\hat{\mathcal{E}}_{\text {in }}$ defined by

$$
\hat{\mathcal{E}}_{i n}\left(\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right)=\left[\mathcal{E}_{i} x_{1}, \mathcal{E}_{i} x_{2}, \ldots, \mathcal{E}_{i} x_{n}\right]
$$

Moreover, $\overline{\bigcup_{i=1}^{\infty} \mathcal{R}\left(\left.\tilde{\mathcal{E}}_{\text {in }}\right|_{j_{n}(S)}\right)}=j_{n}\left(\overline{\bigcup_{i=1}^{\infty} \mathcal{R}\left(\mathcal{E}_{i}\right)}\right)$; the former closure is the $\|\cdot\|_{d n}$ -closure in $\tilde{R}_{n}(S)$ and the latter is the d-closure in S.

Proof. Since \mathcal{E}_{i} is \mathbb{R}_{+}-linear and non-expansive, it follows from Theorem 3.8 that $\hat{\mathcal{E}}_{\text {in }}$ is linear and $\left\|\hat{\mathcal{E}_{i n}}\right\| \leq 1$. As $\mathcal{E}_{i} \mathcal{E}_{k}=\mathcal{E}_{k} \mathcal{E}_{i}=\mathcal{E}_{i}$ for all $i \leq k$, then $\hat{\mathcal{E}}_{\text {in }} \hat{\mathcal{E}}_{k n}=$ $\hat{\mathcal{E}}_{k n} \hat{\mathcal{E}}_{i n}=\hat{\mathcal{E}}_{i n}$ for all $i \leq k$.
As $\left(\tilde{\mathcal{E}}_{\text {in }}\right)$ is the continuous extension to $\tilde{R}_{n}(S)$ of $\hat{\mathcal{E}}_{i n}$, it follows that $\left(\tilde{\mathcal{E}}_{\text {in }}\right)$ is a linear contractive projection with $\left\|\tilde{\mathcal{E}}_{i}\right\| \leq 1$ and $\tilde{\mathcal{E}}_{i} \tilde{\mathcal{E}}_{k}=\tilde{\mathcal{E}}_{k} \tilde{\mathcal{E}}_{i}=\tilde{\mathcal{E}}_{i}$ for all $i \leq k$. Consequently, $\left(\tilde{\mathcal{E}}_{\text {in }}\right)$ is a BS-filtration on $\tilde{R}_{n}(S)$.
It remains to show that $\overline{\bigcup_{i=1}^{\infty} \mathcal{R}\left(\left.\tilde{\mathcal{E}}_{i n}\right|_{j_{n}(S)}\right)}=j_{n}\left(\overline{\bigcup_{i=1}^{\infty} \mathcal{R}\left(\mathcal{E}_{i}\right)}\right)$. We first note that $\mathcal{R}\left(\left.\tilde{\mathcal{E}}_{i n}\right|_{j_{n}(S)}\right)=j_{n}\left(\mathcal{R}\left(\mathcal{E}_{i}\right)\right) \quad$ for all $i \in \mathbb{N}$, because
Let $[k+(n-1) w, w, w, \ldots, w] \in \mathcal{R}\left(\left.\tilde{\mathcal{E}}_{i n}\right|_{j_{n}(S)}\right)$. Then, there are $x, z \in S$ such that $\tilde{\mathcal{E}}_{\text {in }}(z)=\hat{\mathcal{E}}_{\text {in }}(z)=w$ and $\tilde{\mathcal{E}}_{\text {in }}(x)=\hat{\mathcal{E}}_{\text {in }}(x)=k$. Thus

$$
\begin{aligned}
{[k+(n-1) w, w, w, \ldots, w] } & =\tilde{\mathcal{E}}_{i n}([x+(n-1) z, z, z, \ldots, z]) \\
& =\hat{\mathcal{E}}_{\text {in }}([x+(n-1) z, z, z, \ldots, z]) \\
& =\left[\mathcal{E}_{i}(x)+(n-1) \mathcal{E}_{i}(z), \mathcal{E}_{i}(z), \mathcal{E}_{i}(z), \ldots, \mathcal{E}_{i}(z)\right] \\
& =j_{n}\left(\mathcal{E}_{i}(x)\right) \in j_{n}\left(\mathcal{R}\left(\mathcal{E}_{i}\right)\right) .
\end{aligned}
$$

Let $[k+(n-1) w, w, w, \ldots, w] \in j_{n}\left(\mathcal{R}\left(\mathcal{E}_{i}\right)\right)$. Then, there are $x, z \in S$ such that $\tilde{\mathcal{E}}_{\text {in }}(z)=\hat{\mathcal{E}}_{i n}(z)=w$ and $\tilde{\mathcal{E}}_{i n}(x)=\hat{\mathcal{E}}_{i n}(x)=k$. Thus

$$
\begin{aligned}
{[k+(n-1) w, w, w, \ldots, w] } & =\left[\mathcal{E}_{i}(x)+(n-1) \mathcal{E}_{i}(z), \mathcal{E}_{i}(z), \mathcal{E}_{i}(z), \ldots, \mathcal{E}_{i}(z)\right] \\
& =\left[\mathcal{E}_{i}(x+(n-1) z), \mathcal{E}_{i}(z), \mathcal{E}_{i}(z), \ldots, \mathcal{E}_{i}(z)\right] \\
& =\hat{\mathcal{E}}_{i n}([x+(n-1) z, z, z, \ldots, z]) \\
& =\tilde{\mathcal{E}}_{i n}([x+(n-1) z, z, z, \ldots, z]) \in \mathcal{R}\left(\tilde{\mathcal{E}}_{i n} \mid j_{n}(S)\right) .
\end{aligned}
$$

Consequently, $\overline{\bigcup_{i=1}^{\infty} \mathcal{R}\left(\left.\tilde{\mathcal{E}_{i n}}\right|_{j_{n}(S)}\right)}=\overline{\bigcup_{i=1}^{\infty} j_{n}\left(\mathcal{R}\left(\mathcal{E}_{i}\right)\right)}$. By the completeness of S and the continuity of j_{n}, it is readily verified that $\overline{\bigcup_{i=1}^{\infty} j_{n}\left(\mathcal{R}\left(\mathcal{E}_{i}\right)\right)}=j_{n}\left(\overline{\bigcup_{i=1}^{\infty} \mathcal{R}\left(\mathcal{E}_{i}\right)}\right)$. Thus $\overline{\bigcup_{i=1}^{\infty} \mathcal{R}\left(\tilde{\mathcal{E}_{i n}} \mid j_{n}(S)\right)}=j_{n}\left(\overline{\bigcup_{i=1}^{\infty} \mathcal{R}\left(\mathcal{E}_{i}\right)}\right)$.

Lemma 4.7. Let $\left(S, d, \mathcal{E}_{i}\right)$ be a complete $M S$-filtration space, then $\left(f_{i}, \mathcal{E}_{i}\right)$ is a martingale in S (and $\left(f_{i}\right)$ is d-convergent) if and only if $\left(j_{n}\left(f_{i}\right), \tilde{\mathcal{E}}_{\text {in }}\right)$ is a martingale in $\tilde{R}_{n}(S)$ (and $j_{n}\left(\left(f_{i}\right)\right)$ is $\|\cdot\|_{d}$-convergent).
Proof. Recall that $j_{n}(x)=[x+(n-1) z, z, z, \ldots, z]$ for all $x \in S$ and for any $z \in S$. If $\left(f_{i}, \mathcal{E}_{i}\right)$ is a martingale in S, then $\left(j_{n}\left(f_{i}\right), \tilde{\mathcal{E}}_{\text {in }}\right)$ is a martingale in $\tilde{R}_{n}(S)$, because, for $i \leq k$,

$$
\begin{aligned}
\tilde{\mathcal{E}}_{i n} j_{n}\left(f_{k}\right) & =\hat{\mathcal{E}}_{i n}\left[f_{k}+(n-1) z, z, z, \ldots, z\right] \\
& =\left[\mathcal{E}_{i} f_{k}+(n-1) \mathcal{E}_{i} z, \mathcal{E}_{i} z, \mathcal{E}_{i} z, \ldots, \mathcal{E}_{i} z\right] \\
& =\left[f_{i}+(n-1) z, z, z, \ldots, z\right] \\
& =j_{n}\left(f_{i}\right) .
\end{aligned}
$$

Conversely, suppose $\left(j_{n}\left(f_{i}\right), \tilde{\mathcal{E}}_{\text {in }}\right)$ is a martingale in $\tilde{R}_{n}(S)$. Then, for $i \leq k$ we have $\tilde{\mathcal{E}}_{k}\left(j_{n}\left(f_{i}\right)\right)=j_{n}\left(f_{i}\right)$, so $\left[\mathcal{E}_{k} f_{i}+(n-1) \mathcal{E}_{k} z, \mathcal{E}_{k} z, \mathcal{E}_{k} z, \ldots, \mathcal{E}_{k} z\right]=\left[f_{i}+(n-1) z, z, z, \ldots, z\right]$, and hence $\mathcal{E}_{k} f_{i}+(n-1) \mathcal{E}_{k} z+(n-1) z=f_{i}+(n-1) z+(n-1) \mathcal{E}_{k} z$. Therefore $\mathcal{E}_{k} f_{i}=f_{i}$, from which we conclude that $\mathcal{E}_{i} f_{k}=f_{i}$; this in turn means that $\left(j_{n}\left(f_{i}\right), \tilde{\mathcal{E}}_{\text {in }}\right)$ is a martingale in S. It now follows that the martingale $\left(f_{i}, \mathcal{E}_{i}\right)$ is d-convergent if and only if the martingale $\left(j_{n}\left(f_{i}\right), \tilde{\mathcal{E}}_{i n}\right)$ is $\|\cdot\|_{d n}$-convergent in $R_{n}(S)$, because

$$
\begin{aligned}
\lim _{i \rightarrow \infty}\left\|j_{n}\left(f_{i}\right)-j_{n}(f)\right\|_{d n}= & \lim _{i \rightarrow \infty}\left\|\left[f_{i}+(n-1) z, z, \ldots, z\right]-[f+(n-1) z, z, \ldots, z]\right\|_{d n} \\
= & \lim _{i \rightarrow \infty} \|\left[f_{i}+(n-1) z, z, z, \ldots, z\right] \\
& +[(n-2) f+(n-1)(n-1) z, f+(n-1) z, \ldots \\
= & f+(n-1) z] \|_{d n} \\
= & \lim _{i \rightarrow \infty}\left\|\left[f_{i}+(n-2) f, f, \ldots, f\right]\right\|_{d n} \\
= & \lim _{i \rightarrow \infty} d\left(f_{i}+(n-2) f,(n-1) f\right) \\
& d\left(f_{i}, f\right)
\end{aligned}
$$

This completes the proof.
Definition 4.8. Let $\left(S, d, \mathcal{E}_{i}\right)$ be a complete $M S$-filtration space. Denote by $\mathcal{M}_{d}\left(S, \mathcal{E}_{i}\right)$ the set of all martingales $\left(f_{i}, \mathcal{E}_{i}\right)$ in S for which $\left(f_{i}\right)$ is d-convergent. Define $d_{\mathcal{M}}$ by

$$
d_{\mathcal{M}}\left(\left(f_{i}, \mathcal{E}_{i}\right),\left(g_{i}, \mathcal{E}_{i}\right)\right)=\sup _{i \in \mathbb{N}} d\left(f_{i}, g_{i}\right)
$$

for all $\left(f_{i}, \mathcal{E}_{i}\right),\left(g_{i}, \mathcal{E}_{i}\right) \in \mathcal{M}_{d}\left(S, \mathcal{E}_{i}\right)$. Define addition and positive scalar multiplication on $\mathcal{M}_{d}\left(S, \mathcal{E}_{i}\right)$, by

$$
\left(f_{i}, \mathcal{E}_{i}\right)+\left(g_{i}, \mathcal{E}_{i}\right)=\left(f_{i}+g_{i}, \mathcal{E}_{i}\right), \quad \lambda\left(f_{i}, \mathcal{E}_{i}\right)=\left(\lambda f_{i}, \mathcal{E}_{i}\right)
$$

for all $\left(f_{i}, \mathcal{E}_{i}\right),\left(g_{i}, \mathcal{E}_{i}\right) \in \mathcal{M}_{d}\left(S, \mathcal{E}_{i}\right)$ and $\lambda \in \mathbb{R}_{+}$.
It is readily verified that $\left(\mathcal{M}_{d}\left(S, \mathcal{E}_{i}\right), d_{\mathcal{M}}\right)$ is a metric space and $\mathcal{M}_{d}\left(S, \mathcal{E}_{i}\right)$ is a near vector space. We use Rådström's embedding result on the complete MSfiltration spaces $\left(S, d, \mathcal{E}_{i}\right)$ and $\mathcal{M}_{d}\left(S, \mathcal{E}_{i}\right)$. The first problem to deal with is the fact that $R_{n}(S)$ need not be norm complete. So, instead of $R_{n}(S)$ we consider its norm completion $\tilde{R}_{n}(S)$.

Definition 4.9. Let X be a Banach space and $\left(T_{i}\right)_{i \in \mathbb{N}}$ be a $B S$-filtration on X. Denote by $\mathcal{M}_{n c}\left(X, T_{i}\right)$ the set of martingales $\left(f_{i}, T_{i}\right)$ in X for which $\left(f_{i}\right)$ is norm convergent. The addition and scalar multiplication are defined by

$$
\left(f_{i}, T_{i}\right)+\left(g_{i}, T_{i}\right)=\left(f_{i}+g_{i}, T_{i}\right), \quad \lambda\left(f_{i}, T_{i}\right)=\left(\lambda f_{i}, T_{i}\right)
$$

for each $\left(f_{i}, T_{i}\right),\left(g_{i}, T_{i}\right) \in \mathcal{M}_{n c}\left(X, T_{i}\right)$ and $\lambda \in \mathbb{R}$. Moreover, the norm in the vector space $\mathcal{M}_{n c}\left(X, T_{i}\right)$ is defined by

$$
\left\|\left(f_{i}, T_{i}\right)\right\|_{\mathcal{M}}=\sup _{i \in \mathbb{N}}\left\|f_{i}\right\|
$$

Note that $\|.\|_{\mathcal{M}}$ is a norm on $\mathcal{M}_{n c}\left(X, T_{i}\right)$ which makes $\mathcal{M}_{n c}\left(X, T_{i}\right)$ into a Banach space (see [3]). The following result shows how $\mathcal{M}_{d}\left(S, \mathcal{E}_{i}\right)$ and $\mathcal{M}_{n c}\left(X, T_{i}\right)$ are related via the Rådström completion of S.

Theorem 4.10. Let $\left(S, d, \mathcal{E}_{i}\right)$ be a complete $M S$-filtration space and $\left(f_{i}, e_{i}\right) \in$ $M_{d}\left(S, E_{i}\right)$. Then the map $K: \mathcal{M}_{d}\left(S, \mathcal{E}_{i}\right) \longrightarrow \mathcal{M}_{n c}\left(\tilde{R}_{n}(S), \tilde{\mathcal{E}}_{\text {in }}\right)$ defined by

$$
K\left(\left(f_{i}, \mathcal{E}_{i}\right)\right)=\left(j_{n}\left(f_{i}\right), \tilde{\mathcal{E}}_{i n}\right)
$$

is an \mathbb{R}_{+}-linear isometry (into) and $\mathcal{M}_{d}\left(S, \mathcal{E}_{i}\right)$ is complete.
Proof. It is clear that K is injective and \mathbb{R}_{+}-linear. We verify that K is an isometry. Let $\left(f_{i}, \mathcal{E}_{i}\right),\left(g_{i}, \mathcal{E}_{i}\right) \in \mathcal{M}_{d}\left(S, \mathcal{E}_{i}\right)$. Then

$$
\begin{aligned}
d_{\mathcal{M}}\left(\left(f_{i}, \mathcal{E}_{i}\right),\left(g_{i}, \mathcal{E}_{i}\right)\right)= & \sup _{i \in N} d\left(f_{i}, g_{i}\right) \\
= & \sup _{i \in N} d\left(f_{i}+(n-2) g_{i}+n(n-1) z,(n-1) g_{i}+((n-1) n) z\right) \\
= & \sup _{i \in N}\left\|\left[f_{i}+(n-2) g_{i}+n(n-1) z, g_{i}+n z, \ldots, g_{i}+n z\right]\right\|_{d n} \\
= & \sup _{i \in N} \|\left[f_{i}+(n-1) z, z, \ldots, z\right]+\left[(n-2) g_{i}\right. \\
& \left.+(n-1)(n-1) z, g_{i}+(n-1) z, \ldots, g_{i}+(n-1) z\right] \|_{d n} \\
= & \sup _{i \in N}\left\|\left[f_{i}+(n-1) z, z, \ldots, z\right]-\left[g_{i}+(n-1) z, z, \ldots, z\right]\right\|_{d n} \\
= & \left\|\left(\left(\left[f_{i}+(n-1) z, z, \ldots, z\right]-\left[g_{i}+(n-1) z, z, \ldots, z\right]\right), \tilde{\mathcal{E}}_{\text {in }}\right)\right\|_{\mathcal{M}} \\
= & \left\|\left(j_{n}\left(f_{i}\right), \tilde{\mathcal{E}}_{\text {in }}\right)-\left(j_{n}\left(g_{i}\right), \tilde{\mathcal{E}}_{\text {in }}\right)\right\|_{\mathcal{M}}
\end{aligned}
$$

Since $\mathcal{M}_{n c}\left(\tilde{R}_{n}(S), \tilde{\mathcal{E}}_{\text {in }}\right)$ is complete and $j_{n}(S)$ is closed in $\tilde{R}_{n}(S)$, it follows that $\mathcal{M}_{d}\left(S, \mathcal{E}_{i}\right)$ is complete.

References

1. S. Bochner, Partial ordering in the theory of martingales, Ann. of Math. 62(1955), 162-169.
2. W.W.L Chen, Linear functional analysis, Macquarie University, Balaclava, Australia, (2008).
3. S.F. Cullender, C.C.A. Labuschagne, A description of norm-convergent martingales on vector valued L^{p}-spaces, J. Math. Anal. Appl. 23(2006), 119-130.
4. C.C.A. Labuschagne, A Banach lattice approach to convergent integrably bounded set-valued martingales and their positive parts, J. Math. Anal. Appl. 342(2008), 780-797.
5. C.C.A. Labuschagne, A.L. Pinchuck, C.J. van Alten, A vector lattice version of Rådström's embedding theorem, Quaest. Math. 30(2007), 285-308.
6. H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3(1952), 165-169.
7. A.C. Zaanen, Introduction to Operator Theory in Riesz Space, Springer-Verlag, Berlin, (1997).
A. Abkar

Department of Mathemathics, Imam Khomeini International University, Qazvin 34149, Iran

E-mail address: abkar@sci.ikiu.ac.ir
M. Rastgoo

Department of Mathemathics, Imam Khomeini International University, Qazvin 34149, Iran

E-mail address: m.rastgoo89@gmail.com
M.B. Kazemi

Department of Mathemathics, University of Zanjan, P. O. Box 45195-313, Zanjan, Iran E-mail address: mbkazemi@znu.ac.ir

A. AzIZI

Department of Mathemathics, Imam Khomeini International University, Qazvin 34149, Iran

E-mail address: azizi@sci.ikiu.ac.ir

[^0]: 2000 Mathematics Subject Classification. 46B85; 46B99.
 Key words and phrases. Near vector space, near vector lattice, ordered near vector space, invariant metric, inner product space, filtration, martingale.
 © 2017 Ilirias Research Institute, Prishtinë, Kosovë.
 Submitted April 23, 2017. Published September 3, 2017.
 Communicated by Romi Shamoyan.

