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A PENALTY METHOD FOR SOLVING THE MPCC PROBLEM

TEÓFILO M. M. MELO, JOÃO L. H. MATIAS, M. TERESA T. MONTEIRO

Abstract. The main goal of this work is to solve Mathematical Program
with Complementarity Constraints (MPCC) using the penalty technique from

the nonlinear optimization. The hyperbolic penalty method is used to solve

the nonlinear reformulation of the MPCC in which the complementarity con-
straints are gathered into a single constraint and included in the penalty func-

tion. Three algorithms were implemented in MATLAB language using the

penalty technique, two of them use the hyperbolic penalty method in two dif-
ferent approaches and the other implements the l1 penalty. Numerical experi-

ments are performed using a set of AMPL test problems from the MacMPEC

database. A performance comparative analysis with respect to some metrics
is carried out.

1. Introduction

In this paper we consider the Mathematical Program with Complementarity
Constraints (MPCC) which arises from many applications in Engineering and Eco-
nomics [8,21]. They are so predominant in these areas since the concept of comple-
mentarity is related with the notion of system equilibrium. The complementarity
constraints may come from: i) the stationary conditions of an optimization prob-
lem, ii) a game, or iii) a variational inequality. This kind of problem is very difficult
to solve because the usual constraint qualifications necessary to guarantee the al-
gorithms convergence fail in all feasible points [3]. This complexity arises from the
disjunctive nature of the complementarity constraints.

There have been proposed some nonlinear approaches to solve MPCC based
on its equivalent nonlinear problem (NLP) reformulation, starting with the penalty
approaches [2,4,15,23,25], the relaxation schemes [5,16,17,20,27] and the smoothing
schemes [7,13,19]. We also emphasize the work [24] that uses interior point methods,
the ”elastic mode” for nonlinear programming in conjunction with a sequential
quadratic programming (SQP) algorithm [1] and [10], where SQP is guaranteed to,
under relatively mild conditions, quadratically converge near a stationary point.

In this work we apply the hyperbolic penalty method [28] to solve the NLP
reformulation of the MPCC problem where the complementarity constraints are
gathered into a single constraint. This method combines features of both exterior
and interior penalty methods and has the feature of being completely differentiable.
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Three algorithms were implemented in MATLAB language using the penalty strat-
egy, two of them using the hyperbolic penalty and the other the l1 penalty.

This paper is organized as follows. Next section presents the MPCC problem.
The hyperbolic penalty method and the MATLAB algorithms are presented in
Section 3. The numerical experiments carried out with the algorithms are reported
in Section 4. Some conclusions and future work are summarized in Section 5.

2. Problem definition

In this work we consider the MPCC defined as follows:

min
x

f(x)

s.t. ci(x) = 0, i ∈ E,
ci(x) ≥ 0, i ∈ I,
0 ≤ x1 ⊥ x2 ≥ 0,

(MPCC)

where f and c are the nonlinear objective function and constraints functions, respec-
tively, assumed to be twice continuously differentiable functions. A decomposition
x = (x0, x1, x2) of the variables is used, where x0 ∈ Rn (control variables) and
(x1, x2) ∈ R2q (state variables). E and I are two disjoined finite index sets with
cardinality p and m, respectively. The expressions 0 ≤ x1 ⊥ x2 ≥ 0 : R2q → Rq

are the q complementarity constraints.
One common approach to solve (MPCC) is to consider its equivalent nonlinear

program (MPCC-NLP):

min
x

f(x)

s.t. ci(x) = 0, i ∈ E,
ci(x) ≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0,
x1jx2j ≤ 0, j ∈ Q.

(MPCC-NLP)

In this approach the complementarity constraints are replaced by a set of nonlinear
inequalities, such as x1j x2j ≤ 0, j ∈ Q, where Q is a finite index set with cardinality
q. Another NLP approach used by Ralph and Wright [25] is to consider the following
problem formulation (MPCC-NLPC), where the complementarity constraints are
gathered into a single constraint:

min
x

f(x)

s.t. ci(x) = 0, i ∈ E,
ci(x) ≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0,
xT1 x2 ≤ 0.

(MPCC-NLPC)

The main difficulty on solving (MPCC-NLP) and (MPCC-NLPC) is that no feasible
point satisfies the inequalities strictly, this implies that the Mangasarian-Fromovitz
constraint qualification (MFCQ) is violated at every feasible point [26].

3. Penalty method

In this section we present the hyperbolic penalty method developed by Xavier [28]
for solving nonlinear problems with inequality constraints of greater than or equal
type.
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3.1. Hyperbolic penalty method. The method adopts the function:

P (y, r, v) = −ry +
√
r2y2 + v2, (3.1)

with r, v ≥ 0, r → +∞ and v → 0. The graphic representation is an hyperbole with
asymptotes forming angles (π − r) and zero with the horizontal axis with v inter-
cepting the ordinates axis. Figure 1 presents the geometric idea of the hyperbolic
penalty method, i.e., a two phases penalty approach. In the first stage represented
in Figure 1(a), the initial parameter r increases, thus causing a reduction in the
penalty to the points outside the feasible region. Figure 1(b) presents the second
phase where r remains constant and the values of v decrease sequentially.

P

y
0

v

(a) First phase.

P

0

v

y

(b) Second phase.

Figure 1. Geometric idea.

This penalty method can be situated in the context of exterior and interior penal-
ties, where in the first phase, the hyperbolic penalty method is similar to exterior
penalty methods, such as the quadratic loss function [9], and in the second phase,
the behavior resembles the barrier methods such as, for example, the logarithmic
barrier function [12].

The derivative of function (3.1) with respect to y takes the form:

P ′y(y, r, v) = −r +
r2y√

r2y2 + v2
,

varies in the range (−2r, 0) with P ′(0, r, v) = −r for v > 0. When parameter r
increases, the derivative P ′y(y, r, v) decreases for points y < ȳ and increases for

points y > ȳ, where ȳ = v
r

√
−1+

√
5

2 . More properties concerning to function (3.1)

and corresponding proofs can be found in [28].

3.2. Approach to MPCC. In this work we apply the hyperbolic penalty to solve
problem formulation (MPCC-NLPC) by penalizing the complementarity term. A
sequence of the following nonlinear constrained optimization problem (P1) is solved:

min
x

P1(x, r, v)

s.t. ci(x) = 0, i ∈ E,
ci(x) ≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0,

(P1)
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where,

P1(x, r, v) = f(x) + r(xT1 x2) +
√
r2(−xT1 x2)2 + v2,

with r, v ≥ 0, r → ∞ and v → 0. For comparative purpose the following problem
formulation (P2) based on the l1 penalty is considered:

min
x

f(x) + rxT1 x2

s.t. ci(x) = 0, i ∈ E,
ci(x) ≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0,

(P2)

with r > 0 and r → ∞. This formulation is a special case of [1] where the com-
plementarity constraints are removed from the set of constraints and are included
in the penalty function as a penalty term. Furthermore, we also include for the
comparative analysis another approach using the hyperbolic penalty method. In
this case the following penalty function is used:

P3(x, r, v) = f(x) +
∑
j∈Q
−r(−x1jx2j) +

√
r2(−x1jx2j)2 + v2, (3.2)

with r, v ≥ 0, r → ∞ and v → 0 for solving problem (MPCC-NLP) in which the
complementarity constraints are replaced by a set of nonlinear inequalities x1j x2j ≤
0, j ∈ Q.

3.3. MATLAB algorithms. Three algorithms were implemented in MATLAB
language for solving the (MPCC) equivalent problems (MPCC-NLPC) and (MPCC-
NLP) using the penalty strategy. The corresponding code is available on http://

www.norg.uminho.pt/tm/.algorithms/. We start presenting the algorithm named
(A1) that applies the penalty approach to the problem (P1).

Algorithm 1 (A1)

1: Take initial values x0, r0 > 0, v0 > 0, ρ1, ρ2 and tolerances ε1, ε2, ε3.
2: Read problem information: [x0,lb,ub,vd,cl,cu,cv]=amplfunc(prob name).
3: Initialize internal, external iterations (k = 0) and function evaluations counters.
4: repeat
5: Built the penalty function P1(xk, rk, vk) and constraints.
6: Built the gradient of the penalty function P1(xk, rk, vk) and constraints.
7: Run [x,fval,exitflag,output,lambda]=

fmincon(’fph v1’,xk,...,lb,ub,’frest’,options,cl,cu,lb,ub,cv,r,v).
8: Estimate the vector of Lagrange multipliers (⊥).
9: Update internal iterations and function evaluations counters.

10: if x1jx2j >
−vk
1000 , j ∈ Q then

11: vk+1 = vk × ρ1, 0 < ρ1 < 1.
12: else
13: rk+1 = rk × ρ2, ρ2 > 1.
14: end if
15: xk+1 = x.
16: k = k + 1.
17: until xk+1 verify the stopping criterium.

http://www.norg.uminho.pt/tm/.algorithms/
http://www.norg.uminho.pt/tm/.algorithms/
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Notice that, the feasibility test carried out at step 10 concerns only to the com-
plementarity constraints and k at step 16 is the external iterations counter. The
stopping criterium consists on the disjunction of four conditions, i.e., the iterative
process ends if one of them is verified:

I. ‖∇L(xk, λk)‖ ≤ ε1 ∧ ‖h(xk)‖ ≤ ε2
II.

‖xk+1 − xk‖
‖xk+1‖

≤ ε3 ∧
‖fk+1 − fk‖
‖fk+1‖

≤ ε3 ∧ ‖h(xk)‖ ≤ ε2

III. rk ≥ rmax

IV. vk ≤ vmin

(3.3)

where ‖∇L(xk, λk)‖ is the norm of the gradient of the Lagrangian function, ‖h(xk)‖
is the norm of the violation of the complementarity constraints, rmax and vmin are
the limits of the penalty parameters.

To evaluate the stopping criterium it was necessary estimating the Lagrange
multipliers of the complementarity constraints. Consider the Lagrangian function
of the (MPCC) in the following nomenclature:

L(x, λ, λ⊥, λub, λlb) = f(x) +
∑

i∈E∪I
λici(x) + (λ⊥)(xT1 x2) + λTub(x− ub) +

+λTlb(−x+ lb),

where λ, λ⊥, λub and λlb denote the Lagrange multipliers of the equality and
inequality, complementarity, upper and lower bound constraints, respectively. Its
gradient is given by:

∇L(x, λ, λ⊥, λub, λlb) = ∇f(x) +
∑

i∈E∪I
λi∇ci(x) + (λ⊥)∇(xT1 x2) + λub − λlb.

The Lagrangian function of problem (P1) is defined by:

LP1
(x, λ, λ⊥, λub, λlb, r, v) = f(x) + r(xT1 x2) +

√
r2(xT1 x2)2 + v2 +

+
∑

i∈E∪I
λici(x) + λTub(x− ub) + λTlb(−x+ lb).

The corresponding gradient will come as:

∇LP1(x, λ, λ⊥, λub, λlb, r, v) = ∇f(x) + r∇(xT1 x2) +
r2(xT1 x2)∇(xT1 x2)√
r2(xT1 x2)2 + v2

+

+
∑

i∈E∪I
λici(x) + λub − λlb.

To estimate a formula for the Lagrange multipliers of the complementarity con-
straints we start with the following equality at the solution point x∗:

∇L(x∗, λ, λ⊥, λub, λlb) = ∇LP1(x∗, λ, λ⊥, λub, λlb, r, v).

From this equality we obtained the following estimation formula for the Lagrange
multiplier of the complementarity constraint for problem (P1):

λ⊥ = r +
r2(xT1 x2)√

r2(xT1 x2)2 + v2
.



96 T. MELO ET AL.

We now present the algorithm named (A2) that uses the problem formulation (P2)
and is based on the l1 penalty.

Algorithm 2 (A2)

1: Take initial values x0, r0 > 0, ρ3 and tolerances ε1, ε2, ε3.
2: Read problem information: [x0,lb,ub,vd,cl,cu,cv]=amplfunc(prob name).
3: Initialize internal, external iterations (k = 0) and function evaluations counters.
4: repeat
5: Built the penalty function P2(xk, rk, vk) and constraints.
6: Built the gradient of the penalty function P2(xk, rk, vk) and constraints.
7: Run [x,fval,exitflag,output,lambda]=

fmincon(’fpl1 v1’,xk,...,lb,ub,’frest’,options,cl,cu,lb,ub,cv,r).
8: Estimate the vector of Lagrange multipliers (⊥).
9: Update internal iterations and function evaluations counters.

10: rk+1 = rk × ρ3, ρ3 > 1.
11: xk+1 = x.
12: k = k + 1.
13: until xk+1 verify the stopping criterium.

The stopping criterium for (A2) consists on the disjunction of the conditions I,
II, and III from (3.3). To estimate the Lagrange multiplier of the complementarity
constraint, the same strategy as in algorithm (A1) was used, i.e., it was assumed
the following:

∇L(x∗, λ, λ⊥, λub, λlb) = ∇LP2
(x∗, λ, λ⊥, λub, λlb, r).

From this equality it was obtained the estimation formula λ⊥ = r. The Lagrangian
function of problem (P2) is defined by:

LP2
(x, λ, λ⊥, λub, λlb, r) = f(x) + r(xT1 x2) +

∑
i∈E∪I

λici(x) + λTub(x− ub) +

+ λTlb(−x+ lb),

and its corresponding gradient as follows:

∇LP2
(x, λ, λ⊥, λub, λlb, r, v) = ∇f(x) + r∇(xT1 x2) +

∑
i∈E∪I

λici(x) + λub − λlb.

The third algorithm named (A3) uses our second approach with the hyperbolic
penalty method wherein we apply the penalty function (3.2). This algorithm carries
out the same steps as algorithm (A1) and shares the same feasibility test for the
complementarity constraints and stopping criterium (3.3). More details about this
work could be found in [22].

4. Numerical experiments

This section summarizes the numerical experiments with algorithms (A1), (A2)
and (A3) for solving problems formulations (MPCC-NLPC) and (MPCC-NLP).
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4.1. Computational environment. The computational experiments use MAT-
LAB version 8.1 for OS X operating system in version 10.9.4. with a 2.26 GHz
Intel Core 2 Duo with 8 GB of RAM. An AMPL interface was implemented to
link the problem in the format *.nl to MATLAB [14]. To evaluate the algorithms
performance it was selected a set of AMPL [11] test problems from MacMPEC
library containing a vast collection of MPCC problems of different sizes and differ-
ent origins [18]. Table 1 summarizes the features of 102 test problems used in the
numerical experiments and presents the quantile of the distribution of the number
of variables, general constraints and complementarity constraints.

Table 1. Test problems features.

Quantile # variables # constraints # complementarities
1-9 27 50 27

10-99 66 36 67
100-999 9 16 8

The algorithms (A1), (A2) and (A3) were implemented using two iterative pro-
cedures. The inner iterative procedure is performed by the fmincon routine from
MATLAB optimization toolbox that uses the SQP method. The external iterative
procedure is carried out by algorithms (A1), (A2) and (A3).

The initial parameters r0 = 1 and rmax = 1e16 were used in both algorithms
(A1) and (A2), additionally, vmin = 1e-16 was considered in algorithm (A1). To
update the penalty parameters in algorithm (A1) it was considered ρ1 = 0.1 and

ρ2 =
√

10, and in the algorithm (A2) was used ρ3 = 5. Algorithm (A3) considers
the initial parameter r0 = 7 using the same values as in algorithm (A1). The
constants ε1 = 1e − 4 and ε2 = ε3 = 1e − 5 were considered in algorithms (A1),
(A2) and (A3).

Table 2. Stopping criterium.

Stopping criterium 1 2 3 4
(A1) 92 10 0 0
(A2) 93 9 0 -
(A3) 92 9 0 1

Table 2 reports the total number of problems that verified each condition of
the stopping criterium. The results allow to conclude that the Lagrange multipliers
estimation of the complementarity constraints performed well in all the approaches.
Notice that algorithm (A2) does not have condition IV of (3.3).

4.2. Performance profiles. The algorithm (A1) was compared with the algo-
rithms (A2) and (A3) using an application (m-file) developed by Dolan and Moré
[6], which allows to obtain performance profiles graphics of several codes relatively
to one metric.

In this work four metrics to compare the performance of algorithms were used:
the number of internal iterations and function evaluations, concerning the internal
iterative process (fmincon), the number of external iterations and time (CPU) in
seconds for the external cycle of the implemented algorithm.
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The graphics of the performance profiles are presented in Figures 2, 3, 4 and
5 corresponding to external and internal iterations, function evaluations and CPU
time, respectively, using the log scale.

By observing the Figure 2 it is possible to visualize that algorithm (A3) presents
the highest probability of being the optimal solver for about 83% of the problems,
followed by algorithm (A2) with 73% of the problems and algorithm (A3) with 58%
of the problems. For the metric of internal iterations, the algorithms (A2) and (A3)
had the best performance relatively to algorithm (A1). However it is not possible
to visualize which one presents the best behavior as show in Figure 3, since the
lines that represent algorithms (A2) and (A3), cross.
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Figure 2. External iterations.

In terms of function evaluations, as shown in Figure 4, it is clear that algorithm
(A2) presents the highest probability of being the optimal solver for about 60% of
the problems. It is also possible to realize that both algorithms (A1) and (A3) had
a similar behavior. From Figure 5 is possible to see that algorithm (A3) presents
the best behavior having the highest probability of being the optimal solver for
about 50% of the problems with respect to CPU time. It is also possible to observe
that algorithm (A1) and (A2) presented a similar performance.

5. Conclusions and future work

In this work three algorithms for solving the MPCC problem using two ap-
proaches of its NLP equivalent problem formulations are presented. The algorithm
(A1) is still in an improvement phase but some conclusions can already be taken.
The numerical results presented good accuracy in the solution when compared with
the one provided from the set of MacMPEC problems. From the performance pro-
files carried out, it was noticed that the algorithm (A1) has a similar behavior in
terms of CPU time when compared with algorithm (A2) which solves the same
NLP reformulation of the MPCC, however in the other metrics analyzed, it did not
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Figure 3. Internal iterations.
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Figure 4. Function evaluations.

perform as well. As future work we intend to implement a new feasibility test to
update the penalty parameters on the algorithm (A1) and test a set of larger scale
problems.
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Figure 5. CPU time.
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