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ON THE SECOND ORDER DIFFERENTIAL EQUATION

SATISFIED BY PERTURBED CHEBYSHEV POLYNOMIALS

ZÉLIA DA ROCHA

Abstract. In some applications one is led to consider perturbations of or-
thogonal polynomials translated by a modification on the first coefficients of

the second order recurrence relation satisfied by these polynomials. Moreover,
the four Chebyshev families are among the most useful orthogonal sequences

due to their exceptional features. Thus, it is important to clarify and explicit

the properties of perturbed Chebyshev polynomials, in special the second order
linear differential equation that assures their semi-classical character. This is

the main goal of this work. By means of a symbolic algebraic algorithm based

on Stieltjes equations, we are able to explicit new properties for the complete
perturbation of order one and an special perturbation of order two for all four

Chebyshev families.

1. Introduction

In [9], it was systematized a new general method, and the corresponding symbolic
algorithm designated by PSDF , intended to explicit some semi–classical properties
of perturbed second degree forms, namely: the functional equation, the class of
the form, a closed formula for the Stieltjes function, the Stieltjes equation, a struc-
ture relation and the second order linear differential equation. First moments of
perturbed forms are also computed by the algorithm as well as the generating func-
tions for all perturbed Chebyshev. The Chebyshev form of second kind was taken
as study case and new explicit results for two perturbations of order three were
given therein. In fact, the four Chebyshev forms [15,16,35] are the most important
cases of second degree forms [31] due to their remarkable properties and utility in
applied mathematics, physic and other sciences [20], whereas the family of second
kind is the simplest of the four forms of Chebyshev for the purposes of perturbation,
because it is self-associated [33]. Thus, it was natural to start by studying this case
that is often treated in the literature.
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In this work, by applying PSDF algorithm, we give new explicit results for the
complete perturbation of order one and a perturbation of order two of the second
kind Chebyshev form. Both perturbations allow to obtain easily the results for
the other three forms of Chebyshev. For that purpose, we take advantage of the
fact these last forms can be considered as perturbed of the form of second kind.
The complete perturbation of order one includes as particular cases most of the
perturbations treated in literature. The perturbation of order two includes the
complete perturbation by dilatation of the same order that preserves the symmetry
property of the original sequence. Furthermore, perturbations by dilatation are
very common in applications [12,24].

The so-called perturbation corresponds to a modification on the first coefficients
of the recurrence relation of order two satisfied by orthogonal polynomial sequences.
This transformation can promote a deep change of properties; nevertheless there is a
large set of forms that are preserved by perturbation: the second degree forms [30].
Moreover, a second degree form is also a semi–classical one [27]. The aforementioned
method is based on this crucial fact. It is worthy to mention that among the classical
forms [7,28,29] only certain Jacobi forms are of second degree [3] and that the four
Chebyshev forms are particular cases of Jacobi forms. From them other second
degree forms can be generated by applying several transformations [3, 30, 31, 34].
Furthermore, all self-associated forms are also of second degree [33].

We notice that perturbed orthogonal polynomials have some applications [12,21,
22,24,40], which motivate further their study. In fact, during the last years, several
authors have worked on this subject considering perturbations of several orders with
respect to classical [7,28,29], semi-classical [26,27], Laguerre-Hahn [1,2] and others
families, studying several properties like Stieltjes functions, structure relations and
differential equations, separation and distribution functions of zeros and integral
representations among others. With respect to the co-recursive case (the perturba-
tion of order 0), we would like to cite [6,7,19,22,38,40], for the co-dilated situation
refer to [12, 34], for the co-modified [10, 11, 37], for the generalized co-polynomials
see [5, 13, 24]. Also, we call the attention to the general references [36, 41]. More-
over, there are some specific works about perturbed Chebyshev families namely [34]
on the co-dilated case of the second kind form and [31, 39] concerning all the four
forms.

Let us summarize the content of this article. In Section 2, we establish the
theoretical framework, we recall briefly the mathematical background necessary
to understand the subject of perturbed second degree forms following closely the
references [1–3, 9, 26–28, 30, 31]. In particular, we have collected the formulas and
procedures that allow to compute the results furnish herein. In the next section,
we present the above mentioned properties leading, in particular, to the second
order differential equation of the perturbed Chebyshev form of second kind and
we show how we can obtain easily the corresponding results for the other three
forms of Chebyshev. These results were derived by applying the PSDF algorithm
in the algebraic manipulator Mathematicar. We notice that in applications often
one is interested in specific values of the parameters of perturbation, in such a way
the formulas given herein become much more simple. We finish this section with
some graphical representations. At last, we propose some open problems concerning
other important unknown properties of perturbed Chebyshev polynomials.
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2. Theoretical framework

There are really four sequences of Chebyshev polynomials, not just two. They
are called Chebyshev polynomials of first (Tn), second (Un), third (Vn) and fourth
(Wn) kinds. W. Gaustchi [15] named these last two sequences in this way, before
they had been designated as airfoil polynomials (see, e. g., [14]).

Their trigonometric definitions are

Tn(x) =
1

2n−1
cosnt , Un(x) =

1

2n
sin(n+ 1)t

sin t
, (2.1)

Vn(x) =
1

2n
cos(n+ 1

2 )t

cos 1
2 t

, Wn(x) =
1

2n
sin(n+ 1

2 )t

sin 1
2 t

, (2.2)

where x = cos t, t ∈ [0, π], n ≥ 0. Notice that, in this work, we always consider
monic polynomials, i.e., with unit leading coefficient, thus some normalization con-
stants must appear in the preceding definitions. From (2.1) and (2.2) is trivial to
obtain explicit formulas for zeros. Also, using some trigonometric identities, it can
be shown that these families satisfy the following initial conditions and recurrence
relation of order two [35]{

P0(x) = 1 , P1(x) = x− β0 ,
Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x) , γn+1 6= 0 , n ≥ 0 ,

(2.3)

with the recurrence coefficients

Tn : βn = 0 , n ≥ 0 , γ1 =
1

2
, γn+1 =

1

4
, n ≥ 1 , (2.4)

Un : βn = 0 , n ≥ 0 , γn+1 =
1

4
, n ≥ 1 , (2.5)

Vn : β0 = 1
2 , βn = 0 , n ≥ 1 , γn+1 =

1

4
, n ≥ 0 , (2.6)

Wn : β0 = − 1
2 , βn = 0 , n ≥ 1 , γn+1 =

1

4
, n ≥ 0 . (2.7)

We remark that Un has the most simple recurrence coefficients.
A polynomial sequence {Pn}n≥0 is symmetric if and only if

Pn(−x) = (−1)nPn(x) , n ≥ 0.

If (2.3) is verified, symmetry is equivalent to βn = 0, n ≥ 0 [7]. Thus, Tn and Un
are symmetric and Vn and Wn are not (see symmetries in graphical representations
in Figure 1).

The so-called r-associated sequence of a sequence {Pn}n≥0 satisfying (2.3) is a

sequence {P̃n}n≥0 defined by [7, 27]{
P

(r)
0 (x) = 1 , P

(r)
1 (x) = x− β(r)

0 ,

P
(r)
n+2(x) = (x− β(r)

n+1)P
(r)
n+1(x)− γ(r)n+1P

(r)
n (x) , n , r ≥ 0 ,

where

β(r)
n = βn+r , γ

(r)
n+1 = γn+1+r , n , r ≥ 0 .

Thus, T
(1)
n ≡ V

(1)
n ≡ W

(1)
n ≡ Un. Moreover, U

(r)
n ≡ Un , ∀r ≥ 0, i.e., Un is a

self-associated sequence [33].
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The so-called r-perturbed sequence of a sequence {Pn}n≥0 satisfying (2.3) is a

sequence {P̃n}n≥0 defined by [27]{
P̃0(x) = 1 , P̃1(x) = x− β̃0 ,
P̃n+2(x) = (x− β̃n+1)P̃n+1(x)− γ̃n+1P̃n(x) , n ≥ 0 ,

where r ≥ 0 and

β̃0 = β0 + µ0 ,

β̃n = βn + µn , µn ∈ C ; γ̃n = λnγn , λn ∈ C− {0} , 1 ≤ n ≤ r ,
β̃n = βn ; γ̃n = γn , n ≥ r + 1 .

Either µr 6= 0 or λr 6= 1. With the notation µ := (µ1, · · · , µr), λ := (λ1, · · · , λr),
r ≥ 1, we put

P̃n(x) ≡ Pn
(
µ0;

µ1, · · · , µr
λ1, · · · , λr

; r

)
(x) ≡ Pn

(
µ0;

µ

λ
; r
)

(x) , n ≥ 0 .

When r = 0, the perturbed sequence is usually designated as co-recursive sequence

[6, 7] and it is noted by P̃n ≡ Pn(µ0). In this manner, from (2.4)-(2.7), we can
consider that Tn, Vn and Wn are perturbed of Un as follows

Tn ≡ Un
(

0;
0

2
; 1

)
, Vn ≡ Un

(
1

2

)
, Wn ≡ Un

(
−1

2

)
.

Then, perturbed of Tn, Vn and Wn can be taken as perturbed of Un with other
values of the parameters of perturbation (the order of perturbation can eventually
change).

A closed formula for the generating function f̃(x, t) =
∑
n≥0 P̃n(x)tn of any

perturbed Chebyshev sequence of order r, r ≥ 0, is [9, Sec.4]

f̃(x, t) =

∑r+1
n=0 P̃k(x)tk − xt

∑r
n=0 P̃k(x)tk + 1

4 t
2
∑r−1
n=0 P̃k(x)tk

1 + t( 1
4 t− x)

. (2.8)

If r = 0, then
∑r−1
n=0 P̃k(x)tk = 0.

By Shohat-Favard’s theorem [7, 8, 25], a polynomial sequence {Pn}n≥0 satisfies
a recurrence relation of type (2.3) if and only if there is a form u ∈ P ′, the dual
space of the vector space of polynomials with coefficients in C, such that

< u,PnPm >= knδn,m , n,m ≥ 0 ; kn 6= 0 , n ≥ 0 ,

and we say that {Pn}n≥0 is a orthogonal polynomial sequence with respect to u and
that u is a regular form.

We note that the associated sequence {P (1)
n }n≥0 and the perturbed sequence

{P̃n}n≥0 are orthogonal with respect to the co-called associated form u(1) and the

perturbed form ũ = u
(
µ0;

µ

λ
; r
)

, respectively. These forms are related to the

original form u [27].
An orthogonal sequence {Pn}n≥0 with respect to u is real if and only if βn ∈ R

and γn+1 ∈ R − {0}. These conditions are equivalent to (u)n =< u, xn > ∈ R,
n ≥ 0, then u is real. If, in addition, we suppose that γn+1 > 0, n ≥ 0, we say
that u is positive definite. All Chebyshev forms are positive definite. {Pn}n≥0 is
symmetric if and only if (u)2n+1 = 0, n ≥ 0 [7].

Let us represent by T , U , V and W the forms with respect to which Tn, Un, Vn
and Wn are orthogonal, normalized by the condition (u)0 = 1. They are particular
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cases of classical Jacobi forms denoted by J (α, β). A Jacobi form is regular if and
only if α 6= −n, β 6= −n, α+ β 6= −(n+ 1), n ≥ 1; it is positive definite if and only
if α+ 1 > 0 and β+ 1 > 0; it is symmetric for α = β and has the following integral
representation for Re(1 + α) > 0 and Re(1 + β) > 0 [7, 28,29]

< J (α, β), f >=
1

2α+β+1

Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)

∫ 1

−1
(1 + x)α(1− x)βf(x)dx .

Following Hahn property [17, 18], a classical sequence is every orthogonal se-

quence, {Pn(x)}n≥0, whose derivative sequence,
{
P ′

n+1(x)

n+1

}
n≥0

, is also orthogonal.

The Böchner [4] characterization of classical families states that an orthogonal poly-
nomial sequence is classical if and only if there are two polynomials Φ and ψ and a
sequence {λn}n≥0, λn 6= 0, n ≥ 0, such that

Φ(x)P ′′n+1(x)− ψ(x)P ′n+1(x) = λnPn+1(x), n ≥ 0 , (2.9)

with deg Φ ≤ 2 and degψ = 1. In the Jacobi case, [7, 28,29]

Φ(x) = x2 − 1 , ψ(x) = −(α+ β + 2)x+ α− β , λn = (n+ 1)(n− ψ′(0)) 6= 0 .

This characterization was generalized in [23,32]. There are four classes of classical
sequences [28, 29]: they are the families of Hermite, Laguerre, Bessel and Jacobi.
Jacobi includes Gegenbauer (α = β), Legendre (α = β = 0) and Chebyshev se-
quences of first (α = β = − 1

2 ), second (α = β = 1
2 ), third (α = 1

2 , β = − 1
2 ) and

fourth (α = − 1
2 , β = 1

2 ) kinds.
Classical forms are semi-classical forms of class 0. A form u is called semi-

classical (SC) [26,27] if it is regular and satisfies the functional equation

(Φu)′ + ψu = 0 , (2.10)

where (Φ, ψ) is a pair of polynomials, such that Φ is monic, t = deg Φ, and p =
degψ ≥ 1. The class of u is the minimum integer that satisfies s = max(p−1, t−2).
The class of a form is unique, but Φ and ψ are not [27]. The sequence {Pn}n≥0
orthogonal with respect to u is also called semi-classical of class s. In (2.10) two
operations on P ′ appear [26]: the left product of a form by a polynomial and the
derivative of a form defined by transposition from the corresponding operations on
P as < fu, p >=< u, fp > and < u′, p >= − < u, p′ >, f, p ∈ P.

Semi-classical forms are particular cases of Laguerre-Hahn forms [1, 2, 27]. A
form u is a Laguerre-Hahn if it is regular and its formal Stieltjes function S

(
u
)
(z) =

−
∑
n≥0

(u)n
zn+1 satisfies the so-called Stieltjes equation

A(z)S′
(
u
)
(z) = B(z)S2

(
u
)
(z) + C(z)S

(
u)(z) +D(z) , (2.11)

where A, B, C and D are polynomials. The sequence {Pn}n≥0 orthogonal with
respect to u is also called a Laguerre-Hahn sequence. If A = 0, then the form u
is called a second degree form (SD) [27, 30]. If A 6= 0 and supposed monic, we let
A = Φ. Then if B 6= 0, the form u is called a strict Laguerre-Hahn form, whereas
if B = 0, the form u is semi-classical. In this last case, (2.10) is equivalent to the
following equation [27]

A(z)S′
(
u
)
(z) = C(z)S

(
u)(z) +D(z) , (2.12)
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with A(z) = Φ(z), C(z) = −Φ′(z)−ψ(z), D(z) = −
(
uθ0Φ

)′
(z)−

(
uθ0ψ

)
(z) , where

in D(z) intervenes the right product of a form by a polynomial defined by [26](
up
)
(x) =< u,

xp(x)− ξp(ξ)
x− ξ

> and
(
θcp
)
(x) =

p(x)− p(c)
x− c

, p ∈ P , c ∈ C .

Perturbation is a transformation that preserves the quadratic property of the
Stieltjes equation (2.11) with A = 0, in other words, if u is a second degree form,
then ũ is also of second degree, because it fullfils [30]

B̃(z)S2
(
ũ
)
(z) + C̃(z)S

(
ũ
)
(z) + D̃(z) = 0, (2.13)

with

krB̃(z) = B(z)X2
r (z)− C(z)Xr(z)Yr(z) +D(z)Y 2

r (z), (2.14)

krC̃(z) = 2
{
B(z)Ur(z)Xr(z) +D(z)Vr(z)Yr(z)

}
(2.15)

−C(z)
{
Ur(z)Yr(z) + Vr(z)Xr(z)

}
, (2.16)

krD̃(z) = B(z)U2
r (z)− C(z)Ur(z)Vr(z) +D(z)V 2

r (z), (2.17)

where kr is a normalization constant chosen in order to make B̃ monic and

Ur(z)=γr

{
P̃

(1)
r−1(z)P

(1)
r−2(z)− λrP (1)

r−1(z)P̃
(1)
r−2(z)

}
−µrP (1)

r−1(z)P̃
(1)
r−1, (2.18)

Vr(z)=γr

{
P̃

(1)
r−1(z)Pr−1(z)− λrPr(z)P̃ (1)

r−2(z)
}
−µrPr(z)P̃ (1)

r−1(z), (2.19)

Xr(z)=γr

{
P̃r(z)P

(1)
r−2(z)− λrP (1)

r−1(z)P̃r−1(z)
}
−µrP (1)

r−1(z)P̃r(z), (2.20)

Yr(z)=γr

{
P̃r(z)Pr−1(z)− λrPr(z)P̃r−1(z)

}
−µrPr(z)P̃r(z), (2.21)

are the so-called transfer polynomials [27].
A closed formula of the Sieltjes function of the perturbed form ũ is given by [27]

S
(
ũ
)
(z) = −

Ur(z) + Vr(z)S
(
u
)
(z)

Xr(z) + Yr(z)S
(
u
)
(z)

. (2.22)

Second degree forms are also semi-classical, because from (2.11) with A = 0, one

can deduce an equation of the type (2.12) with other coefficients Â(z), Ĉ(z) and

D̂(z) given by [30]

Â(z)=B(z)
{
C2(z)−4B(z)D(z)

}
, (2.23)

Ĉ(z)=2B(z)
{
B′(z)D(z)−D′(z)B(z)

}
+C(z)

{
C ′(z)B(z)−B′(z)C(z)

}
,(2.24)

D̂(z)=B(z)
{
C ′(z)D(z)−D′(z)C(z)

}
+D(z)

{
C ′(z)B(z)−B′(z)C(z)

}
. (2.25)

Thus, in particular, the perturbed of a second degree form is semi-classical and
satisfies an equation of type (2.12) with coefficients given by the preceding equalities

taking B = B̃, C = C̃ and D = D̃ furnished by (2.14)-(2.17).
Any polynomial Pn+1 from a semi-classical sequence of class s satisfies the fol-

lowing second-order linear differential equation [27]

J(x;n)P ′′n+1(x) +K(x;n)P ′n+1(x) + L(x;n)Pn+1(x) = 0 , n ≥ 0 , (2.26)
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with deg J(·;n) ≤ 2s+ 2 , degK(·;n) ≤ 2s+ 1 , degL(·;n) ≤ 2s , n ≥ 0, and

J(x;n) = Φ(x)Dn+1(x), (2.27)

K(x;n) = C0(x)Dn+1(x)−W
(
Φ, Dn+1(x)

)
(x), (2.28)

L(x;n) = W

(
1

2
(Cn+1 − C0), Dn+1

)
(x)−Dn+1(x)

n∑
ν=0

Dν(x), (2.29)

for n ≥ 0, where W (f, g) denotes the wronskian of f and g, and Cn and Dn are
given by [27]

A0(z) = Φ(z) , B0(z) = 0 , C0(z) = C(z) , D0(z) = D(z) , (2.30)

Ar+1(z) = Φ(z) , Br+1(z) = γr+1Dr(z) , (2.31)

Cr+1(z) = −Cr(z) + 2(z − βr)Dr(z) , (2.32)

γr+1Dr+1(z) = −Φ(z) +Br(z)− (z − βr)Cr(z) + (z − βr)2Dr(z) .(2.33)

Reciprocally, when any polynomial Pn+1 from an orthogonal sequence fullfils (2.26),
then the sequence {Pn}n≥0 is semi-classical [27]. Thus, the differential equation
(2.26) assures the semi-classical character of an orthogonal sequence. Furthermore,
any semi-classical sequence {Pn}n≥0 satisfies the following structure relation [27]

Φ(x)P ′n+1(x) =
1

2

(
Cn+1(x)− C0(x)

)
Pn+1(x)− γn+1Dn+1(x)Pn(x), (2.34)

for n ≥ 0, with degCn ≤ s+1, degDn ≤ s, n ≥ 0. Notice that (2.26) corresponds to
the Böchner differential equation (2.9), in the particular case of classical sequences
when no perturbation occurs.

In order to obtain the differential equation (2.26) for perturbed second degree

forms, one should take in (2.30) Φ(z) = Â(z), C(z) = Ĉ(z) and D(z) = D̂(z) given

by (2.23)-(2.25) with B = B̃, C = C̃ and D = D̃ furnished by (2.14)-(2.17).
The coefficients Cn and Dn, for n = 0, 1, . . . until a maximal order nmax can

always be computed recursively from the relations (2.30)-(2.33), but in general it
is not possible to solve analytically these recurrence relations in order to obtain
closed formulas for Cn and Dn, for all n ≥ 0. Otherwise, in the case we have
a model for these formulas, we can use these relations to do a demonstration by
induction. Considering that the coefficients of Cn(z) and Dn(z) in the canonical
basis < 1, z, z2, . . . > are polynomials of limited and fixed degree in n, often of
low degree, it is possible to find those closed formulas from the first few Cn and
Dn, for n = 0, 1, . . . , nmax by an interpolation procedure. The closed formulas
for the coefficients of the differential equation (2.26) are obtained directly from
the closed formulas of Cn and Dn, n ≥ 0 by the identities (2.27)-(2.29), assuming
that it is possible to find a closed formula for the finite summation that appears in
(2.29). Finally, we notice that it is important to factorize the coefficients Jn(x;n),
Kn(x;n) and Ln(x;n), because often there are common factors between them that
can be simplified in the differential equation. We can accomplish all these tasks in
Mathematicar with the algorithm PSDF .

For Jacobi sequences, we have [28,29]

Cn(x) = (2n+ α+ β)x− α2 − β2

2n+ α+ β
, Dn(x) = 2n+ α+ β + 1 n ≥ 0 .

Among the classical forms, only the Jacobi forms J (α, β) corresponding to α =
k − 1

2 and β = l − 1
2 , with k + l ≥ 0 and k, l ∈ Z are of second degree [3,
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Theorem p.445]. The set of second degree forms is closed with respect to several
transformations that preserve the quadratic property of the Stieltjes equation (2.11)
for A = 0 [3,30,31,34]. Among these transformations is the perturbation.

3. New explicit results for the complete perturbation of order one
and a perturbation of order two for the four Chebyshev families

In [9], was systematized a new general method intended to explicit some semi-
classical properties of perturbed second degree forms leading to the second order
linear differential equation. The symbolic algorithm PSDF , corresponding to the
method, is prepared to work for any perturbation and any second degree form and
was implemented in the algebraic manipulator Mathematicar. It is divided into
four main steps. In step 1, we give some starting elements of the original second
degree form u needed in the sequel of computations, they are: the recurrence coef-
ficients (βn, γn+1, n ≥ 0), the closed formula of the Stieljtes function (S(u)(z)) and
the coefficients of the Stieltjes equation as second degree form (BSD(x), CSD(x),
DSD(x), n ≥ 0). After that, in step 2, we do the perturbation, and we compute the
coefficients of the Stieltjes equation of the perturbed form ũ as second degree form

(B̃SD(x), C̃SD(x), D̃SD(x)). For that we need to compute the transfer polynomials
(Ur(x), Vr(x), Xr(x), Yr(x)) and from them we obtain also a closed formula for
the Stieltjes function (S(ũ)(z)). In step 3, we compute some elements of the per-
turbed form as semi-classical form, namely the coefficients of the functional equation

(Φ̃SC(x), ψ̃SC(x)) and of the Stieltjes equation (ÃSC(z), C̃SC(z), D̃SC(z)), and the
class s of ũ. For that, we need some first moments of ũ ((ũ)n, n = 0, . . . , nmax)
obtained in step 2. In the last step, we begin by finding and demonstrating by

induction the closed formulas of the coefficients of the structure equation (C̃SCn (z),

D̃SC
n (z), n ≥ 0). From them, we obtain directly the closed formulas of the coef-

ficients of the differential equation (J̃SC(x;n), K̃SC(x;n), L̃SC(x;n), n ≥ 0), our
main goal in this work. In the particular case of Chebyshev sequences, we are able
to compute closed formulas of the generating functions for any perturbation using
(2.8).

In this section, we give new results, obtained with PSDF , for the complete
perturbation of order 1 and the following perturbation of order two of the second
kind Chebyshev form

U
(
µ0;

µ1

λ1
; 1

)
, µ1 6= 0 or λ1 6= 1, λ1 6= 0;U

(
µ0;

0 , 0

λ1, λ2
; 2

)
, λ1 6= 0, λ2 6= 0, λ2 6= 1,

from which we can easily obtain the results for the other three Chebyshev families
as follows;

T
(
µ0;

µ1

λ1
; 1

)
= U

(
µ0;

µ1

2λ1
; 1

)
,V
(
µ0;

µ1

λ1
; 1

)
= U

(
µ0+

1

2
;
µ1

λ1
; 1

)
,

W
(
µ0;

µ1

λ1
; 1

)
= U

(
µ0−

1

2
;
µ1

λ1
; 1

)
;

T
(
µ0;

0 , 0

λ1, λ2
; 2

)
=U
(
µ0;

0 , 0

2λ1, λ2
; 2

)
,V
(
µ0;

0 , 0

λ1, λ2
; 2

)
=U
(
µ0+

1

2
;

0 , 0

λ1, λ2
; 2

)
,

W
(
µ0;

0 , 0

λ1, λ2
; 2

)
= U

(
µ0−

1

2
;

0 , 0

λ1, λ2
; 2

)
;
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for that purpose the presence of the parameters µ0 and λ1 is essential. In the
perturbation of order two, if we take µ0 = 0, we obtain the complete perturbation
by dilatation of order two that preserves the type of symmetry of the original
sequence.

PSDF algorithm starts from the following elements of U [9, 30,31]

βn = 0 , γn+1 =
1

4
, n ≥ 0 ; S(U)(z) = − 2

z +
√
z2 − 1

;

BSD(x) = 1 , CSD(x) = 4x , DSD(x) = 4 .

In next tables, we give all mentioned new explicit properties for the two pertur-
bations.

We finish this section with an illustration and source of inspiration, we present in
Figure 1 some graphical representations from which we can appreciate the fullness of
interesting properties of perturbed Chebyshev polynomials. We call your attention
to the symmetrical and unsymmetrical aspects, interception points, extremes and
zeros.

Figure 1. Some perturbed of order 2 by dilatation,
(

0; 0, 0
1,λ2

; 2
)

,

with positive parameter λ2 = 3(1)7 (in red) and negative parame-
ter λ2 = −5(1) − 1 (in black), of the four Chebyshev polynomials
(in bleu) of degree n = 8.
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ũ

a
s

se
m

i–
c
la

ss
ic

a
l

fo
rm

fo
r
n
≥

0

J̃
S
C

(n
;x

)
=

B̃
S
D
(x

)
8
µ
1

(x
2
−

1)
{ 8(

1
+

2
n

)µ
1
x
3

+
4
( −1

+
λ
1
−

4
µ
0
µ
1

+
( −1

+
λ
1
−

8µ
0
µ
1
−

4µ
2 1

) n) x
2

+
1

4
µ
1

( 4n
µ
0
−

(2
n
−

1
)λ

1
µ
0
−

4
(n
−

1
)λ

1
µ
1

+
4
(2
n
−

1
)µ

2 0
µ
1

+
1
6
(n
−

1
)µ

0
µ
2 1

) x

−
2
( λ 1+

2
µ
2 0

) +
( −λ2 1

−
4µ

2 0
+

8
λ
1
µ
0
µ
1
−

1
6
µ
2 0
µ
2 1

) n}
,

K̃
S
C

(n
;x

)
=

B̃
S
D
(x

)
8
µ
1

{ 4
( −1

+
λ
1
−

4
µ
0
µ
1

+
( −1

+
λ
1
−

8
µ
0
µ
1
−

4µ
2 1

) n) x
3

+
4{ 4µ

0
−
λ
1
µ
0

+
6
µ
1

+
4
µ
2 0
µ
1

+
2
( 2µ

0
−
λ
1
µ
0

+
6
µ
1
−

2λ
1
µ
1

+
4
µ
2 0
µ
1

+
8
µ
0
µ
2 1

) n
} x

2

+
{ 2
( −4

+
λ
1
−

6
µ
2 0
−

1
6µ

0
µ
1

) +
( −8

+
8
λ
1
−

3
λ
2 1
−

1
2
µ
2 0
−

6
4µ

0
µ
1

+
2
4
λ
1
µ
0
µ
1
−

3
2
µ
2 1
−

4
8µ

2 0
µ
2 1

) n}
x

+
2( µ

0
(4
−
λ
1

+
4
µ
0
µ
1
)

+
2
( 2
µ
0
−
λ
1
µ
0
−

2λ
1
µ
1

+
4
µ
2 0
µ
1

+
8
µ
0
µ
2 1

) n)}
,

L̃
S
C

(n
;x

)
=

B̃
S
D
(x

)
8
µ
1

{ −
8
n

(1
+
n

)(
1

+
2
n

)µ
1
x
3

−
4{ −

1
+
λ
1
−

4µ
0
µ
1

+
3

(−
1

+
λ
1
−

4
µ
0
µ
1
)
n

+
3

(−
1

+
λ
1
−

4µ
0
µ
1
)
n
2

+
( −1

+
λ
1
−

8µ
0
µ
1
−

4µ
2 1

) n3}
x
2

−
2{ 6

(µ
0

+
2
µ
1
)

+
( 1

4
µ
0
−
λ
1
µ
0

+
2
4
µ
1
−

2λ
1
µ
1

+
4
µ
2 0
µ
1

+
8
µ
0
µ
2 1

) n+
3
µ
0

(4
−
λ
1

+
4
µ
0
µ
1
)
n
2

+
2
( 2µ

0
−
λ
1
µ
0
−

2λ
1
µ
1

+
4
µ
2 0
µ
1

+
8
µ
0
µ
2 1

) n3}
x

+
( λ2 1

+
4
µ
2 0
−

8λ
1
µ
0
µ
1

+
1
6
µ
2 0
µ
2 1

) n3
+

6
( λ 1+

2
µ
2 0

) n2
+
( 8

+
4
λ
1
−
λ
2 1

+
8
µ
2 0

+
1
6
µ
0
µ
1

+
8
λ
1
µ
0
µ
1

+
3
2
µ
2 1
−

1
6µ

2 0
µ
2 1

) n−
2

(−
4

+
λ
1
−

4µ
0
µ
1
)
} .



PERTURBED CHEBYSHEV POLYNOMIALS 65

T
a
b
l
e

4
.

R
es

u
lt

s
fo

r
th

e
p

er
tu

rb
a
ti

o
n

o
f

o
rd

er
2

T
h

e
p

e
rt

u
rb

e
d

fo
rm

R
e
c
u

rr
e
n

c
e

c
o
e
ffi

c
ie

n
ts

o
f
ũ
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4. Open problems

There are some other important properties of perturbed Chebyshev polynomials
that are not furnished by PSDF algorithm, namely the integral representation of
perturbed forms and the properties of zeros that are crucial in quadrature formulas
of numerical integration. An integral representation for a perturbation of order
one by dilatation of the Chebyshev family of second kind was recently given in
[34], but the corresponding result for the perturbations treated in this work, in
particular for the dilatation of order two, remain unknown. Some of the results
given herein are the starting point to obtain these properties, namely the closed
formula of the Stieltjes function and the Stieltjes equations in order to deduce
integral representations [34] and the differential equation in order to obtain results
about the distribution function of zeros [24,38].
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Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre n. 687,

4169-007 Porto, Portugal

E-mail address: mrdioh@fc.up.pt


	1. Introduction
	2. Theoretical framework
	3. New explicit results for the complete perturbation of order one and a perturbation of order two for the four Chebyshev families
	4. Open problems
	References

