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COMPUTING QUANDLE COLOURINGS

LUIS CAMACHO, F. MIGUEL DIONISIO, ROGER PICKEN

ABSTRACT. In previous work, results were obtained relating two different knot
invariants, the Alexander polynomial on the one hand, and the number of
quandle colourings using any finite linear Alexander quandle, on the other.
Given such a quandle, specified by two coprime integers n and m, the num-
ber of colourings of a knot diagram is given by counting the solutions of a
matrix equation of the form AX = 0 mod n, where A is the m-dependent
colouring matrix. The same matrix A determines the Alexander polynomial
of the knot. Our previous results were based in part on computations using
an algorithm to reduce A to echelon form, and in part on proving properties
of the matrix equations in their reduced form. When two knots have differ-
ent Alexander polynomials, and their reduced colouring matrices are upper
triangular, we proved that there exists a specific quandle which distinguishes
them by colourings, and conjectured that this would be true without the con-
dition on the reduced form of the colouring matrices. In the present article
we address this issue from a new perspective, using the fact that all colouring
matrices are triangularizable when certain conditions on m and n are met, and
find further support for our conjecture. A description of an improved version
of the algorithm is also presented.

1. INTRODUCTION

The theory of knots has a long and rich history, giving rise to a large number
of different invariants coming from many diverse perspectives. For this reason it
is very important to understand the interconnections between different knot in-
variants, normally not an easy task. In |4, using a combination of calculational
and theoretical approaches, we established results that relate two knot invariants,
namely the classical Alexander polynomial on the one hand, and the number of
quandle colourings using any finite linear Alexander quandle, on the other.

The number of quandle colourings of a knot diagram is a well known invariant of
a knot, introduced independently in [13] and [19] — see also [5] for a recent survey.
An interesting class of quandles are the finite linear Alexander quandles, which are
given by two coprime integers n and m. Thus we can consider the information
contained in the number of such quandle colourings for arbitrary choices of n and
m. A separate invariant of the knot is its Alexander polynomial [1], and in [4]
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we clarify a number of points about the precise relationship between these two
invariants.

Given a finite linear Alexander quandle, the number of quandle colourings of a
knot diagram is given by counting the solutions of a matrix equation of the form
AX = 0, where the entries of the colouring matrix A are Laurent polynomials in
m, and the corresponding linear equations are all taken modulo n. Thus a natural
strategy is to try and reduce A to echelon form. We devised an algorithm (using
the Mathematica programming environment) which does this in such a way as to
preserve a property of the matrix A, namely that its columns add up to zero.
Applying this algorithm to the colouring matrices for all prime knots with up to
10 crossings we found that all the reduced matrices were of just three distinct and
highly specific types, two of which were upper triangular with mostly 1’s on the
diagonal (which we call Type I and Type II), and the third of which was non-
triangular, but upper block triangular, with mainly 1’s on the diagonal along with
a single 2 by 2 non-triangular block. There were only 12 out of 249 prime knots
with up to 10 crossings that gave non-triangular reduced matrices.

Using theoretical methods, we were then able to prove general formulae for the
number of solutions of AX = 0 as a function of n and m, when the reduced matrix
is of Type I or Type II. Since a different knot invariant, the Alexander polynomial,
is given by the determinant of a minor of the same matrix A, the formulae that
we obtained for the Type I or Type II reduced colouring matrices either involve
the Alexander polynomial of the knot, or factors of the Alexander polynomial,
both evaluated at m. This opened the way for proving general results which relate
two different invariants: the Alexander polynomial, and the number of quandle
colourings using any finite linear Alexander quandle [4].

When two knots have different Alexander polynomials, and their colouring ma-
trices can be triangularized (not necessarily only as Type I or Type II matrices),
we proved that they can be distinguished by colourings using a suitable finite linear
Alexander quandle. In [4] we conjectured that, in general, when two knots have
different Alexander polynomials, it is possible to distinguish them with finite linear
Alexander quandle colourings, irrespective of whether their colouring matrices can
be triangularized. In the present article we analyse this issue further, and find
additional results which support our conjecture. We also describe the algorithm
which was used to reduce the colouring matrices A.

The structure of this article is as follows. In section [2| we recall the necessary
background for quandles |13}19] and quandle colourings of knot diagrams [2})5}/11}[12]
181120, focussing on the case of finite linear Alexander quandles. We also introduce
the colouring matrix A associated to a knot diagram, and its role both in computing
the number of quandle colourings and in getting the Alexander polynomial [1L[17].

In section [3] we describe our computations which reduce A to specific echelon or
upper triangular forms, for all prime knots with up to 10 crossings. We observe
that precisely three patterns occur for the reduced matrices: two types of upper
triangular matrices (which we call Type I and Type IT) and a non-triangular form
which is which is block upper triangular containing a single non-triangular 2 x 2
block. When the colouring matrix of a knot diagram is equivalent to a Type I or
Type II upper triangular matrix, the number of quandle colourings, using a finite
linear Alexander quandle specified by two coprime integers m and n, obeys a general
formula.
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In our main Section [4] we recall some results from [4] relating the Alexander
polynomial and the number of colourings invariant, and based on the general for-
mulae for Type I or Type II reduced colouring matrices. We focus on the issue of
whether two knots with different Alexander polynomials can be distinguished by
linear quandle colourings. For knots whose colouring matrix can be reduced to tri-
angular form, we showed in [4] that this is indeed the case, and conjectured that it
is true in general. We note that there are instances of knots whose colouring matrix
can definitely not be reduced to triangular form by means of the allowed opera-
tions, which was one of the main results of [4]. We analyse these cases from a new
perspective, namely that when the parameter m is fixed then all matrices can be tri-
angularized. This does not contradict that fact that there are non-triangularizable
matrices for general m. It means that in such cases there is not one single triangu-
lar matrix that accounts for all values of m but it allows for different matrices for
different values of m. We discuss conditions on the entries of these non-triangular
matrices that allow for triangularization. This analysis lends further support to our
conjecture above.

In the appendix we describe the algorithm used to simplify the colouring matrices
and its input, the Gauss codes for knots up to 10 crossings.

2. BACKGROUND

In this section we recall the definition of a quandle and the notion of quandle col-
oring of a diagram. Below we also present the notions of finite Alexander quandle,
Alexander polynomial and linear finite Alexander quandle. The number of colour-
ings in a linear finite Alexander quandle is the number of solutions of a system of
equations that can be written in matrix form. This matrix is called the colouring
matrix. The determinant of the matrix obtained by removing the last row and the
last column of this colouring matrix is a knot invariant, the Alexander polynomial.

2.1. Quandles and colourings. Colourings of the arcs of oriented knot diagrams
with elements of a quandle generalize mod p labellings of the arcs, that, in turn,
generalize the colorability invariant of R. Fox (with p = 3 colours). They are also a
generalization of arc labellings of oriented knot diagrams with group elements (see,
for instance, [17]). At each crossing the quandle elements labelling the arcs are
related by the quandle operation *. The number of colourings is a knot invariant
since different diagrams of the same knot have the same number of colourings
using a given quandle. Indeed, the definition of a quandle consists of precisely
those properties of the binary operation * that ensure that colourings are preserved
under the Reidemeister moves.

Definition 1 (Quandle). A quandle is a set X endowed with a binary operation,
denoted *, such that:

(a) for any a € X,axa=a f (b) for any a and b € X, there is a unique x € X
such that a = x x b. This element x is denoted by a ' b.

(c) for any a,b and ¢ € X,(axb)xc= (a*c)* (bx*c)

We may use the elements of a quandle to colour the arcs of a knot diagram.

Definition 2 (Quandle colouring of a knot diagram). Let X be a fized finite quan-
dle, K a knot (assumed to be oriented), B a diagram of K and RB the set of arcs
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— —
of D. A quandle colouring of a diagram D is a map C : RB — X such that, at
each crossing:

1 HN ry Y /1 =
\ ToF>THY /ry—m*'y

i.e. if C(r1) =z and C(r) =y, then C(ry) = x xy for the crossing on the left, and
if C(r1) = and C(r) =y, then C(r3) = x "y for the crossing on the right.

Since the knot quandle, coming from the knot itself, is a classifying invariant
for knots (introduced independently by Joyce and Matveev — see [13] and [19]), the
number of quandle colorings associated to a knot diagram, for any fixed quandle,
is a knot invariant.

Theorem 3. Let X be a fized finite quandle, K a knot and D and D’ oriented
diagrams of K. Then the number of colourings C : Rp — X is equal to the
number of colourings C' : Rpr — X.

For a more complete discussion of the results above and related topics see [5[12
1418,20].

2.2. Finite Alexander Quandles. Finite Alexander quandles are the special case
of quandles of the form Z,[t,t~!]/h(t) where n is an integer and h(t) is a monic
polynomial in ¢. These quandles have as elements equivalence classes of Laurent
polynomials with coefficients in Z,,, where two polynomials are equivalent if their
difference is divisible by h(t). The quandle operation is

axb=ta+ (1—-1)b. (1)

Note that this means equality of quandle elements, i.e. equivalence classes of Laurent
polynomials. Recall that ¢ = a #' b is defined to mean the same as a = ¢ * b. From
this it follows easily that

a¥'b=t"ta+ (1 -t (2)

For finite Alexander quandles the colouring condition at each crossing states that
the label of the emerging arc is expressed as a linear combination of the labels of the
other two arcs. Therefore one uses matrices to organize the colouring conditions
(equations).

For that purpose we need an enumeration of the arcs and the crossings. Any
enumeration will do, but to fix ideas we describe one possibility. We choose a
starting arc, labelled 1, and use an enumeration that assigns ¢ + 1 to the emerging
arc where i is the number assigned to the incoming arc (see figure below), except
for the last crossing when the emerging arc is already labelled (by 1). For crossings
we use the enumeration suggested by the enumeration of arcs, i.e. the k-th crossing
is the one with under arc also labelled k.
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Let Xj be the label (in the quandle) of arc k. Then the colouring conditions of
Definition [2| using and , applied to the figure below:

N

\ Xi=X;*X; Xp=X;+'X; /

are, respectively,
Xy = tX;+(1-t)X,
Xy = t'X;+(1-tHX;

The second condition X, = X; +’ X; is equivalent to X; = X x X5, ie. X; =
tXr + (1 — t)X;, and thus the colouring conditions for the crossings in the figure
above can also be expressed as:

tXi+(1-0)X; - X = 0
(1 —t)XZ —Xj +tX]€ = 0

It may happen that two of the arcs labelled i, j, k at a crossing are actually the
same arc, e.g. ¢ = j. In this case, the corresponding terms in the equations above
are combined.

Thus, given an oriented diagram D of a knot K, we can write the colouring
conditions as a matrix equation

AX =0

where X is the vector of colouring unknowns (X1, Xo, ..., X;,... ) and each row in
the matrix A represents a colouring condition for one crossing in D.

Obviously the number of colourings of a diagram in a linear Alexander quandle
is the number of solutions of AX = 0. We will call the matrix A a colouring matrix.
For example,

-1 ¢ 0 1-t1[x 0
1—t t -1 0 X, | o
0 1—-t -1 ¢ Xs |~ |0
-1 0 1-t ¢ X, 0

is the matrix equation corresponding to the following diagram of the knot 4; (the
figure-8 knot):
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Remark 4. We note for future reference that the sum of the columns of any colour-
ing matriz is the zero column (this is obvious from the coefficients in the colouring
conditions).

2.3. The Alexander Polynomial. The Alexander polynomial Alexk (t) of a knot
K is a knot invariant that may be computed in a number of ways [1]. In Livingston
[17] a N x N matrix, where N is the number of crossings (and arcs) in the diagram is
defined. This matrix is exactly the same as the colouring matrix A from the previous
subsection [4], assuming we use the same enumerations for arcs and crossings. The
only difference is the orientation convention used in the two procedures. In any
case, the Alexander polynomial, to be defined next, is independent of all choices,
including the choice of orientation for the diagram.

The Alexander polynomial is essentially obtained by removing the final column
and row of A to obtain a reduced matrix A,., which is non-singular, and taking its
determinant. However different choices for the enumerations and orientation may
lead to different polynomials, which however are always related by multiplying by
a sign or an integer power of t. Thus the Alexander polynomial in the definition to
follow is, in fact, an equivalence class of polynomials.

Definition 5 (From [17]). The (N —1) x (N — 1) matriz A, obtained by removing
the final row and column from the N x N matriz A described above is called the
Alexander matriz of K. The determinant of the Alexander matriz is called the
Alexander polynomial of K, regarded up to equivalence, where two polynomials are
equivalent if they are obtained from each other by multiplying by a sign and/or by
an integer power of t. It is customary to normalize the Alexander polynomial (8]
by choosing the representative with no negative powers of t and a positive constant
term.

Example 6. Applying the definition to the colouring matriz for the knot 41 from
the previous subsection, the Alexander polynomial is —1 + 3t —t2, or in normalized
form 1 — 3t +t2.

3. COMPUTATIONS WITH LINEAR FINITE ALEXANDER QUANDLES

From now on we will be concentrating on quandle colourings using a special class
of quandles, called linear finite Alexander quandles. These are finite Alexander
quandles (see subsection , of the form Z,[t,t=1] / (t —m), where n and m are
integers and n,m are coprime. Recall that the elements are equivalence classes of
Laurent polynomials having the same remainder when divided by ¢ —m. Obviously
the polynomial ¢ is in the same equivalence class as the constant polynomial m,
since t = (t —m) +m. Similarly t~1 is equivalent to m~?! (the inverse of m in Z,),
sincet~!—m~! = —m~ 1t~} (t—m). (Note that m is invertible since gcd(m,n) = 1).
It follows that any polynomial is equivalent to some number in Z,, and that one
can identify Z,[t,t=1] / (t —m) with Z,,. The quandle operation can be written as
a*b=ma+ (1 —-m)b (mod n) and a+ b=m"ta+ (1 —m=1)b (mod n).

Thus the colourings of any knot diagram with elements of a linear finite Alexan-
der quandle are the solutions of the matrix equation

AX =0,
where A is the colouring matrix of subsection [2.2] with ¢ replaced by m, X is the
vector of colouring unknowns (X1, Xo, ..., X;,... ), belonging to Z,, and equalities

hold in Z,, (i.e. equality mod n).
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In this section we summarize our work towards giving explicit formulas for the
number of colourings, which originated in the results of our computations. Firstly
we simplify the original matrix to an equivalent one. The simplified matrices are
“as triangular as possible” (see below) and they are related to the original one by
an equivalence relation that preserves the number of colourings.

Definition 7. Let A and B be N x N matrices with entries in Z,[m,m~t]. We
say B is equivalent to A iff the following two conditions hold:

1) B is obtained from A by a sequence of the following operations:
a) multiplication of a row by m, m~t or —1; b) replacing a row by its
sum with some row; ¢) swapping two rows; d) swapping two columns,
2) |A,| = |B;|, up to equivalence.

It is easy to check that this is indeed an equivalence relation and that it preserves
the number of colourings and also the property that the sum of the columns of the
matrix is the zero vector, as well as preserving the Alexander polynomial. The
first property is useful to derive general expressions for the number of colourings
for certain classes of knots. We have written several algorithms in Mathematica
that reduce the colouring matrix to a standard echelon form. The latest version is
presented in the appendix.

Applying the algorithm to the prime knots with up to 10 crossings, we reduced
their colouring matrices to three kinds of echelon form, which we call Type I, Type
IT and non-triangular. For the two first types a general expression for the number
of colourings can be found.

Type I matrices: These are upper triangular, with 1’s on the diagonal except in
the penultimate row where the entry is denoted a(m), and in the last row which has
all entries equal to zero. The entry a(m) is the normalized Alexander polynomial
of the knot for ¢ equal to m.

Type I
M1 )\12(7’)1) /\1N(m) ]
0 .
bt 0 I Av—2n-1(m) An—2 n(m)
: . 0 a(m) —a(m)
0 0 0 |

In this case, it is easy to find a general expression for the number of linear quandle
colourings, using an arbitrary linear quandle, as the following proposition shows.

Proposition 8. Let K be a Type I knot, and @ be the linear finite Alexander
quandle Q = Zy[t,t=1]/(t —m). Then Cq(K), the number of Q-colourings of K , is
Co(K) =n x ged(Alexg (m),n).

Proof. The proof is straightforward and uses the linear congruence theorem. Details

can be found in [4]. Recall that the Alexander polynomial of a type I matrix is
a(m). O

Type II matrices: These are upper triangular, with 1’s on the diagonal ex-
cept in the antepenultimate and penultimate rows, where the diagonal entries are
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denoted a3 (m) and aq(m), respectively, and in the last row which has all entries
equal to zero. The product aj(m)as(m) is the normalized Alexander polynomial
of the knot for ¢ equal to m.

Type 11
M1 )\12(m) AlN(m) T
0 )
0 1 Av—sz n—2(m) An—3 n—1(m) An—3 n(m)
0 a1 (m) Br(m) —(a1(m) + B1(m))
: : 0 as(m) —ap(m)
Lo 0 0 - 0 |

For Type II knots the process of calculating the number of solutions is similar to
that of Type I knots. In this case, apart from the equations coming from the final
two rows of the Type II matrix a third equation has to be considered.

Proposition 9. Let K be a Type II knot, and @Q be the linear finite Alerander
quandle Q = Zy[t,t71]/(t —m). Then Cq(K), the number of Q-colourings of K, is

Co(K) =n x ged(az(m),n) x ged(B1(m) , gcd(ag(m), n)).

_.n
gcd(ag(m),n)
Proof. See [4]. O

Non-triangular matrices: These are just like Type II matrices, except for
replacing the triangular 2 x 2 array

ar(m)  fr(m)
1O a;(m) (3)

with a non-triangular 2 x 2 array, which has determinant equal to the normalized
Alexander polynomial. In these cases we were unable to find a general formula
for the number of colourings. This, however, does not mean that the simplified
matrices can not be used to calculate colourings. For example, for the knot 935 our
program gave as output the following non-triangular echelon matrix:

(1 Ry - Ry,
0 .

0 1 hr73 r—2 hr73 r—1 hr73 T

0 2-m —1-m —142m
: : : -3 —2+T™m 5—Tm
0 0 0 0 0 0

If we choose m = 2 and n = 3, we get a matrix with the 3 final rows consisting only
of zeros, after reducing modulo 3. Thus, for this case, the number of colourings is
equal to 3% = 27, since we can choose the final 3 unknowns, X-, Xg and Xy, freely
in Z3, and the remaining unknowns are uniquely determined after this choice.

We now summarize the results of our computations.
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Type I The vast majority of colouring matrices for knots with up to 10 crossings
could be reduced to a matrix of Type I. We do not list these 216 knots, or the special
entry a(m), since it is just the corresponding normalized Alexander polynomial with
t equal to m. For up to 9 crossings these are listed in Livingston [17]. For up to
10 crossings they are given in shorthand form in Rolfsen [22] or Kawauchi [16], e.g.
for the knot 63, Rolfsen gives [5 — 3 + 1, meaning that the Alexander polynomial
is m™2 —3m~' 4+ 5 — 3m 4+ m? or in normalized form 1 — 3m + 5m? — 3m?> + m*.

Type II There were 21 colouring matrices that could be reduced to Type II
matrices, namely those coming from the following knots:

81839373 9403 946; 1061; 1063; 1065; 10745 1075; 10983 10995 10103;
101063 10122; 10123; 101403 101425 101445 101475 10155; 10164

Non-triangular Finally there were 12 colouring matrices that could be reduced
to the non-triangular echelon form described above. These came from the following
knots:

935; 938; 941; 947; 9485 949; 1069; 101015 10108; 101153 101575 10160

In [4] we list the characteristic 2 by 2 arrays of Type IT and non-triangular matrices.

4. COMPARING COLOURINGS AND THE ALEXANDER POLYNOMIAL

The results of the previous section open the way for making comparisons between
two separate knot invariants: the Alexander polynomial, on the one hand, and the
number of quandle colourings for any linear Alexander quandle, on the other. For
example, it is a direct consequence of proposition[§that two Type I knots, i.e. knots
whose colouring matrix can be reduced to Type I form, with the same Alexander
polynomial, cannot be distinguished by linear quandle colourings. In [4], using
propositions[§land[9] other cases were found for which Type I or Type II knots with
the same Alexander polynomial can be distinguished by linear quandle colourings.

However, we want to focus here on the question of whether knots with different
Alexander polynomials can be distinguished by linear quandle colourings. In [4], we
showed that, given two knots with triangularizable colouring matrices but different
Alexander polynomials, a linear finite Alexander quandle can be exhibited that
distinguishes the two knots by the number of colourings.

Proposition 10. Let K; and Ko be knots with different Alexander polynomials
Alexg, (m) # Alexy,(m). Assume furthermore that their colouring matrices are
both equivalent to a triangular matriz with only zeros in the final row. Then there
s a linear finite Alexander quandle that distinguishes them by counting colourings.

Proof. See [4]. O

Note that this holds for any two knots with colouring matrices that are equivalent
to a matrix of triangular form, which may be of a more general type than Type I
or Type I

We conjectured in [4], that any two knots with different Alexander polynomials
can be distinguished by colourings, irrespective of whether their colouring matrix
can be triangularized. If all colouring matrices could be triangularized this would
follow immediately from the result above. However, we also showed that there are
colouring matrices that are definitely not triangularizable (using the operations of
Definition @ This exploits the fact that some knots have Alexander polynomials
that cannot be properly factorized.
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Proposition 11. The colouring matrices of the knots 935, 947, 948, 949 and 10157
cannot be triangularized.

Proof. For the full proof see [4]. We sketch the idea. Since these knots have
non-properly factorizable Alexander polynomials, we know that, if their colouring
matrix is equivalent to a triangular form, then that form must be Type I. Hence
the number of colourings using any linear Alexander quandle Z,[t,t~t] / (t — m)
must be given by the Type I formula n x gcd(Alexg (m),n) of proposition |8, The
proof consists now in exhibiting for each such knot K a quandle for which the true
number of colourings is not equal to n x ged(Alexg (m),n). The specific quandles
for this purpose are given by m = 2 and n = 3 for 935, 947 and 94g; m = 4,n =5
for 949; and m = 6,n = 7 for 1057. O

The fact that there are knots with colouring matrices that cannot be converted to
equivalent triangular matrices is an interesting starting point for further research.

In fact, for fixed m, any matrix can be further simplified (see [3]). This sug-
gests that, for the non-triangular matrices, although there is no general equivalent
triangular matrix for all values of m, there will be different triangular matrices
depending on certain conditions on the entries of the colouring matrix. Consider
the simplified colouring matrixﬂ for 935 where the first row was multiplied by —1:

m—2 1+m
-3 —24Tm

It is easy to further simplify this matrix in the case where m — 2 has an inversdﬂ
i.e. for those quandles where m is coprime with n and furthermore m — 2 is coprime
with n. There will be infinitely many such pairs. Then we can multiply the first
row by the inverse (m — 2),1 of m — 2:

1 (m—2); (1 4m)
( -3 —2+7Tm >
This matrix can be further simplified by adding 3 times the first row to the
second row:

1 (m—2),;1(1+m)
( 0 —2+7Tm+3(m—2)'(1+m) )

This matrix is of Type I form, but the determinant is not the same as that of the
original matrix. However we may now multiply the second row by m — 2 obtaining
a triangular matrix of Type I form with the correct determinant, and that has the
same number of colourings as the original one using any quandle such that m — 2
is coprime with n. Moreover, for those quandles, the number of colourings is given
by the Type I expression Cq(K) =n x gcd(Alexg (m), n).

1 (m—2);1(1+m)
<0 (=2+7m)(m —2)+3(1+m) >

IFor simplicity we display only the significant part of that matrix.
2We could also choose the second row and consider those quandles where 3 is coprime with n.
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The previous discussion suggests that, even if it is not in general possible to
find a triangular matrix for all colouring matrices, there will be a triangular matrix
that is equivalent to the original one for an infinite number of finite Alexander
quandles. If that is the case then we conjecture that the proof of proposition
can be adjusted and a suitable quandle can be found that distinguishes the given
knots, even when the colouring matrices are not triangular. Note also that the
simplification presented above can be easily adapted to all other non triangular
matrices of prime knots up to ten crossings since their significant part is also a
2 x 2 matrix. Of course, the procedure has to be generalized to any non-triangular
matrix. But it is also interesting to note that we can apply similar ideas to convert
Type II matrices into Type I with the advantage that, for those quandles where
this operation applies, the number of colourings will depend only on the Alexander
polynomial of the knot.

It is interesting to review proposition with the previous remarks in mind.
In fact we show that the colouring matrices of knots 935, 947, 948, 949 and 10157
cannot be triangularized by finding a quandle that is a “counter-example” to that
property. The significant part of their reduced matrices follows.

v - 2—m —1-m
35 -3 —2+7Tm
—1+4m —m? —2—m—m?+m?
2—Tm 3+ 4m + 2m? — m*
3 —10m + 2m? + 5m> — m*

o
0 (M5 s lon Tt ond )
o

-2 —m+m? 3—m—m2—2m3)

3—2m —3 4+ 3m + m?
1010 - 4 —3m =7+ 12m — 9m? + 6m3 — m*
157 —1+m? 2—3m+m?—m?

For the knot 935 that quandle is specified by m = 2 and n = 3. We have also seen
above that it is possible to triangularize the colouring matrix if m — 2 is coprime
with n or n is coprime with 3. This is not contradictory since 2 — 2 = 0 is not
coprime with 3 and 3 is not coprime with 3. Similar considerations can be made for
the other knots. The colouring matrix for 947 can be triangularized if —1+4m —m?
or 2 — 7m is coprime with n. The counter example quandle is again m = 2 and
n = 3. In this case —1+4m —m? = 3 and 2—7m = —12 are both not coprime with
3. The colouring matrix for 9,45 can be triangularized if 2 —m or 3 are coprime with
n so this case is identical to the one for 935. The colouring matrix for 949 can be
triangularized if —2—m-+m? or 3—2m are coprime with n. In this case the quandle
used was m = 4,n = 5. Indeed —2—m+m? = 10 and 3—2m = —5 are not coprime
with 5. Finally, the colouring matrix for 10157 can be triangularized if 4 — 3m or
—1 + m? are coprime with n. For the counter example quandle m = 6,n = 7 one
has 4 — 3m = —14 and —1 + m? = 35 that again are not coprime with 7.
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We also know that the knots 10g9, 10191, 10115 and 10169 have Alexander poly-
nomials that do not factorize but we could not find a quandle that is a counter
example. It would be interesting to review these cases using this new informa-
tion: either there is a counter example quandle or we can show that such colouring
matrices are equivalent to triangular colouring matrices.

In conclusion, there are colouring matrices that are not triangularizable in the
sense that there is no equivalent triangular matrix for all values of m and n. But, in
general, all colouring matrices can be triangularized for infinite values of m and n.
This suggests that proposition [10| can be generalized and that knots with different
Alexander polynomials can always be distinguished by finite Alexander quandles.

5. CONCLUSIONS AND FURTHER WORK

It seems likely that in future work we can follow the arguments outlined above to
sharpen our conclusions, and prove that the number of colourings using any finite
linear quandle, is at least as strong an invariant as the Alexander polynomial for
distinguishing knots, with less or no restrictions on the type of reduced colouring
matrix. With further improvements, the calculations we have performed might be
extended to knot diagrams with more than 10 crossings. Note that our proofs of
the general formulae for the number of colourings for Type I and Type II knots
apply irrespective of the number of crossings, i.e. the size of the colouring matrix.
Another natural direction for future work is to try and find general expressions for
the number of colourings when the reduced colouring matrix is non-triangular, or
of a more general triangular form.
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APPENDIX A. THE ALGORITHM FOR REDUCING COLOURING MATRICES

In this section we describe the current version of the algorithm that computes the
reduced colouring matrix. Its main function is called £ and takes as input the Gauss
code of a diagram of a knot. The Gauss codes were obtained from the diagrams
in [22]. The Mathematica code and the Gauss codes are available on request (by
email to the first author).

For example, a10a1={-9,-8,-7,-6,10,-4,-3,-2,-1,5} is the Gauss code for the
knot 10; and the output of f[a10al] is the following colouring matrix:
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1 —-m 0 0 0 0 —14m 0 0

0 1 —m 0 0 0 —14m 0 0 0

0 0 1 —m 0 —14m 0 0 0 0

0 0 0 1 —-m 0 0 0 —14m 0

0 0 0 0 1 0 0 0 -L -1+ L
’in 1 m

0 0 0 0 0 1 0 0 -3+ L 4 m 2— L —

0 0 0 0 0 0 1 0 75+£+2m 4— 2 _om

0 0 0 0 0 0 0 1 ~7+ 2 +3m 6— 2 —3m

0 0 0 0 0 0 0 0 4—9m+4m?  —44 9m —4am?

0 0 0 0 0 0 0 0 0 0

As stated previously, the operations used in this reduction process are of four
types:
multiplying rows by —1, m and m™!
adding rows
swapping rows
e swapping columns

Our algorithm is optimized since it uses the polynomial greatest common divisor
(GCD) of a column, starting with the first column. When there is a column such
that its GCD occurs as an entry in the column, then it is trivial to annihilate other
entries in that column, and achieve zero entries below the diagonal in that column
by performing suitable row swaps. If this procedure is no longer possible, even by
swapping columns, then the algorithm uses other strategies: look for a zero entry
and two non-zero entries such that a linear combination of them is their GCD.
By performing row operations the zero entry will become the GCD of those two
polynomials, and that is then used to annihilate those non-zero entries. If a column
has no zero entry, but has two entries one of which is a multiple of the other, the
zero entry can be obtained by row operations. A further strategy uses one non-zero
entry multiplied by a suitable power of m to lower the degree of another entry.
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