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DYNAMICAL EQUIVALENCE OF QUASILINEAR DYNAMIC

EQUATIONS ON TIME SCALES

ANDREJS REINFELDS, DZINTRA ŠTEINBERGA

Abstract. Using a Green type map and an integral functional equation tech-
nique, we find sufficient conditions under which a quasilinear equation is dy-

namically equivalent to its corresponding linear equation. This result ex-

tends Hartman–Grobman theorem for dynamic equations without ordinary
dichotomy on time scales calculus.

1. Introduction

The linearization problem in the theory of ordinary differential equations was
explored by D.M. Grobman [8], P. Hartman [9], K.J. Palmer [13] and other math-
ematicians [15, 16]. Variants of the Hartman–Grobman theorem to impulsive dif-
ferential equations can be found in [1, 5, 17,18,20, 23]. Grobman–Hartman–Palmer
linearization theorems were extended also to systems of differential equations in
Rn with generalized exponential and ordinary dichotomy [4, 6, 7, 11, 12, 19]. It is
of interest to understand what is the most general class of systems for which the
linearization problem can be solved. Recently, L. Barreira and C. Valls gave a
version of the Grobman–Hartman theorem for nonuniformly hyperbolic dynam-
ics [2]. There are several papers considering Hartman–Grobman theorem on time
scales [10,14,21,22,24,25].

In our research we generalize these results, even for Rn, by relaxing conditions on
linear part A and strengthening conditions on nonlinear part f . We use Green type
map and integral functional equation technique [16] to substantially simplify the
proof. Moreover, our method to prove the dynamical equivalence used in this paper
is completely different from previous papers. Furthermore, for more general point
of view we consider differential equations in arbitrary Banach space. To highlight
our improvement comparing to previous results, we use an example where the linear
part of the differential equation even does not possess an ordinary dichotomy.

2. Main result and proof

Let T be a unbounded above and below time scale. For basic terminology and
more details, see the monograph [3]. Let X be a Banach space and let L(X) be the
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Banach space of linear bounded endomorphisms. Consider the following dynamic
equations

x∆ = A(t)x+ f1(t, x) (2.1)

and

x∆ = A(t)x+ f2(t, x) (2.2)

where:

(i) the map A : T → L(X) is rd-continuous and the map A(t) : L(X) → L(X)
is regressive;

(ii) the maps fj : T ×X → X, j = 1, 2 are rd-continuous with respect to t for
fixed x, and, in addition they satisfy the Lipschitz conditions

|fj(t, x)− fj(t, x′)| ≤ ε(t)|x− x′|, j = 1, 2,

and the estimate

sup
x
|f1(t, x)− f2(t, x)| ≤ N(t) < +∞,

where N : T→ R+ and ε : T→ R+ are integrable scalar functions;
(iii) the maps I + µ(t)A(t) + µ(t)fj(t, ·) : X→ X, j = 1, 2 are invertible, where

I is the identity map.

Here σ : T→ T is the forward jump operator defined by equality

σ(t) = inf{s ∈ T | s > t}
and µ : T→ [0,+∞) is the graininess function defined by

µ(t) = σ(t)− t.
[For details, see [3]].

Note that condition (iii) implies continuability of solutions (2.1) and (2.2) in
the negative direction. Furthermore, this together with the Lipshitz property with
respect to x of the right hand side ensures that there is a unique solution for initial
value problem defined on T.

Let xj(·, s, x) : T → X, j = 1, 2, be the solutions of dynamic equations (2.1),
(2.2) respectively satisfying the initial conditions xj(s) = x. So xj(s, s, x) = x and,
because of uniqueness of solutions, for t, τ, s ∈ T we have

xj(t, s, x) = xj(t, τ, xj(τ, s, x)).

For short, we will use the notation xj(t) = xj(t, s, x).
Local results, which hold under more realistic assumptions on the nonlinearity,

can be deduced using standard bump function technique.

Definition 2.1. The dynamic equations (2.1) and (2.2) are globally dynamical
equivalent if there exists a map H : T×X→ X such that

(i) for each fixed t ∈ T the map H(t, ·) : X→ X is a homeomorphism;
(ii) supt,x |H(t, x)− x| < +∞;
(iii) for all t ∈ T

H(t, x1(t, s, x)) = x2(t, s,H(s, x)).

Green type map can be represented in the form

G(t, s) =

{
eA(t, s)P (s), if t > s

eA(t, s)(P (s)− I), if t < s
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where eA(t, s) is the exponential map of linear dynamic equation

x∆ = A(t)x (2.3)

and P (s) ∈ L(X) is rd-continuous with respect to s ∈ T. Note that the linear
dynamic equation (2.3) has infinitely many Green type maps. But if T = R and
the linear dynamic equation (2.3) has an exponential dichotomy then moreover
there exists a unique Green type map which satisfies the inequality

|G(t, s)| ≤ K exp(−λ|t− s|), K ≥ 1, λ > 0.

Let us note that

eA(t, τ)eA(τ, s) = eA(t, s).

The solutions of (2.1) and (2.2) can be represented in the form

xj(t, s, x) = eA(t, s)x+

∫ t

s

eA(t, σ(τ))fj(τ, xj(τ, s, x)) ∆τ, j = 1, 2.

Theorem 2.1. Suppose that the linear dynamic equation (2.3) has a rd-continuous
Green type map G(s, τ) ∈ L(X) such that

sup
s

∫ +∞

−∞
|G(s, σ(τ))|N(τ) ∆τ < +∞

sup
s

∫ +∞

−∞
|G(s, σ(τ))|ε(τ) ∆τ = q < 1.

Then the dynamic equations (2.1) and (2.2) are globally dynamical equivalent.

Proof. Let Crd(T×X,X) be a set of maps h : T×X→ X that are rd-continuous
with respect to t for fixed x and continuous with respect to x. The set

M =

{
h ∈ BCrd(T×X,X)

∣∣∣∣ sup
s,x
|h(s, x)| < +∞

}
is Banach space with the supremum norm

‖h‖ = sup
s,x
|h(s, x)|.

We will seek the map establishing the equivalence of (2.1) and (2.2) in the form
H1(s, x) = x+ h1(s, x). We examine the following integro-functional equation

h1(s, x) =

∫ +∞

−∞
G(s, σ(τ))(f2(τ, x1(τ) + h1(τ, x1(τ)))− f1(τ, x1(τ))) ∆τ. (2.4)

Let us consider the map h1 7→ Th1, h1 ∈M defined by the equality

Th1(s, x) =

∫ +∞

−∞
G(s, σ(τ))(f2(τ, x1(τ) + h1(τ, x1(τ)))− f1(τ, x1(τ))) ∆τ.

Because of Lipschitz condition and conditions of the Theorem 2.1, also Th1 ∈M.
Next we get

|Th1(s, x)− Th′1(s, x)|

=

∣∣∣∣∫ +∞

−∞
G(s, σ(τ))(f2(τ, x1(τ) + h1(τ, x1(τ)))− f2(τ, x1(τ) + h′1(τ, x1(τ)))) ∆τ

∣∣∣∣
≤
∫ +∞

−∞
|G(s, σ(τ))|ε(τ)|h1(τ, x1(τ))− h′1(τ, x1(τ))|∆τ
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≤ sup
s

∫ +∞

−∞
|G(s, σ(τ))|ε(τ) ∆τ‖h1 − h′1‖ = q‖h1 − h′1‖,

where q < 1. Thus the map T is a contraction and consequently the integro-
functional equation (2.4) has a unique solution in M.

We have

h1(t, x1(t))

=

∫ +∞

−∞
G(t, σ(τ))(f2(τ, x1(τ) + h1(τ, x1(τ)))− f1(τ, x1(τ))) ∆τ

=

∫ t

−∞
G(t, σ(τ))(f2(τ, x1(τ) + h1(τ, x1(τ)))− f1(τ, x1(τ))) ∆τ

+

∫ +∞

t

G(t, σ(τ))(f2(τ, x1(τ) + h1(τ, x1(τ)))− f1(τ, x1(τ))) ∆τ

=

∫ s

−∞
eA(t, s)G(s, σ(τ))(f2(τ, x1(τ) + h1(τ, x1(τ)))− f1(τ, x1(τ))) ∆τ

+

∫ t

s

eA(t, σ(τ))P (σ(τ))(f2(τ, x1(τ) + h1(τ, x1(τ)))− f1(τ, x1(τ))) ∆τ

+

∫ +∞

s

eA(t, s)G(s, σ(τ))(f2(τ, x1(τ) + h1(τ, x1(τ)))− f1(τ, x1(τ))) ∆τ

+

∫ s

t

eA(t, σ(τ))(P (σ(τ))− I)(f2(τ, x1(τ) + h1(τ, x1(τ)))− f1(τ, x1(τ))) ∆τ

= eA(t, s)

∫ +∞

−∞
G(s, σ(τ))(f2(τ, x1(τ) + h1(τ, x1(τ)))− f1(τ, x1(τ))) ∆τ

+

∫ t

s

eA(t, σ(τ))(f2(τ, x1(τ) + h1(τ, x1(τ)))− f1(τ, x1(τ))) ∆τ

= eA(t, s)h1(s, x)

+

∫ t

s

eA(t, σ(τ))(f2(τ, x1(τ) + h1(τ, x1(τ)))− f1(τ, x1(τ))) ∆τ.

Consequently, we have

x1(t, s, x) + h1(t, x1(t, s, x)) = x2(t, s, x+ h1(s, x)).

Changing the roles of f1 and f2, we prove in the same way the existence of
h2 ∈M satisfying integro-functional equation

h2(s, x) =

∫ +∞

−∞
G(s, σ(τ))(f1(τ, x2(τ) + h2(τ, x2(τ)))− f2(τ, x2(τ))) ∆τ. (2.5)

that satisfies the equality

x2(t, s, x) + h2(t, x2(t, s, x)) = x1(t, s, x+ h2(s, x)).

Designing H2(s, x) = x+ h2(s, x), we get

H2(t,H1(t, x1(t, s, x))) = x1(t, s,H2(s,H1(s, x))),

H1(t,H2(t, x2(t, s, x))) = x2(t, s,H1(s,H2(s, x))).

Taking into account uniqueness of maps H2(t,H1(t, ·))−I and H1(t,H2(t, ·))−I
in M we have H2(t,H1(t, ·)) = I and H1(t,H2(t, ·)) = I and therefore H1(t, ·) is a
homeomorphism establishing a dynamical equivalence of the (2.1) and (2.2). �
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Let f2(t, x) = 0. Then Theorem 2.1 implies that the dynamic equations (2.1)
and (2.3) are globally dynamical equivalent.

3. Example

Consider a dynamic equation in R2

x∆ = A(t)x+ f(t, x) (3.1)

where

A(t) =

(
ln 2 0
0 − 2t

1+t2

)
,

|f(t, x)− f(t, x′)| ≤ ε(t)|x− x′|,
sup
x
|f(t, x)| ≤ N(t) < +∞.

Then the exponential map of the dynamic equation takes the form

eA(t, s) =

(
2t−s 0

0 1+s2

1+t2

)
.

Corresponding Green type map can be represented in the form

G(t, s) =

(
0 0

0 1+s2

1+t2

)
, if t > s

and

G(t, s) =

(
−2t−s 0

0 0

)
, if t < s.

If ∫ +∞

−∞
(1 + τ2)N(τ) ∆τ < +∞

and ∫ +∞

−∞
(1 + τ2)ε(τ) ∆τ = q < 1,

then in accordance with Theorem 2.1 the dynamic equation (3.1) is globally dy-
namical equivalent to the linear one

x∆ = A(t)x. (3.2)

Let us note that |G(t, s)| = 1+s2

1+t2 for t > s . It means that |G(t, s)| is not globally

bounded. The dynamic equation (3.2) does not even have the uniform ordinary
dichotomy.
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[14] Ch. Pötzsche, Topological decoupling, linearization and perturbation on homogeneous time

scales, J. Differential Equations 245 (2008), no. 5, 1210–1242.

[15] C.C. Pugh, On a theorem of P. Hartman, Amer. J. Math. 91 (1969), no. 2, 363–367.
[16] A. Reinfelds, On generalized Grobman-Hartman theorem, Latv. Mat. Ezhegodnik 29 (1985),

84–88 (in Russian).

[17] A. Reinfelds and L. Sermone, Equivalence of differential equations with impulse action, Latv.
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