ON THE CONVEX COMBINATIONS OF SLANTED HALF-PLANE HARMONIC MAPPINGS

YONG SUN, YUE-PING JIANG AND ZHI-GANG WANG

Abstract. The main result in this paper shows that convex combinations of slanted half-plane harmonic mappings are convex.

1. Introduction and Preliminaries

Let \(H \) denote the class of all complex-valued harmonic mappings \(f \) in the unit disk \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) normalized by \(f(0) = f_z(0) - 1 = 0 \). Let \(S_H \) be the subclass of \(H \) consisting of univalent and sense-preserving functions. Such functions can be written in the form

\[
 f(z) = h(z) + g(z)
\]

where

\[
 h(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} b_n z^n
\]

are analytic in \(\mathbb{D} \) and the Jacobian \(J_f(z) = |h'(z)|^2 - |g'(z)|^2 > 0 \). Equivalently, \(h' \neq 0 \) in the unit disk and the analytic complex dilatation \(\omega \) of \(f \) defined by \(\omega = g'/h' \) satisfies \(|\omega(z)| < 1, z \in \mathbb{D} \). The classical family \(S \) of analytic, univalent and normalized functions in \(\mathbb{D} \) is a subclass of \(S_H \) with \(g(z) \equiv 0 \). The family of all functions \(f \in S_H \) with the additional property that \(f_z(0) = 0 \) is denoted by \(S_H^0 \).

Further information about planar harmonic mappings can be found in the book [5].

A function \(f \in S_H \) is said to be convex if it maps the unit disk onto a convex domain. If the intersection of \(f(\mathbb{D}) \) with every line parallel to the one passing through the origin and \(e^{i\theta} (0 \leq \theta < \pi) \) is connected, we say that \(f \) is convex in the direction \(\theta \). It is obvious that any convex function is convex in every direction.

The shear construction introduced by Clunie and Sheil-Small in [2] provides a way of producing univalent harmonic functions in the unit disk to regions which are convex in one direction. More specifically, the following result is an easy consequence of [2 Thm. 5.3].

Theorem A. A harmonic function \(f = h + \overline{g} \), locally univalent in \(\mathbb{D} \), is a univalent mapping of onto a domain convex in the direction \(\theta \) if and only if \(h - e^{2i\theta}g \) is an analytic univalent mapping in \(\mathbb{D} \) onto a domain convex in the direction \(\theta \).

As usual, we use \(C_H^0 \) to denote the set of all sense-preserving convex harmonic mappings \(f = h + \overline{g} \) in \(\mathbb{D} \) satisfying \(h(0) = g(0) = g'(0) = 1 - h'(0) = 0 \). Indeed, in
what follows, all the functions considered here will satisfy these normalizations so that we won’t mention this again.

Of particular importance among the functions in \(C_0^H \) (because of their relationship with certain extremal problems in this class, for instance) is the family of functions that map the unit disk onto the half-plane \(H = \{ w \in \mathbb{C} : \Re(w) > -1/2 \} \). It is known (see [3 Cor. 3.2]) that any sense-preserving univalent function \(f = h + g \) with \(f(D) = H \) satisfies

\[
h(z) + g(z) = \frac{z}{1-z}, \quad z \in \mathbb{D}. \tag{1.1}
\]

We say that a normalized sense-preserving harmonic mapping \(f = h + \overline{g} \) belongs to \(\mathcal{F}_0 \) if and only if \([1]\) holds. Note that since the function \(h(z) = z/(1-z) \) is convex in the unit disk, by Theorem A we see that any function \(f \in \mathcal{F}_0 \) will be univalent in the unit disk and also convex in the vertical direction (this is, convex in the direction \(\pi/2 \)). In fact, a direct application of [1 Lemma 1], which proves that any sense-preserving univalent harmonic mapping \(f = h + \overline{g} \) satisfying \([1.1]\) is convex, shows that any function in \(f \in \mathcal{F}_0 \) maps the unit disk onto a convex domain.

If a function \(f \in C_0^H \) maps \(\mathbb{D} \) onto the half-plane \(\{ \Re(e^{i\gamma}w) > -1/2 \} \) for some \(0 \leq \gamma < 2\pi \), then \(f \) is said to be a slanted half-plane mapping with parameter \(\gamma \). Obviously, any slanted half-plane mapping with parameter \(\gamma = 0 \) maps the unit disk onto \(H \). Moreover, \(f \) is a slanted half-plane mapping with parameter \(\gamma \) if and only if \(\hat{f}(z) = e^{i\gamma} f(e^{-i\gamma}z) \) satisfies \(\hat{f}(\mathbb{D}) = H \). Therefore, any such slanted half-plane mapping \(f = h + \overline{g} \) satisfies

\[
h(z) + e^{-2i\gamma}g(z) = \frac{z}{1-e^{i\gamma}z}, \quad z \in \mathbb{D}. \tag{1.2}
\]

We will use \(\mathcal{F}_\gamma \) to denote the family of sense-preserving harmonic mappings \(f = h + \overline{g} \) in the unit disk satisfying \([1.2]\). Again, using Theorem A, we see that any function \(f \in \mathcal{F}_\gamma \) is necessarily univalent in \(\mathbb{D} \) and also convex in certain direction that depends on \(\gamma \). Note that using the same (invertible) correspondence \(f \to \hat{f} \) mentioned above between slanted half-plane mappings with parameter \(\gamma \) and functions that map the unit disk onto \(H \) one can prove that \(f \in \mathcal{F}_\gamma \) if and only if \(\hat{f} \in \mathcal{F}_0 \). We refer the reader to [1, 4, 6, 7] for recent investigations in the subclass \(\mathcal{F}_\gamma \).

A common way to try to construct new functions with a given property is to take convex combinations of functions satisfying the desired condition. More concretely, given the functions \(f_j = h_j + \overline{g_j} \in S_0^H \) and the real numbers \(t_j \) with \(0 \leq t_j \leq 1 \), \(j = 1, 2, \ldots, n \), we construct a new harmonic mapping

\[
F = \sum_{j=1}^{n} t_j f_j = \sum_{j=1}^{n} t_j h_j + \sum_{j=1}^{n} t_j \overline{g_j} = H + \overline{G}, \quad \sum_{j=1}^{n} t_j = 1, \tag{1.3}
\]

with dilatation \(\omega = G'/H' \).

Wang et al. [8] proved a sufficient condition for the convex combination of the form \(F = t f_1 + (1-t) f_2 \) with \(h_j + g_j = z/(1-z) \), \(j = 1, 2 \), to be univalent and convex in the horizontal direction.

The aim of this paper is to show that as long as the functions \(f_j \) belong to \(\mathcal{F}_\gamma \), the corresponding function \(F \) as in \([1.3]\) will map the unit disk onto a convex
domain, thus generalizing the main results obtained in [8]. The following lemma will be fundamental to prove this result.

Lemma 1.1. Let \(k_j \ (j = 1, 2) \) be analytic in \(\mathbb{D} \) with \(|k_j(z)| < 1 \) and \(k_j(0) = 0 \). Then, in the unit disk,

\[
\Re \left(\frac{1 - k_1k_2}{(1 + e^{-2i\beta}k_1)(1 + e^{2i\beta}k_2)} \right) > 0
\]

for all \(\beta \in \mathbb{R} \).

Proof. Note that the functions \(z \rightarrow 1/(1+z) \) and \(z \rightarrow z/(1-z) \) map the unit disk \(\mathbb{D} \) onto \(\{ w \in \mathbb{C} : \Re(w) > 1/2 \} \) and \(\{ w \in \mathbb{C} : \Re(w) > -1/2 \} \), respectively. Hence, for any given \(\lambda = 1 \) and any function \(k \) analytic in \(\mathbb{D} \) with \(|k| < 1 \), we have

\[
\Re \left(\frac{1}{1 + \lambda k} \right) > \frac{1}{2} \quad \text{and} \quad \Re \left(\frac{-\lambda k}{1 + \lambda k} \right) > -\frac{1}{2}
\]

Since

\[
\frac{1 - k_1k_2}{(1 + e^{-2i\beta}k_1)(1 + e^{2i\beta}k_2)} = \frac{1}{1 + e^{-2i\beta}k_2} - \frac{e^{-2i\beta}k_1}{1 + e^{-2i\beta}k_1},
\]

the result easily follows. \(\Box \)

2. Main Result

We now state the main theorem.

Theorem 2.1. Any convex combination of functions in \(F_\gamma \) is convex. Therefore, any convex combination of slanted half-plane mappings with parameter \(\gamma \) is convex.

Proof. For \(j = 1, 2, \ldots, n \), let \(t_j \) be real numbers (with \(0 \leq t_j \leq 1 \) and such that \(\sum_{j=1}^{n} t_j = 1 \)) and \(f_j = h_j + g_j \in F_\gamma \); this is,

\[
h_j + e^{-2i\gamma}g_j = \frac{z}{1 - e^{i\gamma}z}, \quad 0 \leq \gamma < 2\pi, \quad z \in \mathbb{D}.
\]

Then, the mappings \(\hat{f}_j = \hat{h}_j + \overline{g_j} \), defined by \(\hat{f}_j(z) = e^{i\gamma}f_j(e^{-i\gamma}z) \in F_0 \), hence

\[
\hat{h}_j(z) + \overline{g_j(z)} = \frac{z}{1 - z}.
\]

Moreover, the function

\[
\hat{F} = \sum_{j=1}^{n} t_j \hat{f}_j = \hat{H} + \overline{G}
\]

satisfies \(\hat{F}(z) = e^{i\gamma}F(e^{-i\gamma}z) \), where \(F \) is as in (1.3). Therefore, to show that \(F \) is convex, it suffices to check that \(\hat{F} \) is convex. Since

\[
\hat{H}(z) + \overline{G}(z) = \frac{z}{1 - z},
\]

we see that according to [1, Lemma 1], the result will follow once it is proved that \(\hat{F} \) is locally univalent.

To prove that \(\hat{F} \) is locally univalent, let us use \(\omega_j \) to denote the dilatation of \(\hat{f}_j \) and define

\[
\Phi = \left| \sum_{j=1}^{n} \frac{t_j}{1 + \omega_j} \right|^2 - \left| \sum_{j=1}^{n} \frac{t_j\omega_j}{1 + \omega_j} \right|^2.
\]
We find that
\[
\Phi = \left(\sum_{j=1}^{n} \frac{t_j}{1 + \omega_j}\right) \left(\sum_{j=1}^{n} \frac{t_j}{1 + \omega_j}\right) - \left(\sum_{j=1}^{n} t_j\omega_j\right) \left(\sum_{j=1}^{n} \frac{t_j\overline{\omega_j}}{1 + \overline{\omega_j}}\right)
\]
\[
= \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{t_j t_k}{(1 + \omega_j)(1 + \overline{\omega_k})} - \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{t_j t_k \omega_j \overline{\omega_k}}{(1 + \omega_j)(1 + \overline{\omega_k})}
\]
\[
= \frac{2 \sum_{j=1}^{n} \sum_{k<j} \Re \left(\frac{t_j t_k (1 - \omega_j \overline{\omega_k})}{(1 + \omega_j)(1 + \overline{\omega_k})} \right) + \sum_{j=1}^{n} \frac{t_j^2 (1 - |\omega_j|^2)}{1 + |\omega_j|^2}}{\sum_{j=1}^{n} \sum_{k<j} \Re \left(\frac{t_j t_k (1 - \omega_j \overline{\omega_k})}{(1 + \omega_j)(1 + \overline{\omega_k})} \right) + \sum_{j=1}^{n} \frac{t_j^2 (1 - |\omega_j|^2)}{1 + |\omega_j|^2}}
\]

Since \(\omega_j\) are analytic and \(|\omega_j| < 1\) \((j = 1, 2, \ldots, n)\), by Lemma 1.1 we see that \(\Phi > 0\) in the unit disk. Then, on the one hand,
\[
\left| \sum_{j=1}^{n} \frac{t_j}{1 + \omega_j} \right| > 0 \quad (2.2)
\]
and, on the other hand
\[
\frac{\sum_{j=1}^{n} \frac{t_j\omega_j}{1 + \omega_j}}{\sum_{j=1}^{n} \frac{t_j}{1 + \omega_j}} < 1. \quad (2.3)
\]

Now, using (2.1), we have
\[
\hat{h}'_j(z) = \frac{1}{(1 + \omega_j(z))(1 - z)^2},
\]
so that
\[
\hat{H}'(z) = \sum_{j=1}^{n} \frac{t_j}{(1 + \omega_j(z))(1 - z)^2}
\]
and by (2.2) we obtain that \(\hat{H}' \neq 0\) in the unit disk. Moreover, the modulus of the dilatation \(\omega\) of \(\hat{F}\) equals
\[
|\omega| = \left| \frac{\sum_{j=1}^{n} t_j \partial_j f_j}{\sum_{j=1}^{n} t_j h'_j} \right| = \left| \frac{\sum_{j=1}^{n} t_j \omega_j \hat{h}'_j}{\sum_{j=1}^{n} t_j h'_j} \right| = \left| \frac{\sum_{j=1}^{n} t_j \omega_j}{\sum_{j=1}^{n} t_j} \right|.
\]

Hence, by (2.3), we get that \(|\omega(z)| < 1\) for all \(z \in \mathbb{D}\). This shows that \(\hat{F}\) is locally univalent in \(\mathbb{D}\) and ends the proof of the theorem. \(\Box\)

To finish this paper, we state the following corollary of Theorem A and the proof of Theorem 2.1.

Corollary 2.2. Let \(f_j = h_j + \overline{g_j} \in \mathcal{H}^s_0\) satisfy
\[
h_j - e^{-2i\gamma} g_j = \frac{z}{1 - e^{\gamma} z}, \quad 0 \leq \gamma < 2\pi, \quad j = 1, 2, \ldots, n.
\]

Then, the function \(F\) defined by (1.3) is convex in the direction \(-\gamma\).
Proof. The function $\hat{F} = \hat{H} + \hat{G}$ defined as in the proof of Theorem 2.1 satisfies $\hat{H} - \hat{G} = z/(1 - z)$. A similar procedure as the one employed above shows that \hat{F} is locally univalent in the unit disk. Hence, by Theorem A, \hat{F} is convex in the horizontal direction. This is equivalent to the fact that the function F itself is convex in the direction $-\gamma$. □

Acknowledgments. The authors would like to thank the referees for the helpful comments and suggestions.

References

Yong Sun
School of Mathematics and Econometrics, Hunan University, Changsha 410082, Hunan, People’s Republic of China.
E-mail address: yongsun2008@foxmail.com

Yue-Ping Jiang
School of Mathematics and Econometrics, Hunan University, Changsha 410082, Hunan, People’s Republic of China.
E-mail address: ypjiang731@163.com

Zhi-Gang Wang
School of Mathematics and Computing Science, Hunan First Normal University, Changsha 410205, Hunan, People’s Republic of China.
E-mail address: zhigangwang@foxmail.com