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GEOMETRY OF AN A-BILINEAR FORM, DARBOUX
THEOREM: A LAGRANGIAN PERSPECTIVE

A. MALLIOS*, A. CONTE-THRASYVOULIDOU, Z. DAOULTZI-MALAMOU

ABSTRACT. The present account constitutes a further scrutiny and still ame-
lioration and extension of the “geometric’ perspective, selon Lagrange, of the
classical “Geometric Algebra” (E. Artin), started already by the first papers
of the senior author of this study with P. P. Ntumba [I1], 12], within a sheaf-
theoretic context; the latter was motivated by a similar treatise in [9], followed
by potential physical applications in theoretical physics: e.g. gauge theories
and quantum gravity [10]. In all this the classical aspect of a background, so-
called “space-time” manifold has been replaced by a sheaf - theoretic context.
An echo of the above with extensions/generalizations of fundamental aspects,
pertaining to what we may call “geometry of a bilinear form”, as rooted al-
ready in Lagrange work, is presented herewith. The values of the “forms”
employed are taken, in view still of potential physical applications, in suitable
real/complex (commutative unital associative) algebras.

0. INTRODUCTION

As already hinted at in the Abstract, the subsequent discussion aims at getting
in the more general context possible, basic notions and fundamental aspects (as
e.g. Darboux Theorem) of nowadays Symplectic Geometry, by looking at the very
roots/ideas of the theory that go back, of course, already to J.-L. Lagrange (1808).
The same actually belong, in recent terms, to “Geometric Algebra”, as presented
for instance in the classic of E. Artin [2]. Indeed, one is concerned here in fact
with what one may consider, in principle, as the “geometry of a bilinear form”; a
notion very akin still to the spirit of the initiator of the theory, as above. Whence,
the employed phraseology, as “Lagrangian A-planes’ (see Definition 1.1 below), a
concept of fundamental role for the sequel, along with the synonym, in practice,
of the particular case of a “hyperbolic” one (cf. , as follows). In this con-
text, the celebrated “Darbouzr decomposition” is accomplished herewith, in terms
of “hyperbolic Lagrangian A-planes (see Theorem 3.1 in the sequel). Thus, to be
in accord with our intention of generality (cf. Abstract), suggested now even by
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concrete physical applications, “wave” functions e.g. in Quantum Theory (see [10],
yet Note 3.1 below), one is led to consider as “domain of coefficients” of our lin-
ear maps no more scalars (the standard fields R, C), but a suitable more general
(real/complex) algebra A; in other words, to deal with A-modules: this implies
confrontation with delicate subtleties just forfeit to consider “vectors” (from A), in
place of usual scalars; therefore, the appearance in crucial cases of particular, suit-
able indeed thus far, algebras, as for instance, PID (“principal ideal domain”) ones
(see e.g. below). In this context, cf. also e.g. [I1]. We take thus throughout
a particular care to point out the real essence of each problem at issue, so that to
assume the minimal possible hypothesis so far to overcome it, and to recast the
classical case. See, for instance, Section 5, NB in the sequel. This helps, of course,
to have further a “perspicuous view of the foundations of a typical building’, as
Geometric Algebra/Symplectic Geometry, following thus also, in that context, a
classical demand (L. Wittgenstein).

1. PRELIMINARIES

In the sequel A denotes a unital commutative (linear associative) algebra over a
field K. (We tacitly assume that the characteristic of K is different from 2). Yet,
by assumption, we also consider throughout, left A-modules. So given an A-module
E, suppose that

¢:ExFE— A (1.1)

is an A-bilinear map (“form”) on E, which we further assume to be skew symmetric;
thus, by definition, for any pair (z,y) in E, one has the relation ¢(z,y) = —¢(y, z).
Hence, due to our hypothesis for K, ¢ is identically zero on the diagonal A C EX E.
Now, the following fact is crucial throughout the ensuing discussion: Namely, we
have that;

any two elements x,y in E, for which ¢(z,y) € A (cf. (L)), (1.2)

is mot a zero divisor, are A — linearly independent.

The proof is routine, based strictly on our hypothesis for the element ¢(z,y) € A
(viz. not zero divisor); see also e.g. N. Bourbaki [4: Chap. II, p. 25, comments
following Definition 10]. The previous result enables now one to consider the next
basic notion for all that follows. That is, we set.

Definition 1.1. Consider a pair (E,¢) consisting of an A-module E, and a skew
symmetric A-bilinear form ¢ on it. Then, one speaks of a Lagrangian A-plane of E
(being, as we shall see a sub-A-module of E), any time there exists a pair (x,y) of
(elements of) E, as in (1.4). We denote it by,

L = Alz,y)(2 A?), (1.3)

the isomorphism, as before, being an A-isomorphism. Yet, for convenience, we shall
speak of , occasionally, just, of a Lagrangian plane of E, as well.

Thus, a Lagrangian A-plane, whenever it exists is, by definition, that sub-A-
module of E, generated by the pair {z,y} of elements of F, as in ; we also call
x,y, as before, the “azes” of L, as in . Now, one speaks of a

pre-symplectic A — module, for a pair (E,¢), as in Definition [[1] (1.4)
which (at least) contains a Lagrangian A — plane, as in (1.3)).
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Thus, by the very definition,

every pre-symplectic A-module has, at least, “dimension” 2

(cf. (1.3])). Yet, we can say that, (1.5)

pre-symplectic A-modules are, in fact, (1.5.1)
characterized by the condition .

As a result, one thus concludes that;

there are no actually “I-dimensional pre-symplectic A-modules”,
when A-appropriate: take e.g. A, an “integral domain” (cf. thus (1.2)).  (1.6)

Thus, one further infers that, only symmetric A-bilinear forms are allowed on such
A-modules, with A for instance as above. Yet, we can say that,

on “I-dimensional” (pre-symmplectic), A-modules, having

for instance A, as before, only “symmetry” is allowed! (1.7)

In this context, we still note that, by assumption, A-bilinear forms on a given A-
module E, that define our “geometry’ on E (cf. for instance, E. Artin [2: p. 105],
are non-trivial (:non identically zero). So, based on the preceding, we conclude
that:

pairs (E, ¢), such that E = A, within an A-isomorphism, having

the A-bilinear form ¢, skew symmetric, do not actually exist(!);

of course (see e.g. (1.2)), under suitable restrictions on (the algebra) A,
our “domain of coefficients/scalars” of the A-modules considered.

(1.8)

As we shall see, the above is still valid in general for all odd dimensional (free)
“symplectic” A-modules; thus, under further appropriate conditions for ¢, apart
from , concerning A as well. See the next Definition

Now, according to the definition of a skew symmetric A-bilinear form ¢ on a
given A-module E, every element x € E is “isotropic”, in the sense that one has,
¢(x,x) = 0; yet, alias, nilpotent, by setting:

dr,x)=x-z=2>=0, (1.9)

extending thus in our case standard terminology: see, for instance E. Artin, as
above, p. 118. Thus, extending further the classical theory, viz. “Geometric Alge-
bra”, still cf. E. Artin [2], for A = K, see 7 one can consider “hyperbolic pairs”,
(z,y) of elements of E, as before, for which one has, by definition, that

d(z,y) = 1. (1.10)

See also ibid., p. 119, Definition 3.8. Thus, one meets here an important, as we shall
see, particular case of our previous condition . So, in other words,

every hyperbolic pair of elements of E, say (z,y), provides

(cf. Definition [I.1)), a Lagrangian (A—)plane of E (see (L.3)); (1.11)
we still name it, “hyperbolic”.

Such planes of E are going to play an important role in the sequel (cf., for instance,
Theorems 2.1 and 3.1 below).
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Note 1.1. — We can also follow herewith the terminology
of E. Artin, ibid., and look at ¢(x,y) € A, for a given pair
(z,y) in E, as the (“vectorial”) “angle” of the elements
(“vectors”) x,y in E, denoted by,

J(@,y) = ¢(z,y) € A. (112)
See also ibid., p. 105. Therefore, we can say that:

given a hyperbolic Lagrangian A-plane (see(L.11))), its
“azxes are orthogonal”; that is, one has, by the very

definitions, cf. (1.11)/(1.12)), and (|1.10}): (1.13)
sin(X(x,y) = é(z,y)) =1. (1.13.1)
Now, we come to the main objective of this article; namely, the study of (skew
symmetric) non-degenerate A-bilinear forms. Thus, following Artin’s classic again,
as above, to consider “symplectic goemetry’, proper; precisely speaking, a “gen-
eralized” one, due to the presence of the algebra A, as a domain of scalars, not
necessarily a field. So we further set the next.

Definition 1.2. Let (E,¢) be a pair consisting of an A-module E and a (skew
symmetric) A-bilinear form ¢ on it (cf. (1.1])). Now, we say that the given map ¢
is non-degenerate, whenever the following condition holds true:

for any x € E, for which one has,
o(x,y) =0, for anyy € E, (1.14.1) (1.14)
then, = 0, as well.

Equivalently, one obtains:

for anyx #01in E| there existsy € E

(necessarily, non-zero), such that, ¢(x,y) # 0. (1.15)

Now, by an obvious abuse of language, and just for convenience of the termi-
nology, we are going to apply further on, a pair (E, ¢), as in the previous Definition
1.2, viz. with ¢ still non-degenerate, will be also, occasionally, called, just, non-
degenerate A-module. In particular, we are now ready to come to the following
basic notion for all that follows. That is, we set.

Definition 1.3. We call symplectic A-module, a pair (E, ¢), for which E is an A-
module and ¢ a non-degenerate skew symmetric A-bilinear form, which still satisfies
cond. ; that is, we assume herewith, by definition/(cf. also (1.4)), that:

FE is a non-degenerate pre-symplectic A-module. (1.16)
On the other hand, suppose more generally that we have,

L= Alz,y] = A2 (1.17)
within an A-isomorphism; thus, by assumption, L is a free A -module, of rank/
dimension 2, sub-A-module of a given A-module E = (E, ¢), see e.g. Definition
such that the elements x,y in E are A-linearly independent (:“azes” of L). We don’t
call L a ” Lagrangian A-plane” (cf. Definition , since we didn’t assume cond.

; namely, that ¢(x,y) € A is not a zero divisor (cf. also e.g. (1.5.1)). However,
we do have certain useful informations, concerning ((1.17). That is, suppose that,

o|L is non-degenerate. (1.18)
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Then, equivalently, one gets at the following condition;

for anya € L, as in , with
6la,) = d(a,y) =0, (1.19.1) (1.19)

one concludes thata = 0.

Indeed, the assertion about the equivalence of / is immediate, by the
very definitions (see also Definition . So as a consequence, the aforementioned
equivalence yields for instance that: given a pair (F, ¢) as above, and an A-plane
(in fact, sub-A-module) of E, as in , that is actually a pair (L, ¢|r), one
concludes that;

the condition ¢(x,y) = 0 excludes the non-degeneracy of ¢.

That is, in other words, if (the skew symmetric A-bilinear form)

¢: Ex E— A (cf. (LI)) is still non-degenerate, then

one gets at the following relation; (1.20)

b(r,y) £0, (1.20.1)
for the “azes” of any A -plane L of E, as in .
The assertion follows, straightforwardly, in view of (1.19)<(1.18]), and (1.15)<(1.14).
On the other hand,
the condition of being the “azes” {z,y} of a given A-plane
L =Alz,y] of E (cf. (1.17))), “hyperbolic”, that is, satisfy the relation

(1.10)), see also ([1.11}) for the terminology applied, can be reduced
via an appropriate change of the basis {z,y} of L, to the condition,  (1.21)

o(z,y) € A®; (1.21.1)
that is, ¢(z,y) is an invertible element, alias a “unit”, of A.

Of course, now L is still a Lagrangian A-plane of E (cf. Deﬁnition. Yet, in view
of , we also occasionally call the given A-bilinear form ¢ on E, “normalized”,
with respect to the basis (: azes) of L, as above. So we also speak, herewith of
a hyperbolic Lagrangian A-plane of E, still a fundamental notion for the sequel.
Thus, first, based on the preceding (see e.g. ¢>, and Deﬁnition, one
actually gets at the following.

every hyperbolic Lagrangian A-plane L of E (cf. (1.17))) is, in
fact, “symplectic”’: that is, the pair,
(L, l1), (1.22.1) (1.22)

yields a symplectic (sub-) A-module (of E, cf. Definition 1.3);
yet, otherwise, @|1, is non-degenerate(!), as well.

2. “ORTHOGONAL” COMPLEMENTS THROUGH A-BILINEAR FORMS

We briefly fix first the terminology, we are going to apply in the sequel, according
to the title of this Section.

Thus, let (F, ¢) be a given pair, consisting of an A-module E and an A-bilinear
form ¢ on E (cf. ) So along with E, one can consider the dual A-module of F,
denoted by E*, and given as follows;

E* := Homu(E,A), (2.1)
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that is the A-module of all A-linear forms on E. Yet, given ¢, as before one still
defines the map,

¢: E — E*, with $(z) = ¢, € E*, & € E, such that
b2(y) = (0(2))(y) := d(z,y), yeE
As a result, for any subset M C E, one can define its “orthogonal” (sub-)A-module
of E, with respect to ¢, denoted by M1¢ = M, and defined by the relation,
M+ :={zc E: ¢(zx,y) = ¢.(y) =0, forany yec M}
={relE:zlM}={xe€E: M Ckero,};
that is, those x € E, that are “orthogonal” to all of M, with respect to ¢.
Now, based on the previous jargon, we get at the following useful/convenient

alternative of the notion of non-degeneracy of ¢, as above. That is, we have the
next.

(2.2)

(2.3)

Lemma 2.1. Let (E, ¢) be a pair, consisting of an A-module E and an A-bilinear
form ¢ on it. Then, ¢ is non-degenerate (viz. just, is valid), if, and only if,
b (cf. (2.2)) is one-to-one.

Proof. Clear, according to the very definitions, as above: see (1.14]) and (2.2). O

In this context, and in conjunction with 7 we also remark that:

if the given A-bilinear form ¢ is (eithersymmetric or)skew symmetric,
and there exists x (# 0) in E, such that the corresponding (partial)
map ¢, = g{)(x) (cf. )z's one-to-ome, then, ¢ is 1 — 1, as well; viz.
(Lemma , ¢ is non-degenerate.

On the other hand, based on ([2.3), and taking, therein, M = E, one obtains a
useful relation for the sequel, that is, we get;

ker¢ = B+ C (by definition, cf. (2.3)) F, (2.5)

such that one obviously (ibid.) obtains (ker )L = EL+ = E; the last equation un-
der suitable conditions for A: e.g. there are no “isotropic” elements in E (cf. [2:
p. 118]) ; thus, take, for instance, A, an integral domain.

We come now to a basic conclusion, pertaining to hyperbolic Lagrangian (A-)
planes; viz. consequences of ¢ being “normalized”: cf. , however, see also
(1.21.1). So one gets now at the following.

(2.4)

Theorem 2.1. Let (F,¢) be a pair of an A-module E, and ¢ a skew symmetric
A-bilinear form on E (cf. (L.1))). Moreover, suppose that,

L= Alr.y] (=A%) (2.6)
is a hyperbolic Lagrangian A-plane of E (cf. (L.11))). Then, one gets the relation;
E=LoL". (2.7)

That is, in other words, one concludes that;

every hyperbolic Lagrangian A-plane of E is “complemented ” in E,
with respect to ¢ : viz. holds true.

Furthermore, the restriction of ¢ to each one of the two members of yields
symplectic (sub-)A-modules of E.

(2.8)
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Proof. Given that L + L+ C E, as A-modules, we first prove that;
LN LY =(0). (2.9)

Indeed, let z € LN L+, so that since {x,y} is, by hypothesis, a basis of L = A[z, y],
one has, z = Az + py, with A\, u in A. Therefore, we obtain,

P(z,2) = Az + py, ) = Ad(z, x) + pd(y, ¥) = —p = 0;
see also ((1.10) (hypothesis for (E,¢)), and the fact that, still z € Lt along with
. Similarly, since ¢(z,y) = 0, one still gets at A = 0, so that z = Az 4+ py = 0,
which proves . So, we actually have L+ L'+ = L@ L+ C E. We now prove the
reverse relation,
ECLoL". (2.10)
Taking z € F, we first remark that,

z=2z+¢(z,2)y — d(z,y)x — d(z,2)y + (2, y)z,
such that ¢(z,y)x — ¢(z,x)y € L, while we further prove that
v=z+ é(z, 1)y — oz, y)x € L. (2.11)

Indeed, we prove that ¢(v, 8) = 0, for any 8 = Az + py, with A, u in A, an arbitrary,
in fact, element of L. The assertion is immediate, due to A-bilinearity of ¢, and the
assumption, by hypothesis, that ¢(x,y) = 1, which thus yields now . So, this
completes the first part of the theorem. Now our resertion, concerning the pair,

(L, 9[L), (2.12)

is already a consequence of our hypothesis for L, and relevant remarks about
(1.22.1) (cf. also Definition . On the other hand supposing that L+ # (0) (oth-
erwise, is already reduced to ), let z # 0 in L. Thus, based further on
the hypothesis that ¢ is non-degenerate, we can systematically employ : So,
since z # 0, there exists v (# 0) in E, with ¢(z,v) # 0; yet, in view of (2.7), one
gets v = a + 3, such that o € L and 3 € L. Hence, one obtains;

0# ¢(z,v) = ¢(2z, 0 + B) = ¢(2, @) + (2, B) = (2, B), (2.13)
while we also remark that one has 8 € L, with 3 # 0. The last relations yield now
exactly the non-degeneracy of ¢ on L*, so that the pair

(L*, ¢lpr) (2.14)

is still a “symplectic” (sub-)A-module of E, in what we may also call, in the “gene-
ral sense”; viz. (2.14)) is a pair, just, as the initially given one (E, ), and we are
done. (I

By repeating, actually extending, the argument in the last part of the previous
theorem, one gets, in fact, at the following more general conclusion. That is, we
have.

Corollary 2.1. Let (E, ¢) be a symplectic A-module (in the “general sense”, viz.
like in Theorem 2.1), and M C E a sub-A-module of E, complemented in E, through
M+ (: “orthogonal ” complement of M in E); that is, we suppose that,

E=Ma®M*. (2.15)
Then, the restriction of ¢ to M=+ is also non-degenerate; alias, the pair
(M*, ¢lare) (2.16)
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is still a symplectic A-module (in the “general sense”).

Note that in the previous result, one does not need ¢ to be “normalized”; thus
we have not actually employed . Instead, we assumed .

3. DARBOUX THEOREM

We are ready now to embark on the proof of the classical result in the title,
within our framework. What we are actually going to prove, roughly speaking, is
that;

every symplectic (free) A-module (of finite rank), acquires

. . . . .1
a “Darbour decomposition”, being also of even dimension. (3.1)

That is, formally, one gets at the following fundamental result.

Theorem 3.1. Let E be a free A-module of finite rank, say n € N (viz. we assume
that £ = A", within an A-isomorphism), and ¢ : E x E — A a skew symmetric,
non-degenerate A-bilinear form of E, which we further assume to be “hyperbolic”

(cf. (L.10)/(L.21)), relative to “Lagrangian A-planes” of E (see Definition [L.1)). We

express the above, succinctly, by just saying that:
(E, ¢) is a “symplectic” A-module with “hyperbolic Lagrangian A-planes”. (3.2)

Then, the “Darboux Theorem” says that (E, ¢), or simply E, is a “hyperbolic space” .
That is, E is (modulo an A-isomorphism) the (¢—)orthogonal (see (2.3) /(2.7)) direct
sum of its (hyperbolic) Lagrangian A-planes; namely, one obtains the following
(“Darbouz™) decomposition:

E=L®Ly®---® Ly, (3.3)

within an A-isomorphism, where L;, 1 < i < s € N, are pairwise (¢)-orthogonal
A-planes of E, as above. Moreover, one concludes that,

n = 2s, (3.4)
that is, the (finite) rank n of E is (always) even.

Note 3.1. (Terminological). — The assumption of “normalization”
of ¢ (cf. (L.10)), relative to Lagrangian A-planes, as in the statement
of the previous theorem, is certainly crucial for the proof (see below).
Now, in the classical case this is redundant, due to the fact that the
“domain of coefficients” of the (A—)modules involved in effect vector
spaces, is, in general, just a field! However, by taking into account im-
portant applications of symplectic geometry, even in physics (e.g. quan-
tum theory, see, for instance, A. Mallios [10: p. 148, (2.1)]), this is no
more in force (ibid.). Hence, we are thus compelled to consider appro-
priate more general domains of coefficients, than “scalars”. In this con-
text, we also notice that a similar situation appears in A. Mallios-P. P.
Ntumba [12: pp. 179, 183], where actually a suitable form/“echo” of the
analogous condition with /(1.21.1), as above, still appears there-
in! So the present account constitutes also, in fact (see e.g. and
a further scrutinized “distillation” of the assumptions, we usually
employ in more general aspects of the above classical result, at issue.
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Proof of Theorem[31. Let Ly be a (hyperbolic) “Lagrangian A-plane” of E (cf.
(1.11))). Therefore (Theorem 2.1; (2.7))/(2.8))), one obtains;

E=L &L, (3.5)
while we also conclude (ibid., (2.14))), that the pair,
(Lt 6l,2) (3.6)
is also symplectic. Hence one obtains that (still ),
L =Ly® Lf, (3.7)

where Ly = Alz1,v1], a Lagrangian A-plane of L (same Theorem as before).
Thus, in view of (3.5))/(3.7]), one gets at the relation;

E=LoL® Ly, (3.8)

within an A-isomorphism, of the A-modules involved. Hence, proceeding now by
induction, one arrives at the following decomposition of E; that is,

E=L®  -®L,_,®L:,. (3.9)

Now, by virtue of Theorem 2.1 (see , along the comments after it) one gets
that,

L: | =L,~A% (3.10)
within an A-isomorphism; this actually proves already , while we still obtain,
thereby, n = 2s. Yet, the (¢p—)orthogonality”, pair-wise, of the A-planes involved in
, has been also secured during the same proof, as above (see e.g. /),

and we are domne. O

3.1. Darboux “generalized” (: Darboux decomposition with a “residue”).
We consider in the sequel the more general case that a given pair (E, ¢), as in the
preceding, has the A-bilinear form ¢, still skew symmetric, however, now not in
general non-degenerate. Thus, we examine the “Darboux decomposition” of E, as in
, in that more general case: That is, equivalently, by virtue of Lemma we
consider the case that the corresponding map ¢ (cf. ) is not, necessarily, 1 — 1.
So, by setting,

N =ker¢ = B+, (3.11)
(see ), we further consider the map,
¢:E/N x E/JN — A, (3.12)

in such a manner that one defines,

o(i,9) = d(x,y), (3.13)
for any (z,y) € E x E; of course we set e.g. here, & := [z] € E/N, withz € E. It is
routine to check that ¢ as above is well-defined, and, in fact a skew symmetric A-
bilinear form on the (quotiend) A-module E/N, as before; see also e.g. N. Bourbaki
[4: Chap. II, p. 7], or T. S. Blyth [3: p. 32ff]. So, according to the very definitions,
the pair,

(E/ker§,9), (3.14)
is a symplectic A-module; that is, gg is a skew symmetric non-degenerate A-bilinear

form. See thus, (2.2))/(2.3)), (2.5) and (3.13]), along with (1.15).
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Now, concerning (3.14]), and in view of eventual “peculiarities” of A, we should
remark that,

even if £ is a free A-module, this is not always the case for the
quotient A-module E/N; any way, the latter will be, at least, (3.15)
finitely generated, if E is free of finite rank.

See, for instance, N. Bourbaki [4: Chap. II, p. 27]. On the other hand, the quotient
A-module,

E/ ker ¢ = E/N is still free of finite rank (at most, that one of F),
in the case, for instance, that A is a PID-algebra (:“principal ideal (3.16)
domain” ), and of course with E free of finite rank.

See e.g. T. S. Blyth [3:p. 265, Theorem 18.3]. It is actually the situation, as in
, that we usually adopt! However, cf. Theorem in the sequel. Namely,
we have that;

by assuming , ihe.A—module. is free of‘ﬁmte rank, (3.17)
say k (< n = dim E), being also symplectic.
On the other hand, we further assume that,

the A-bilinear map ¢ (cf. (3.12)) is “normalized”, relative to
Lagrangian A-planes of E/N; viz. one has,

bli, ) =1, (3.18.1) (3.18)

for any (Lagrangian) A-plane A[Z, ] of E/N (see (3.14)), and (1.11))).
Here we also remark that, in view of (3.13)), one concludes that;

& is normalized, if, and only if, ¢ is. (3.18.2)

In this context, we still notice for use right away, that;

the elements &,y in E/N are A-linearly independent, if,

and only if, z,y in E are. (3.19)

The assertion is clear, by the very definitions; of course, we set above, & = [z] €
E/N, with x € E. Yet, here E is just an A-module; see Section 2, as above. There-
fore, by considering a Lagrangian A-plane of E (take e.g. FE now, pre-symplectic,
cf. (1.11)), one gets at the relation;

L:=Alig] = A2~ Alz,y]=L CE, (3.20)
within A-isomorphisms where, of course, L stands for the corresponding, in view
of (3.19), Lagrangian A-plane of E/N. It is still clear, see (3.13)), that

E/N is pre-symplectic, if, and only if, E is. (3.21)
Thus, we are now ready to embark on “Darbouzr generalized”. That is, one gets at
the following basic result.

Theorem 3.2. Let (F,¢) be a pre-symplectic A-module (cf. Definition 1.1), with
“hyperbolic” Lagrangian A-planes (viz., is valid for Lagrangian A-planes (see
also ([L.5)). Moreover, assume that:

E/N (see (3.11)/(3.14)) is a free A- module of finite rank, say, k € N.  (3.22)

Then, one obtains the following (“generalized Darbouxz”) decomposition of E.

E=L1®L® --©L,)®E, (3.23)
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within an A-isomorphism, such that k = 2s; or yet, one has,
dim(E/N) =k = 2s. (3.24)

Proof. Based on (3.14) and our hypothesis for E/N, we first remark that, accord-
ing to Theorem specialized now to E/N, one gets at the following “Darboux
decomposition”;

E/kerp=1L@---@ Ly, with 2s =k, (3.25)
modulo an A-isomorphism. Therefore (1st Isomorphism Theorem), one obtains (cf.

also (3.20)/(2.5)),
E=(1®---oL)®kro¢=L1 & &L, ®E*, (3.26)
within A-isomorphisms, and the proof is finished. ([

4. MATRIX REPRESENTATION

By analogy with the classical case of vector spaces, viz. when, in particular, one
takes A = K, we can consider, what we may call, the “matriz analogue” of the
preceding; that is, the form of the above, in terms of matrices over A (see Section
1)

Thus, by looking at a pair,

(E, ), (4.1)
as in Definition 1.3, we can further take a Lagrangian A-plane of E, say (cf. (L.3)),
L= Alz,y] =A% (4.2)

Hence, by assumption, if ¢(z,y) =t € A (a non-zero divisor, by hypothesis, cf.
(1.2)), the matriz of L is given by,

(_Ot é)t<_01 (1)) (4.3)

Thus, by taking, in particular t € A® (see (1.21.1)), we can consider the pair
(x,t71y), as a basis of L, in place of (z,y), as in (4.2). So one arrives at the
classical form, of the so-called “Darboux matriz” of L, viz. one gets (4.3)) in the

equivalent form,
0 1
(00, »

That is, in other words, under the hypothesis t € A®; with t = ¢(z,y), as in (4.2)),
one concludes that;

every Lagrangian A-plane of E “is” (viz. can be reduced to)
a hyperbolic one.

See also (1.10)/(1.11)) in the preceding. So, in view of (4.5), and Theorem [2.1]

concerning the basic property , for hyperbolic A-planes (viz. their “orthogonal
complementation”, via ¢), one comes to the conclusion that;

(4.5)

every pair (E, @), as above, is the“(¢—)orthogonal direct sum
of its hyperbolic (Lagrangian) A-planes, yet in other words (4.6)
a hyperbolic space.

See Theorem 3.1; (3.3)). For the classical case, see e.g. E. Artin [2: p. 119, Definition
3.9, along with Theorem 3.7].
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Now, based further on the previous “matriz analogue” of (4.5), as in ([£.4) (see
also (|1.21)), one gets at the following matriz representation of ; that is, we
obtain.

0 1
1 0 0
0 1
-1 0
(4.7)
0
0 1
-1 0

as the “matriz form”, in terms of A, of the hyperbolic/(Darbouz) decomposition of

(E, ¢), as in Theorem [3.1]

On the other hand, by looking at the “generalized Darbouz decomposition”, as in
, it is clear that, similarly to , one defines the corresponding supplemented
matriz to 7 by just adding to the latter the matriz 0, associated with kerqﬁ =
EL+ C E. So one gets at the following “matriz form” of (:“generalized”
Darbouz).

0 1
-1 0 0
(4.8)
0 1
0 -1 0

5. ORTHOGONAL (GENERALIZED) GEOMETRY AND MATRIX REPRESENTATION

We consider in the sequel, still an A-bilinear form,

¢o:ExE— A (5.1)
on E, a free A-module of finite rank, say n € N. That is, we assume that,
E=A", (5.2)

within an A-isomorphism. Yet, we suppose this time that ¢ is symmetric; that is,
we accept that,

¢($, y) = ¢(y7 LU), (53)
for any pair (x,y) of elements in E. On the other hand, we say that ¢, as in , is
non-degenerate, whenever the maquS : E— E* (see ) is one-to-one: Thus, we
take here Lemma [2.1]in the preceding, as a definition of the “non-degeneracy’ of ¢;
besides, ¢ may be either symmetric or skew symmetric. We further note herewith
that by the above definition of the non-degeneracy of ¢, we do generalize against
the so-called “strong non-degeneracy’ of ¢ (: 6, as in || is a bijection; see e.g. J.
Milnor - D. Husemoller [11: p. 1]). Of course, following here, classical standards, ex-
tended by considering throughout, an appropriate A: (: unital commutative algebra
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over a field K), as in the preceding, for our (generalized) “domain of coefficients’,
we may speak of a pair (E, ¢), with E an A-module, and ¢ a non-degenerate sym-
metric A-bilinear form on it (cf. ), as referring to our (generalized) orthogonal
geometry on E; see e.g. N. Jacobson [7:p. 361], yet, E. Artin [2:p. 111].

Now, suppose we are given an A-module F, and x € E, which is not a “torsion”
element: that is, we accept that, the relation,

ax =0, implies a = 0, (5.4)
for any element a € A. Fquivalently, we thus consider = € E, as before, as an
A-linearly independent element of E. See also e.g. W. A. Adkins - S. H. Weintraub

[1: p. 117]. Hence, one can further look at the associated with x, as in , with
that, which one might call an A-line of F; that is we set:

L=A[z] CE. (5.5)

Thus, we come first to the following basic result for the sequel. That is, one has the
next.

Lemma 5.1. Suppose we are given a pair (E, ¢), with E an A-module and ¢ an
A-bilinear form on E (cf. (5.1)). Moreover, let « be an element of F, such that,

¢(z,x) = 1. (5.6)
Then, one gets at the following “orthogonal ” decomposition of E (see also (5.5))),
E=LolL% (5.7)

so, in other words, L is “complemented” in E, through L*, as the latter sub-A-
module of E is given by (2.3).

Proof. First, we prove that,
LN LY =(0). (5.8)
Indeed, this is an immediate consequence of , and the fact that
for any z € E, one gets;
é(z,2) =0, if, and only if, z € L*. (5.9.1)

The latter assertion (5.9) is valid, still by the very definitions (see also (5.5))). On
the other hand, we also have;

(5.9)

ECL+L*" (5.10)
Indeed, if z € F, then it is clear that,
z=z+ ¢(z,x)x — P(z,z)x. (5.11)

So, first one has ¢(z,z)x € L (cf. ), while we still prove that, z— ¢(z, x)x € L*;
namely, in view of (5.9.1), it suffices to see that ¢(z — ¢(z,z)x,z) = 0, which is
true, of course, still by the very definitions and (@, and this finishes the proof of
the Lemma. O

Now, the following lemma is also a basic result for the sequel; see thus e.g.
Theorem [5.1] below. So one gets at the next.

Lemma 5.2. Let (E,¢) be a given pair, consisting of an A-module E and an A-
bilinear form ¢ on it, such that the following (orthogonal decomposition of E) holds
true:

E=LoL"%, (5.12)
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see (5.5) and (2.3). Then,

@|r is non-degenerate. (5.13)

See, for instance, (1.14)), valid for any ¢, as above.

Proof. Consider an element y € L C E, such that;

d(y,2) =0, forany ze€ L. (5.14)
Therefore (cf. (2.3)), y € L+, as well, that is, y € LN Lt = 0 (see (5.12)), which
proves (1.14)), hence, the assertion. O

As a spin-off of the previous lemma, thus in effect of the validity of , one
still gets at the following.

Corollary 5.1. Suppose we are given a pair (E,¢), as in Lemma so that
(ibid.), holds true. Then,

@|p1 is non-degenerate. (5.15)

Proof. According to our hypothesis, the given A-bilinear form ¢ on E is already
non-degenerate (Lemma [5.2]). Now, to prove (5.15]), one may further employ the
criterion/definition (1.15) (being actually stated, for any ¢, as e.g. the given one
here). So let y € L+ C E, with y # 0. Hence, by the non-degeneracy of ¢, there
evists z € E = L& L+ (cf. (5.12)), such that z # 0, and ¢(y, z) # 0. Thus, taking
e.g. z2 =21 + 23 (cf. (5.12)), one gets,

(b(y’ Z) = ¢(y7 z1+ Z2) = (b(ya 21) + (b(ya 22) = d)(y?ZQ) 7é 07 (516)
which proves (1.15)), hence, the assertion as well. a

N.B. Suppose we have a pair (F,¢), with E an A-module and ¢ an
A-bilinear form on it. Moreover, let x € E, such that

¢(z,x) € A is not a zero divisor. (5.17)

Our hypothesis in (@) meets, of course, the previous condition,
yet, the same is certainly valid, automatically by the very defini-
tions, in case A is e.g. an “integral domain” (:no zero divisors at all).
In this latter case, (5.6) still ensures x, as a torsion free element of E;
hence, as already noted in the preceding (equivalently) an A-linearly in-
dependent one, as well, so that has a meaning! In this context, we
further note that in an integral domain, zero is the only “nilpotent” ele-
ment. Yet, we still note, in conjunction with , as well as, with ,
that: over an integral domain, every free module is torsion free. See, for
example, Ref. following above, p. 131, Proposition 4.8. Anyway, we
still note that;

(5.8) is valid, by only supposing that ¢(z,x), (5.18)
with x as in (5.5)), is not a zero divisor. '

See also (5.9.1), as above. Moreover, a reinforcement of : That is, one obtains
that,

(5.13) is walid, if and only if, L0 L+ = (0). (5.19)
Indeed, just a consequence of the hypothesis that,

¢(x,z) is not a zero divisor, with x as in (5.5). (5.20)
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On the other hand, assuming that (E, ¢) is a pair, as e.g. in Lemma [5.1] suppose
that an element x € E, is such that:

¢(x,x) € A, is not a zero divisor. (5.21)

Then, one still concludes that = is A-linearly independent; hence, as already ex-
plained in the preceding, a torsion free element, as well. Therefore,

under the hypothesis , the relation has a meaning. (5.22)

To prove the previous assertion, concerning the element x € E, as in , we
remark that; if ax = 0, then ¢(az,z) = a- ¢(z,z) = 0, hence, in view of (5.21)), one
gets a = 0.

We are now in the position to state and prove the main result of this section.
Namely, one gets at the next.

Theorem 5.1. Let (E,¢) be a pair with E a free A-module of finite rank, say
n € N, and ¢ an A-bilinear form on E. Moreover, assume that E has (“hyperbolic”)
A-lines of the form : we posit that there exist “hyperbolic elements” of E, thus,
by definition, elements x € E, for which is valid; hence, in particular, in
effect, the relation (@ Then, E admits the following “orthogonal decomposition”;

E=Ax1]® - @ Alx,], (5.23)

within an A-isomorphism, where x; € E, with 1 < i < n, stand for a “(hyperbolic)
basis” of E.

Proof. The proof is made inductively, on the basis of Lemmas[5.1]and[5.2] employing
a similar argument to the case of ¢ being, skew-symmetric: see Theorem in the
preceding. So we may omit the details. O

On the other hand, suppose that;

¢ is a symmetric A-bilinear form, not necessarily non-degenerate;
viz. there exists ker ¢ (cf. (2.2))). That is, one has, (5.24)

ker ¢ # {0}. (5.24.1)
Then, one gets at the analogous decomposition of E, as in Theorem (see )
For the proof we can apply a similar argument to that one for Theorem [3.2] Fur-
thermore, one obtains analogous “matriz representations”, as in the skew-symmetric
case; cf. / . Concerning the classical case, one finds e.g. a corresponding
account in K. W. Gruenberg and A. J. Weir [6:p. 102, Section 5.4].
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