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THE GENERALIZED DIFFERENCE OF
∫

Γ2I OF FUZZY REAL

NUMBERS OVER p− METRIC SPACES DEFINED BY

MUSIELAK

N. SUBRAMANIAN, K. BALASUBRAMANIAN,K. CHANDRASEKHARA RAO

Abstract. In this article we introduce the sequence spaces[
Γ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )
and

[
Λ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )
,

associated with the integrated sequence space defined by Musielak. We study
some basic topological and algebraic properties of these spaces. We also inves-

tigate some inclusion relations related to these spaces.

Throughout w,Γ and Λ denote the classes of all, entire and analytic scalar valued
single sequences, respectively.
We write w2 for the set of all complex sequences (xmn), where m,n ∈ N, the set
of positive integers. Then, w2 is a linear space under the coordinate wise addition
and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [1]. Later on,
they were investigated by Hardy [2], Moricz [3], Moricz and Rhoades [4], Basarir
and Solankan [5], Tripathy [6], Turkmenoglu [7], and many others.

We procure the following sets of double sequences:

Mu (t) :=
{

(xmn) ∈ w2 : supm,n∈N |xmn|tmn <∞
}
,

Cp (t) :=
{

(xmn) ∈ w2 : p− limm,n→∞ |xmn − l|tmn = 1for some l ∈ C
}
,

C0p (t) :=
{

(xmn) ∈ w2 : p− limm,n→∞ |xmn|tmn = 1
}
,

Lu (t) :=
{

(xmn) ∈ w2 :
∑∞
m=1

∑∞
n=1 |xmn|

tmn <∞
}
,

Cbp (t) := Cp (t)
⋂
Mu (t) and C0bp (t) = C0p (t)

⋂
Mu (t);

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N and
p − limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1
for all m,n ∈ N;Mu (t) , Cp (t) , C0p (t) ,Lu (t) , Cbp (t) and C0bp (t) reduce to the sets
Mu, Cp, C0p,Lu, Cbp and C0bp, respectively. Now, we may summarize the knowledge
given in some document related to the double sequence spaces. Gökhan and Colak
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[8,9] have proved thatMu (t) and Cp (t) , Cbp (t) are complete paranormed spaces of
double sequences and gave the α−, β−, γ− duals of the spaces Mu (t) and Cbp (t) .
Quite recently, in her PhD thesis, Zelter [10] has essentially studied both the theory
of topological double sequence spaces and the theory of summability of double
sequences. Mursaleen and Edely [11] and Tripathy have independently introduced
the statistical convergence and Cauchy for double sequences and given the relation
between statistical convergent and strongly Cesàro summable double sequences.
Altay and Basar [12] have defined the spaces BS,BS (t) , CSp, CSbp, CSr and BV of
double sequences consisting of all double series whose sequence of partial sums are
in the spacesMu,Mu (t) , Cp, Cbp, Cr and Lu, respectively, and also examined some
properties of those sequence spaces and determined the α− duals of the spaces
BS,BV, CSbp and the β (ϑ)− duals of the spaces CSbp and CSr of double series.
Basar and Sever [13] have introduced the Banach space Lq of double sequences
corresponding to the well-known space `q of single sequences and examined some
properties of the space Lq. Quite recently Subramanian and Misra [14] have studied
the space χ2

M (p, q, u) of double sequences and gave some inclusion relations.
The class of sequences which are strongly Cesàro summable with respect to

a modulus was introduced by Maddox [15] as an extension of the definition of
strongly Cesàro summable sequences. Connor [16] further extended this definition
to a definition of strong A− summability with respect to a modulus where A =
(an,k) is a nonnegative regular matrix and established some connections between
strong A− summability, strong A− summability with respect to a modulus, and
A− statistical convergence. In [17] the notion of convergence of double sequences
was presented by A. Pringsheim. Also, in [18]-[19], and [20] the four dimensional
matrix transformation (Ax)k,` =

∑∞
m=1

∑∞
n=1 a

mn
k` xmn was studied extensively by

Robison and Hamilton.
We need the following inequality in the sequel of the paper. For a, b,≥ 0 and

0 < p < 1, we have
(a+ b)p ≤ ap + bp (0.1)

The double series
∑∞
m,n=1 xmn is called convergent if and only if the double se-

quence (smn) is convergent, where smn =
∑m,n
i,j=1 xij(m,n ∈ N).

A sequence x = (xmn)is said to be double analytic if supmn |xmn|1/m+n
< ∞.

The vector space of all double analytic sequences will be denoted by Λ2. A se-

quence x = (xmn) is called double gai sequence if (|xmn|)1/m+n → 0 as m,n→∞.
The double gai sequences will be denoted by Γ2. Let φ = {finite sequences} .

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence

is defined by x[m,n] =
∑m,n

i,j=0xij=ij for all m,n ∈ N ; where =ij denotes the double

sequence whose only non zero term is a 1
(i+j)! in the (i, j)

th
place for each i, j ∈ N.

An FK-space(or a metric space)X is said to have AK property if (=mn) is a
Schauder basis for X. Or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete metriz-
able; locally convex topology under which the coordinate mappings x = (xk) →
(xmn)(m,n ∈ N) are also continuous.
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Let M and Φ are mutually complementary modulus functions. Then, we have:
(i) For all u, y ≥ 0,

uy ≤M (u) + Φ (y) , (Y oung′s inequality)[See[21]] (0.2)

(ii) For all u ≥ 0,
uη (u) = M (u) + Φ (η (u)) . (0.3)

(iii) For all u ≥ 0, and 0 < λ < 1,

M (λu) ≤ λM (u) (0.4)

Lindenstrauss and Tzafriri [22] used the idea of Orlicz function to construct Orlicz
sequence space

`M =
{
x ∈ w :

∑∞
k=1M

(
|xk|
ρ

)
<∞, for someρ > 0

}
,

The space `M with the norm

‖x‖ = inf
{
ρ > 0 :

∑∞
k=1M

(
|xk|
ρ

)
≤ 1
}
,

becomes a Banach space which is called an Orlicz sequence space. For M (t) =
tp (1 ≤ p <∞) , the spaces `M coincide with the classical sequence space `p.

A sequence f = (fmn) of modulus function is called a Musielak-modulus function.
A sequence g = (gmn) defined by

gmn (v) = sup {|v|u− (fmn) (u) : u ≥ 0} ,m, n = 1, 2, · · ·
is called the complementary function of a Musielak-modulus function f . For a given
Musielak modulus function f, the Musielak-modulus sequence space tf is defined
as follows

tf =
{
x ∈ w2 : Mf (|xmn|)1/m+n → 0asm, n→∞

}
,

where Mf is a convex modular defined by

Mf (x) =
∑∞
m=1

∑∞
n=1 fmn (|xmn|)1/m+n

, x = (xmn) ∈ tf .
We consider tf equipped with the Luxemburg metric

d (x, y) = supmn

{
inf

(∑∞
m=1

∑∞
n=1 fmn

(
|xmn|1/m+n

mn

))
≤ 1
}

If X is a sequence space, we give the following definitions:

(i)X
′
= the continuous dual of X;

(ii)Xα =
{
a = (amn) :

∑∞
m,n=1 |amnxmn| <∞, for eachx ∈ X

}
;

(iii)Xβ =
{
a = (amn) :

∑∞
m,n=1amnxmn is convegent, foreachx ∈ X

}
;

(iv)Xγ =
{
a = (amn) : supmn≥1

∣∣∣∑M,N
m,n=1 amnxmn

∣∣∣ <∞, foreachx ∈ X} ;

(v)letX be an FK − space ⊃ φ; thenXf =
{
f(=mn) : f ∈ X ′

}
;

(vi)Xδ =
{
a = (amn) : supmn |amnxmn|1/m+n

<∞, foreachx ∈ X
}

;

Xα, Xβ , Xγ are called α − (orKöthe − Toeplitz)dual of X,β − (or generalized −
Köthe−Toeplitz)dual ofX, γ− dual of X, δ − dual ofX respectively.Xα is defined
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by Gupta and Kamptan . It is clear that Xα ⊂ Xβ and Xα ⊂ Xγ , but Xβ ⊂ Xγ

does not hold, since the sequence of partial sums of a double convergent series need
not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced
by Kizmaz as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}
for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N.
Here c, c0 and `∞ denote the classes of convergent,null and bounded scalar valued
single sequences respectively. The difference sequence space bvp of the classical
space `p is introduced and studied in the case 1 ≤ p ≤ ∞ by Başar and Altay and
in the case 0 < p < 1 by Altay and Başar. The spaces c (∆) , c0 (∆) , `∞ (∆) and
bvp are Banach spaces normed by

‖x‖ = |x1|+ supk≥1 |∆xk| and ‖x‖bvp = (
∑∞
k=1 |xk|

p
)
1/p

, (1 ≤ p <∞) .

Later on the notion was further investigated by many others. We now introduce
the following difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1) − (xm+1n − xm+1n+1) = xmn −
xmn+1 − xm+1n + xm+1n+1 for all m,n ∈ N.

1. Definition and Preliminaries

Let n ∈ N and X be a real vector space of dimension m, where n ≤ m. A real
valued function dp(x1, . . . , xn) = ‖(d1(x1), . . . , dn(xn))‖p on X satisfying the fol-
lowing four conditions:
(i) ‖(d1(x1), . . . , dn(xn))‖p = 0 if and and only if d1(x1), . . . , dn(xn) are linearly
dependent,
(ii) ‖(d1(x1), . . . , dn(xn))‖p is invariant under permutation,
(iii) ‖(αd1(x1), . . . , αdn(xn))‖p = |α| ‖(d1(x1), . . . , dn(xn))‖p, α ∈ R
(iv) dp ((x1, y1), (x2, y2) · · · (xn, yn)) = (dX(x1, x2, · · ·xn)p + dY (y1, y2, · · · yn)p)

1/p
for1 ≤

p <∞; (or)
(v) d ((x1, y1), (x2, y2), · · · (xn, yn)) := sup {dX(x1, x2, · · ·xn), dY (y1, y2, · · · yn)} ,
for x1, x2, · · ·xn ∈ X, y1, y2, · · · yn ∈ Y is called the p product metric of the Carte-
sian product of n metric spaces is the p norm of the n-vector of the norms of the n
subspaces.

A trivial example of p product metric of n metric space is the p norm space is
X = R equipped with the following Euclidean metric in the product space is the p
norm:

‖(d1(x1), . . . , dn(xn))‖E = sup (|det(dmn (xmn))|) =

sup



∣∣∣∣∣∣∣∣∣∣∣∣

d11 (x11) d12 (x12) ... d1n (x1n)
d21 (x21) d22 (x22) ... d2n (x1n)

.

.

.
dn1 (xn1) dn2 (xn2) ... dnn (xnn)

∣∣∣∣∣∣∣∣∣∣∣∣


where xi = (xi1, · · ·xin) ∈ Rn for each i = 1, 2, · · ·n.
If every Cauchy sequence in X converges to some L ∈ X, then X is said to be
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complete with respect to the p− metric. Any complete p− metric space is said to
be p− Banach metric space.

1.1. Definition. Let X be a linear metric space. A function ρ : X → R is called
paranorm, if
(1) ρ (x) ≥ 0, for all x ∈ X;
(2) ρ (−x) = ρ (x) , for all x ∈ X;
(3) ρ (x+ y) ≤ ρ (x) + ρ (y) , for all x, y ∈ X;
(4) If (σmn) is a sequence of scalars with σmn → σ as m,n → ∞ and (xmn) is a
sequence of vectors with ρ (xmn − x)→ 0 as m,n→∞, then ρ (σmnxmn − σx)→ 0
as m,n→∞.
A paranorm w for which ρ (x) = 0 implies x = 0 is called total paranorm and the
pair (X,w) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [23], Theorem 10.4.2,
p.183).

The notion of ideal convergence was introduced first by Kostyrko et al.[24] as
a generalization of statistical convergence which was further studied in topological
spaces by Kumar et al.[25,26] and also more applications of ideals can be deals with
various authors by B.Hazarika [27-39] and B.C.Tripathy and B. Hazarika [40-43].

1.2. Definition. A family I ⊂ 2Y of subsets of a non empty set Y is said to be an
ideal in Y if
(1) φ ∈ I
(2) A,B ∈ I imply A

⋃
B ∈ I

(3) A ∈ I,B ⊂ A imply B ∈ I.
while an admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y.

Given I ⊂ 2N×N be a non trivial ideal in N × N. A sequence (xmn)m,n∈N×N in

X is said to be I− convergent to 0 ∈ X, if for each ε > 0 the set A (ε) =
{m,n ∈ N× N : ‖(d1(x1), . . . , dn(xn))− 0‖p ≥ ε} belongs to I.

1.3. Definition. A non-empty family of sets F ⊂ 2X is a filter on X if and only if
(1) φ ∈ F
(2) for each A,B ∈ F, we have imply A

⋂
B ∈ F

(3) each A ∈ F and each A ⊂ B, we have B ∈ F.

1.4. Definition. An ideal I is called non-trivial ideal if I 6= φ and X /∈ I. Clearly
I ⊂ 2X is a non-trivial ideal if and only if F = F (I) = {X −A : A ∈ I} is a filter
on X.

1.5. Definition. A non-trivial ideal I ⊂ 2X is called (i) admissible if and only if
{{x} : x ∈ X} ⊂ I. (ii) maximal if there cannot exists any non-trivial ideal J 6= I
containing I as a subset.

If we take I = If = {A ⊆ N× N : A is a finite subset } . Then If is a non-trivial
admissible ideal of N and the corresponding convergence coincides with the usual
convergence. If we take I = Iδ = {A ⊆ N× N : δ(A) = 0} where δ (A) denote the
asyptotic density of the set A. Then Iδ is a non-trivial admissible ideal of N × N
and the corresponding convergence coincides with the statistical convergence.

Let D denote the set of all closed and bounded intervals X = [x1, x2] on the real
line R × N. For X,Y ∈ D, we define X ≤ Y if and only if x1 ≤ y1 and x2 ≤ y2,
d(X,Y ) = max {|x1 − y1| , |x2 − y2|}, where X = [x1, x2] and Y = [y1, y2].

Then it can be easily seen that d defines a metric on D and (D, d) is a complete
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metric space. Also the relation ≤ is a partial order on D. A fuzzy number X is a
fuzzy subset of the real line R× R i.e. a mapping X : R→ J (= [0, 1]) associating
each real number t with its grade of membership X (t).

1.6. Definition. A fuzzy number X is said to be (i) convex if X (t) ≥ X (s) ∧
X (r) = min {X (s) , X (r)}, where s < t < r. (ii) normal if there exists t0 ∈ R×R
such that X (t0) = 1. (iii) upper semi-continuous if for each ε > 0, X−1 ([0, a+ ε])
for all a ∈ [0, 1] is open in the usual topology of R× R.

Let R (J) denote the set of all fuzzy numbers which are upper semicontinuous
and have compact support, i.e. if X ∈ R (J) × R (J) the for any α ∈ [0, 1] , [X]

α

is compact, where [X]
α

= {t ∈ R× R : X (t) ≥ α, if α ∈ [0, 1]}, [X]
0

=closure of
({t ∈ R× R : X (t) > α, ifα = 0}).

The set R of real numbers can be embedded R (J) if we define r̄ ∈ R (J)×R (J)
by

r̄ (t) =

{
1, if t = r :

0, if t 6= r

The absolute value, |X| of X ∈ R (J) is defined by

|X| (t) =

{
max {X (t) , X (−t)} , if t ≥ 0;

0, if t < 0

Define a mapping d̄ : R (J)× R (J)→ R+ ∪ {0}by

d̄ (X,Y ) = sup0≤α≤1d ([X]
α
, [Y ]

α
) .

It is known that
(
R (J) , d̄

)
is a complete metric space.

1.7. Definition. A metric on R (J) is said to be translation invariant if d̄ (X + Z, Y + Z) =
d̄ (X,Y ), for X,Y, Z ∈ R (J) .

1.8. Definition. A sequence X = (Xmn) of fuzzy numbers is said to be convergent
to a fuzzy number X0 if for every ε > 0, there exists a positive integer n0 such that
d̄ (Xmn, X0) < ε for all m,n ≥ n0.

1.9. Definition. A sequence X = (Xmn) of fuzzy numbers is said to be (i) I-
convergent to a fuzzy number X0 if for each ε > 0 such that

A =
{
m,n ∈ N : d̄ (Xmn, X0) ≥ ε

}
∈ I.

The fuzzy number X0 is called I-limit of the sequence (Xmn) of fuzzy numbers and
we write I − limXmn = X0. (ii) I-bounded if there exists M > 0 such that

{m,n ∈ N : d (Xmn, 0̄) > M} ∈ I.

1.10. Definition. A sequence space EF of fuzzy numbers is said to be (i) solid (
or normal) if (Ymn) ∈ EF whenever (Xmn) ∈ EF and d̄ (Ymn, 0̄) ≤ d̄ (Xmn, 0̄) for
all m,n ∈ N. (ii) symmetric if (Xmn) ∈ EF implies

(
Xπ(mn)

)
∈ EF where π is a

permutation of N× N.
Let K = {k1 < k2 < ...} ⊆ N and E be a sequence space. A K-step space of E

is a sequence space

λEmn =
{(
Xmpnp

)
∈ w2 : (mpnp) ∈ E

}
.

A canonical preimage of a sequence
{(
xmpnp

)}
∈ λEK is a sequence {ymn} ∈ w2

defined as
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ymn =

{
xmn, if m,n ∈ E
0, otherwise.

A canonical preimage of a step space λEK is a set of canonical preimages of all
elements in λEK , i.e. y is in canonical preimage of λEK if and only if y is canonical
preimage of some x ∈ λEK .

1.11. Definition. A sequence space EF is said to be monotone if EF contains the
canonical pre-images of all its step spaces.

The following well-known inequality will be used throughout the article. Let
p = (pmn) be any sequence of positive real numbers with 0 ≤ pmn ≤ supmnpmn =
G,D = max {1, 2G− 1} then

|amn + bmn|pmn ≤ D (|amn|pmn + |bmn|pmn) for all m,n ∈ N and amn, bmn ∈ C.

Also |amn|pmn ≤ max
{

1, |a|G
}

for all a ∈ C.

First we procure some known results; those will help in establishing the results
of this article.

1.12. Lemma. A sequence space EF is normal implies EF is monotone. (For the
crisp set case, one may refer to Kamthan and Gupta [44], page 53).

1.13. Lemma. (Kostyrko et al., [24], Lemma 5.1). If I ⊂ 2N is a maximal ideal,
then for each A ⊂ N we have either A ∈ I or N−A ∈ I.

2. Some new integrated sequence spaces of fuzzy numbers

The main aim of this article to introduce the following sequence spaces and ex-
amine topological and algebraic properties of the resulting sequence spaces. Let
p = (pmn) be a sequence of positive real numbers for all m,n ∈ N. f = (fmn) be

a Musielak-modulus function,
(
X, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

)
be a p−metric

space, and
(
λ−1
mn

)
be a sequence of non-zero scalars and µmn (X) = d̄

(
∆mXmn
λmn

, 0̄
)

be a sequence of fuzzy numbers, we define the following sequence spaces as follows:[
Γ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )

={
(Xmn) ∈ w2F :

{
(r, s) ∈ N× N :

[
fmn

(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
≥ ε
}
∈ I
}

,[
Λ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )

={
(Xmn) ∈ w2F : ∃K > 0 3

{
(r, s) ∈ N× N :

[
fmn

(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
≥ K

}
∈ I
}

.

2.1. Theorem. Let f = (fmn) be a Musielak-modulus function, q = (qmn) be
a double analytic sequence of strictly positive real numbers, the sequence spaces[
Γ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )

and
[
Λ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )

are linear spaces.

Proof: We prove the result only for the space
[
Γ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )

.

The other spaces can be treated, similarly. Let X = (Xmn) and Y = (Ymn) be two

elements
[
Γ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )

. We have

A ε
2

=
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(r, s) ∈ N× N :

[
fmn

(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
≥ ε

2

}
∈ I

and
B ε

2
={

(r, s) ∈ N× N :
[
fmn

(
‖µmn (y) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
≥ ε

2

}
∈ I.

Let α and β be two scalars. By the Musielak continuity of the function f = (fmn)
the following inequality holds:[
fmn

(∥∥∥µmn(αx+βy)
|α|+|β| , (d (x1) , d (x2) , · · · , d (xn−1))

∥∥∥
p

)]qmn
≤

D
[
|α|
|α|+|β|fmn

(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
+

D
[
|β|

|α|+|β|fmn

(
‖µmn (y) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
≤

D
[
fmn

(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
+

D
[
fmn

(
‖µmn (y) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
. From the above relation

we obtain the following:{
(r, s) ∈ N× N :

[
fmn

(∥∥∥µmn(αx+βy)
|α|+|β| , (d (x1) , d (x2) , · · · , d (xn−1))

∥∥∥
p

)]qmn
≥ ε
}
⊆{

(r, s) ∈ N× N : DK
[
fmn

(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
≥ ε

2

}
∪{

(r, s) ∈ N× N : DK
[
fmn

(
‖µmn (y) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
≥ ε

2

}
∈

I. This completes the proof.

2.2. Remark. It is easy to verify
[
Λ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )

is a

linear space

2.3. Theorem. The classes of sequences
[
Γ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]F
and

[
Λ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]F
are paranormed spaces paranormed

by g, defined by

g (X) = inf
{
qmn
H : supmnfmn

(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)
≤ 1
}

where H = max {1, supmnqmn} .
Proof: Clearly g (X) ≥ 0, g (−X) = g (X) and g (X + Y ) ≤ g (X) + g (Y ) . Next
we show the continuity of the product. Let α be fixed and g (X) → 0. Then it is
obvious that g (αX)→ 0. Next let α→ 0 and X be fixed. Since fmn are continuous,

we have fmn

(
α ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)
→ 0, as α → 0. Thus

we have

inf
{
qmn
H : supmnfmn

(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)
≤ 1
}
→ 0, as

α→ 0.

Hence g (αX)→ 0 as α→ 0. Therefore g is a paranorm.

2.4. Proposition.
[
Γ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )

⊂[
Λ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )

and the inclusion is proper

Proof: Let I (F ) = I, fmn

(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)
= (−1)

m+n
, 1
λmn

=
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qmn = m = 1 then µ (x) =
[
Λ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )

but (xmn) /∈[
Γ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )

2.5. Theorem. The spaces
[
Γ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )

and[
Λ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I(F )

are neither solid nor monotone in gen-

eral
Proof: Let (xmn) be a given sequence and (αmn) be a sequence of scalars such
that |αmn| ≤ 1, for all m,n ∈ N. Then we have[
fmn

(
‖µmn (αx) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
≤[

fmn

(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
, for all m,n ∈ N.

If ∆mn = 1 then solidness follows above inequality. The monotonicity follows by
lemma 2.12.
The first part of the proof follows from the following example:

Example: Let I (F ) = I,
[
fmn

(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
=[

f
(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
=[(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p
)]qmn

,m = 1, 1
λmn

= 1 for all m,n ∈
N, qmn = 1 for m,n odd, qmn = 3 for m,n even, (xmn) = (mn)

m+n
for all m,n ∈ N

belongs to
[
Λ2q
µ , ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I
. For E, a sequence space, con-

sider its step space EJ defined by (ymn) ∈ EJ implies ymn = 0 for all m,n odd and

ymn = xmn for m,n even. Then (ymn) ∈
[
Λ2q
µ , ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I
J
.

Hence the spaces are not monotone. Hence are not solid.

2.6. Theroem. The spaces
[
Γ2q
µ , ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I
and[

Λ2q
µ , ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I
are not convergence free

Example: Let I (F ) = I,
[
fmn

(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
=[

f
(
‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
=[(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p
)]qmn

,m = 1, 1
λmn

= 1 for all m,n ∈
N, qmn = 1 for m,n odd, qmn = 2 for m,n even, consider the sequence (xmn) =

(mn)
−(m+n)

for allm,n ∈ N belongs to each of
[
Γ2q
µ , ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I
.

and
[
Λ2q
µ , ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I
. Consider the sequence (ymn) defined

by (ymn)
1/m+n

= m2n2, for all m,n ∈ N. Then (ymn) neither belongs to[
Γ2q
µ , ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I
nor

[
Λ2q
µ , ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

]I
.

Hence the spaces are not convergence free.
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