GENERAL EXTENSION RESULTS FOR ABSOLUTE SUMMABILITY

W.T. SULAIMAN

Abstract

New general results concerning absolute summability of an infinite series are presented. Other special cases are also deduced.

1. Introduction

Let T be a lower triangular matrix, $\left(S_{n}\right)$ a sequence of the nth partial sums of $\sum a_{n}$, and

$$
\begin{equation*}
T_{n}:=\sum_{v=0}^{n} t_{n v} S_{v} . \tag{1}
\end{equation*}
$$

A series $\sum a_{n}$ is said to be summable $|T, \delta|_{k}, \delta \geq 0, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|\Delta T_{n-1}\right|^{k}<\infty . \tag{2}
\end{equation*}
$$

Summability $|T, \delta|_{k}$ reduces to summability $|T|_{k}$ whenever $\delta=0$.
Given any lower triangular matrix T one can associate the matrices \bar{T} and \hat{T}, with entries defined by

$$
\bar{t}_{n v}=\sum_{i=v}^{n} t_{n i}, \quad n, i=0,1,2, \ldots, \quad \hat{t}_{n v}=\bar{t}_{n v}-\bar{t}_{n-1, v}
$$

respectively. With $s_{n}=\sum_{i=0}^{n} a_{i} \lambda_{i}$,

$$
\begin{equation*}
t_{n}=\sum_{v=0}^{n} t_{n v} s_{v}=\sum_{v=0}^{n} t_{n v} \sum_{i=0}^{v} a_{i} \lambda_{i}=\sum_{i=0}^{n} a_{i} \lambda_{i} \sum_{v=i}^{n} t_{n v}=\sum_{i=0}^{n} \widehat{t}_{n i} a_{i} \lambda_{i} \tag{3}
\end{equation*}
$$

[^0]\[

$$
\begin{gather*}
Y_{n}: \quad=t_{n}-t_{n-1}=\sum_{i=0}^{n} \bar{t}_{n i} a_{i} \lambda_{i}-\sum_{i=0}^{n-1} \bar{t}_{n-1, i} a_{i} \lambda_{i} \\
=\sum_{i=0}^{n} \widehat{t}_{n i} a_{i} \lambda_{i} \text { as } \bar{t}_{n-1, n}=0 . \tag{4}\\
X_{n}:=u_{n}-u_{n-1}=\sum_{i=0}^{n} \widehat{u}_{n i} a_{i} \mu_{i}, \text { where } u_{n}=\sum_{i=0}^{n} u_{n i} \mu_{i} a_{i} \tag{5}
\end{gather*}
$$
\]

We call T a triangle if T is lower triangular and $t_{n n} \neq 0$ for all n. A triangle A is called factorable if its nonzero entries $a_{m n}$ can be written in the form $b_{m} c_{n}$ for each m and n. We also assume that $U=\left(u_{i j}\right)$ is a triangle. $\left(p_{n}\right),\left(q_{n}\right)$ are assumed to be positive sequences of numbers such that

$$
\begin{aligned}
& P_{n}=p_{0}+p_{1}+\ldots+p_{n} \rightarrow \infty, \text { as } n \rightarrow \infty \\
& Q_{n}=q_{0}+q_{1}+\ldots+q_{n} \rightarrow \infty, \text { as } n \rightarrow \infty
\end{aligned}
$$

BK-space is a sequence space endowed with a suitable norm to turn it into a Banach Space. All BK-spaces are normable FK-spaces.

The series $\sum a_{n}$ is said to be summable $\left|R, p_{n}, \delta\right|_{k}, k \geq 1, \delta \geq 0$, if

$$
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|\Delta z_{n-1}\right|^{k}<\infty
$$

where

$$
z_{n}=\sum_{i=0}^{n} p_{i} s_{i}
$$

When $\delta=0$, summability $\left|R, p_{n}, \delta\right|_{k}$ reduces to summability $\left|R, p_{n}\right|_{k}$.
In 4], Rhoades and Savas established a general summability factors theorem involving two lower triangular matrices A and B. In their results they are representing for the first time two arbitrary triangles and obtained sufficient (Necessary) conditions for the series $\sum a_{n} \lambda_{n}$ to be $|B|_{k}$-summable whenever $\sum a_{n}$ is $|A|_{k}$-summable. In fact they have proved the following two results (see [4]).

Theorem 1.1. Let $\left(\lambda_{n}\right)$ be a sequence of constants, A and B triangles satisfying
(i) $\frac{\left|b_{n n}\right|}{\left|a_{n n}\right|}=O\left(\frac{1}{\left|\lambda_{n}\right|}\right)$,
(ii) $\quad\left|a_{n n}-a_{n+1, n}\right|=O\left(\left|a_{n n} a_{n+1, n+1}\right|\right)$,
(iii) $\quad \sum_{v=0}^{n-1}\left|\Delta_{v}\left(\widehat{b}_{n v} \lambda_{v}\right)\right|=O\left(\left|b_{n n} \lambda_{n}\right|\right)$,
(iv) $\quad \sum_{n=v+1}^{\infty}\left(n\left|b_{n n} \lambda_{n}\right|\right)^{k-1}\left|\Delta_{v}\left(\widehat{b}_{n v} \lambda_{v}\right)\right|=O\left(v^{k-1}\left|b_{v v} \lambda_{v}\right|^{k}\right)$,
(v) $\quad \sum_{v=0}^{n-1}\left|b_{v v}\right|\left|\widehat{b}_{n, v+1} \lambda_{v+1}\right|=O\left(\left|b_{n n} \lambda_{n+1}\right|\right)$,
(vi) $\sum_{n=v+1}^{\infty}\left(n\left|b_{n n} \lambda_{n+1}\right|\right)^{k-1}\left|\widehat{b}_{n, v+1}\right|=O\left(\left(v\left|b_{v v} \lambda_{v+1}\right|\right)^{k-1}\right)$,
(vii) $\quad \sum_{v=1}^{\infty} v^{k-1}\left|\lambda_{v+1} X_{v}\right|^{k}=O(1)$,
(viii) $\quad \sum_{n=1}^{\infty} n^{k-1}\left|\sum_{v=2}^{n} \widehat{b}_{n v} \lambda_{v} \sum_{i=0}^{v-2} \widehat{a}_{v i}^{\prime} X_{i}\right|^{k}=O(1)$,
where $X_{n}=x_{n}-x_{n-1}=\sum_{v=0}^{n} \widehat{a}_{n v} a_{v}, x_{n}$ denotes the n-th term of the A-transform of the series $\sum a_{n}$, and $a_{n}=\sum_{v=0}^{n} \widehat{a}_{n v}^{\prime} X_{v}$. Then the series $\sum a_{n} \lambda_{n}$ is summable $|B|_{k}$ whenever $\sum a_{n}$ is summable $|A|_{k}$.

Theorem 1.2. Let A and B be two lower triangular matrices with A satisfying

$$
\begin{equation*}
\sum_{n=v+1}^{\infty} n^{k-1}\left|\Delta_{v} \widehat{a}_{n v}\right|^{k}=O\left(\left|a_{v v}\right|^{k}\right) \tag{i}
\end{equation*}
$$

Then necessary conditions for the series $\sum a_{n} \lambda_{n}$ to be summable $|B|_{k}$ whenever $\sum a_{n}$ is summable $|A|_{k}$ are
(ii) $\left|b_{v v} \lambda_{v}\right|=O\left(\left|a_{v v}\right|\right)$,
(iii) $\left(\sum_{n=v+1}^{\infty} n^{k-1}\left|\Delta_{v} \widehat{b}_{n v} \lambda_{v}\right|^{k}\right)^{1 / k}=O\left(v^{1-1 / k}\left|a_{v v}\right|\right)$,
(iv) $\sum_{n=v+1}^{\infty} n^{k-1}\left|\widehat{b}_{n, v+1} \lambda_{v+1}\right|^{k}=O\left(\sum_{n=v+1}^{\infty} n^{k-1}\left|\widehat{a}_{n, v+1}\right|^{k}\right)$.

Our aim in this paper is to present new results concerning more general cases as well as via simpler conditions. We state and prove the following

2. Results

The coming two results are main result in this paper. The object of our results are to move in the same direction as theorems 1.1 and 1.2 but via factorable matrices which gives us easier ways to obtain the result

Theorem 2.1. Let $1<k \leq s<\infty,\left(\lambda_{n}\right),\left(\mu_{n}\right)$ be sequences of constants. Let T and U be triangles with bounded entries such that \hat{U} is factorable, that is $\hat{u}_{n v}$ can be written as $\hat{u}_{n v}=\phi_{n} \varphi_{v}$, and they satisfy the following:
(i) $t_{v v}=O\left(\left|\phi_{v} \varphi_{v}\right|\right)$,
(ii) $\quad n^{\delta s-\gamma k+s-k}\left|X_{n}\right|^{s-k}=O(1)$,
(iii) $\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\widehat{t}_{n v}\right)\right|=O\left(\left|t_{n n}\right|\right)$,
(iv) $\sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|t_{n n}\right|^{s-1}\left|\Delta_{v}\left(\widehat{t}_{n v}\right)\right|=O\left(v^{\delta s+s-1}\left|t_{v v}\right|^{s}\right)$,
(v) $\sum_{v=1}^{n-1}\left|t_{v v}\right|\left|\widehat{t}_{n, v+1}\right|=O\left(\left|t_{n n}\right|\right)$,
(vi) $\sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|t_{n n}\right|^{s-1}\left|\widehat{t}_{n, v+1}\right|=O\left(v^{\delta s+s-1}\left|t_{v v}\right|^{s-1}\right)$,
(vii) $\quad \lambda_{v}=O\left(\left|\mu_{v}\right|\right)$,
(viii) $\Delta\left(\frac{\lambda_{v}}{\mu_{v}}\right)=O\left(\left|\phi_{v}\right|\left|\varphi_{v+1}\right|\right)$, and
(ix) $\Delta\left(\varphi_{v}^{-1}\right)=O\left(\left|\phi_{v}\right|\right)$.

Then the series $\sum a_{n} \lambda_{n}$ is summable $|T, \delta|_{s}$ whenever $\sum a_{n} \mu_{n}$ is summable $|U, \gamma|_{k}, \delta \leq \gamma$.

Proof. By Abel's transformation we have

$$
\begin{aligned}
Y_{n} & =\sum_{v=1}^{n} \varphi_{v} a_{v} \mu_{v} \frac{\widehat{t}_{n v} \lambda_{v}}{\varphi_{v} \mu_{v}} \\
& =\sum_{v=1}^{n-1}\left(\sum_{r=1}^{v} \varphi_{r} a_{r} \mu_{r}\right) \Delta_{v}\left(\frac{\widehat{t}_{n v} \lambda_{v}}{\varphi_{v} \mu_{v}}\right)+\left(\sum_{v=1}^{n} \varphi_{v} a_{v} \mu_{v}\right) \frac{\widehat{t}_{n n} \lambda_{n}}{\varphi_{n} \mu_{n}} \\
& =\sum_{v=1}^{n-1}-\frac{X_{v}}{\phi_{v}}\left(\frac{\Delta_{v}\left(\widehat{t}_{n v}\right) \lambda_{v}}{\varphi_{v} \mu_{v}}+\widehat{t}_{n, v+1} \Delta\left(\varphi_{v}^{-1}\right) \frac{\lambda_{v}}{\mu_{v}}+\frac{\widehat{t}_{n, v+1}}{\varphi_{v+1}} \Delta\left(\frac{\lambda_{v}}{\mu_{v}}\right)\right)-\frac{X_{n} \widehat{t}_{n n} \lambda_{n}}{\phi_{n} \varphi_{n} \mu_{n}} \\
& =Y_{n 1}+Y_{n 2}+Y_{n 3}+Y_{n 4} .
\end{aligned}
$$

To complete the proof, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{\delta s+s-1}\left|Y_{n j}\right|^{s}<\infty, \quad j=1,2,3,4
$$

Now applying Hölder's inequality, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{\delta s+s-1}\left|Y_{n 1}\right|^{s} & =\sum_{n=1}^{\infty} n^{\delta s+s-1}\left|\sum_{v=1}^{n-1} \frac{\Delta_{v}\left(\widehat{t}_{n v}\right) \lambda_{v}}{\phi_{v} \varphi_{v} \mu_{v}} X_{v}\right|^{s} \\
& \leq \sum_{n=1}^{\infty} n^{\delta s+s-1} \sum_{v=1}^{n-1} \frac{\left|\Delta_{v}\left(\widehat{t}_{n v}\right)\right|\left|X_{v}\right|^{s}\left|\lambda_{v}\right|^{s}}{\left|\phi_{v}\right|^{s}\left|\varphi_{v}\right|^{s}\left|\mu_{v}\right|^{s}}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\widehat{t}_{n v}\right)\right|\right)^{s-1} \\
& =O(1) \sum_{n=1}^{\infty} n^{\delta s+s-1}\left|t_{n n}\right|^{s-1} \sum_{v=1}^{n-1} \frac{\left|\Delta_{v}\left(\widehat{t}_{n v}\right)\right|\left|X_{v}\right|^{s}\left|\lambda_{v}\right|^{s}}{\left|\phi_{v}\right|^{s}\left|\varphi_{v}\right|^{s}\left|\mu_{v}\right|^{s}} \\
& =O(1) \sum_{v=1}^{\infty} \frac{\left|X_{v}\right|^{s}\left|\lambda_{v}\right|^{s}}{\left|\phi_{v}\right|^{s}\left|\varphi_{v}\right|^{s}\left|\mu_{v}\right|^{s}} \sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|t_{n n}\right|^{s-1}\left|\Delta_{v}\left(\widehat{t}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{\infty} \frac{v^{\delta s+s-1}\left|t_{v v}\right|^{s}\left|\lambda_{v}\right|^{s}\left|X_{v}\right|^{s}}{\left|\phi_{v}\right|^{s}\left|\varphi_{v}\right|^{s}\left|\mu_{v}\right|^{s}} \\
& =O(1) \sum_{v=1}^{\infty} v^{\delta s+s-s / k}\left|X_{v}\right|^{s} \\
& =O(1) \sum_{v=1}^{\infty} v^{\gamma k+k-1}\left|X_{v}\right|^{k}\left(v^{\delta s+s-s / k-k-\gamma k+1}\left|X_{v}\right|^{s-k}\right) \\
& =O(1) \sum_{v=1}^{\infty} v^{\gamma k+k-1}\left|X_{v}\right|^{k}=O(1)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{\delta s+s-1}\left|Y_{n 2}\right|^{s} & =\sum_{n=1}^{\infty} n^{\delta s+s-1}\left|\sum_{v=1}^{n-1} \Delta\left(\varphi_{v}^{-1}\right) \frac{X_{v} \widehat{t}_{n, v+1} \lambda_{v}}{\phi_{v} \mu_{v}}\right|^{s} \\
& \leq \sum_{n=1}^{\infty} n^{\delta s+s-1} \sum_{v=1}^{n-1}\left|\Delta\left(\varphi_{v}^{-1}\right)\right|^{s} \frac{\left|\widehat{t}_{n, v+1}\right|\left|\lambda_{v}\right|^{s}\left|X_{v}\right|^{s}\left|t_{v v}\right|^{1-s}}{\left|\phi_{v}\right|^{s}\left|\mu_{v}\right|^{s}}\left(\sum_{v=0}^{n-1}\left|t_{v v}\right|\left|\widehat{t}_{n, v+1}\right|\right)^{s-1} \\
& =O(1) \sum_{n=1}^{\infty} n^{\delta s+s-1}\left|t_{n n}\right|^{s-1} \sum_{v=1}^{n-1}\left|\Delta\left(\varphi_{v}^{-1}\right)\right|^{s} \frac{\left|\lambda_{v}\right|^{s}\left|X_{v}\right|^{s}\left|t_{v v}\right|^{1-s}\left|\widehat{t}_{n, v+1}\right|}{\left|\phi_{v}\right|^{s}\left|\mu_{v}\right|^{s}} \\
& =O(1) \sum_{v=1}^{\infty}\left|\Delta\left(\varphi_{v}^{-1}\right)\right|^{s} \frac{\left|\lambda_{v}\right|^{s}\left|X_{v}\right|^{s}\left|t_{v v}\right|^{1-s}}{\left|\phi_{v}\right|^{s}\left|\mu_{v}\right|^{s}} \sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|t_{n n}\right|^{s-1}\left|\widehat{t}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{\infty}\left|\Delta\left(\varphi_{v}^{-1}\right)\right|^{s} \frac{\left|\lambda_{v}\right|^{s}\left|X_{v}\right|^{s}\left|t_{v v}\right|^{1-s}}{\left|\phi_{v}\right|^{s}\left|\mu_{v}\right|^{s}} v^{\delta s+s-1}\left|t_{v v}\right|^{s-1} \\
& =O(1) \sum_{v=1}^{\infty} v^{\delta s+s-1}\left|X_{v}\right|^{s} \\
& =O(1) \sum_{v=1}^{\infty} v^{\gamma k+k-1}\left|X_{v}\right|^{k} v^{\delta s-\gamma k+s-k}\left|X_{v}\right|^{s-k} \\
& =O(1) \sum_{v=1}^{\infty} v^{\gamma k+k-1}\left|X_{v}\right|^{k}=O(1) .
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{\delta s+s-1}\left|Y_{n 3}\right|^{s} & =\sum_{n=1}^{\infty} n^{\delta s+s-1}\left|\sum_{v=1}^{n-1} \frac{\widehat{t}_{n, v+1} X_{v}}{\phi_{v} \varphi_{v+1}} \Delta\left(\frac{\lambda_{v}}{\mu_{v}}\right)\right|^{s} \\
& \leq \sum_{n=1}^{\infty} n^{\delta s+s-1} \sum_{v=1}^{n-1} \frac{\left|t_{v v}\right|^{1-s}\left|\widehat{\mid t}_{n, v+1}\right|\left|X_{v}\right|^{s}}{\left|\phi_{v}\right|^{s}\left|\varphi_{v+1}\right|^{s}}\left|\Delta\left(\frac{\lambda_{v}}{\mu_{v}}\right)\right|^{s}\left(\sum_{v=1}^{n-1}\left|t_{v v}\right|\left|\widehat{t}_{n, v+1}\right|\right)^{s-1} \\
& =O(1) \sum_{n=1}^{\infty} n^{\delta s+s-1}\left|t_{n n}\right|^{s-1} \sum_{v=1}^{n-1} \frac{\left|t_{v v}\right|^{1-s}\left|\widehat{t}_{n, v+1}\right|\left|X_{v}\right|^{s}}{\left|\phi_{v}\right|^{s}\left|\varphi_{v+1}\right|^{s}}\left|\Delta\left(\frac{\lambda_{v}}{\mu_{v}}\right)\right|^{s} \\
& =O(1) \sum_{v=1}^{\infty} \frac{\left|t_{v v}\right|^{1-s}\left|X_{v}\right|^{s}}{\left|\phi_{v}\right|^{s}\left|\varphi_{v+1}\right|^{s}\left|\Delta\left(\frac{\lambda_{v}}{\mu_{v}}\right)\right|^{s} \sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|t_{n n}\right|^{s-1}\left|\widehat{t}_{n, v+1}\right|} \\
& =O(1) \sum_{v=1}^{\infty} \frac{v^{\delta s+s-1}\left|t_{v v}\right|^{1-s}\left|X_{v}\right|^{s}\left|t_{v v}\right|^{s-1}}{\left|\phi_{v}\right|^{s}\left|\varphi_{v+1}\right|^{s}}\left|\Delta\left(\frac{\lambda_{v}}{\mu_{v}}\right)\right|^{s} \\
& =O(1) \sum_{n=1}^{\infty} n^{\delta s+s-1}\left|X_{n}\right|^{s} \\
& =O(1) \sum_{v=1}^{\infty} v^{\gamma k+k-1}\left|X_{v}\right|^{k}=O(1) .
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{\delta s+s-1}\left|Y_{n 4}\right|^{s} & =\sum_{n=1}^{\infty} n^{\delta s+s-1}\left|\frac{\widehat{t}_{n n} \lambda_{n} X_{n}}{\phi_{n} \varphi_{n} \mu_{n}}\right|^{s} \\
& =O(1) \sum_{n=1}^{\infty} n^{\delta s+s-1} \frac{\left|\widehat{t}_{n n}\right|^{s}\left|\lambda_{n}\right|^{s}\left|X_{n}\right|^{s}}{\left|\phi_{n}\right|^{s}\left|\varphi_{n}\right|^{s}\left|\mu_{n}\right|^{s}} \\
& =O(1) \sum_{n=1}^{\infty} n^{\delta s+s-1}\left|X_{n}\right|^{s} \\
& =O(1) \sum_{n=1}^{\infty} v^{\gamma k+k-1}\left|X_{v}\right|^{k}=O(1)
\end{aligned}
$$

Theorem 2.2. Let $1<k \leq s<\infty$. Let T, U be lower triangular matrices such that U satisfying

$$
\begin{equation*}
\sum_{n=v+1}^{\infty} n^{\gamma k+k-1}\left|\Delta_{v}\left(\widehat{u}_{n v} \mu_{v}\right)\right|^{k}=O\left(v^{\gamma k+k-1}\left|u_{v v}\right|^{k}\left|\mu_{v}\right|^{k}\right) \tag{6}
\end{equation*}
$$

Then the necessary conditions for $\sum a_{n} \mu_{n}$ summable $|U, \gamma|_{k}$ to imply $\sum a_{n} \lambda_{n}$ is summable $|T, \delta|_{s}$ are
(i) $\quad\left|t_{v v}\right|\left|\lambda_{v}\right|=O\left(v^{1 / s-1 / k}\left|u_{v v}\right|\left|\mu_{v}\right|\right)$,
(ii) $\left|\lambda_{v}\right|^{s} \sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|\Delta_{v} \widehat{t}_{n v}\right|^{s}=O\left(v^{\delta s+s-s / k}\left|u_{v v}\right|^{s}\left|\mu_{v}\right|^{s}\right)$,
(iii) $\left|\Delta \lambda_{v}\right|^{s} \sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|\widehat{t}_{n, v+1}\right|^{s}=O\left(v^{\delta s+s-s / k}\left|u_{v v}\right|^{s}\left|\mu_{v}\right|^{s}\right)$,
(iv) $\left|\lambda_{v+1}\right|^{s} \sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|\widehat{t}_{n, v+1}\right|^{s}=O\left(\sum_{n=v+1}^{\infty} n^{\gamma k+k-1}\left|\widehat{u}_{n, v+1}\right|^{k}\left|\mu_{v+1}\right|^{k}\right)^{s / k}$.

Proof. We are given that

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta s+s-1}\left|Y_{n}\right|^{s}<\infty \tag{7}
\end{equation*}
$$

whenever

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\gamma k+k-1}\left|X_{n}\right|^{k}<\infty \tag{8}
\end{equation*}
$$

The space of sequences $\left(X_{n}\right)$ satisfying (2.3) is a Banach space if normed by

$$
\begin{equation*}
\|X\|=\left(\left|X_{0}\right|^{k}+\sum_{n=1}^{\infty} n^{\gamma k+k-1}\left|X_{n}\right|^{k}\right)^{1 / k} \tag{9}
\end{equation*}
$$

and the space of sequences $\left(Y_{n}\right)$ satisfying (2.2) BK-space with respect to the norm

$$
\begin{equation*}
\|Y\|=\left(\left|Y_{0}\right|^{s}+\sum_{n=1}^{\infty} n^{\delta s+s-1}\left|Y_{n}\right|^{s}\right)^{1 / s} \tag{10}
\end{equation*}
$$

We observe that (1.4) and (1.5) transform the space of sequences satisfying (2.3) into the space of sequences satisfying (2.2) . By the Banach-Steinhaus theorem,
there exists a constant $K>0$ such that

$$
\begin{equation*}
\|Y\| \leq K\|X\| \tag{11}
\end{equation*}
$$

Applying (1.4) and (1.5) to $a_{v}=\Delta e_{v}$, where e_{v} is the v-th coordinate vector, we have

$$
\begin{align*}
& X_{n}=\left\{\begin{array}{lll}
0, & \text { if } n<v \\
\widehat{u}_{n v} \mu_{v}, & \text { if } n=v \\
\Delta_{v}\left(\widehat{u}_{n v} \mu_{v}\right), & \text { if } n>v
\end{array}\right. \tag{12}\\
& Y_{n}=\left\{\begin{array}{lll}
0, & \text { if } n<v \\
\widehat{t}_{n v} \lambda_{v}, & \text { if } n=v \\
\Delta_{v}\left(\widehat{t}_{n v} \lambda_{v}\right), & \text { if } n>v
\end{array}\right. \tag{13}
\end{align*}
$$

By (2.4) and (2.5) if follows that

$$
\begin{gather*}
\|X\|=\left(v^{\gamma k+k k-1}\left|u_{v v}\right|^{k}\left|\mu_{v}\right|^{k}+\sum_{n=v+1}^{\infty} n^{\gamma k+k-1}\left|\Delta_{v}\left(\widehat{u}_{n v} \mu_{v}\right)\right|^{k}\right)^{1 / k} \tag{14}\\
\|Y\|=\left(v^{\delta s+s-1}\left|t_{v v}\right|^{s}\left|\lambda_{v}\right|^{s}+\sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|\Delta_{v}\left(\widehat{t}_{n v} \lambda_{v}\right)\right|^{s}\right)^{1 / s} \tag{15}
\end{gather*}
$$

Now, using (2.9) and (2.10) in (2.6), along with (2.1), we have

$$
\begin{align*}
& v^{\delta s+s-1}\left|t_{v v}\right|^{s}\left|\lambda_{v}\right|^{s}+\sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|\Delta_{v}\left(\widehat{t}_{n v}\right) \lambda_{v}+\widehat{t}_{n, v+1} \Delta \lambda_{v}\right|^{s} \\
\leq & K^{s}\left(v^{\gamma k+k-1}\left|u_{v v}\right|^{k}\left|\mu_{v}\right|^{k}+\sum_{n=v+1}^{\infty} n^{\gamma k+k-1}\left|\Delta_{v}\left(\widehat{u}_{n v} \mu_{v}\right)\right|^{k}\right)^{s / k} \\
= & O(1)\left(v^{\gamma k+k-1}\left|u_{v v}\right|^{k}\left|\mu_{v}\right|^{k}+v^{\gamma k+k-1}\left|u_{v v}\right|^{k}\left|\mu_{v}\right|^{k}\right) \\
= & O\left(v^{\gamma k+k-1}\left|u_{v v}\right|^{k}\left|\mu_{v}\right|^{k}\right)^{s / k} \\
= & O\left(v^{\gamma s+s-s / k}\left|u_{v v}\right|^{s}\left|\mu_{v}\right|^{s}\right) \tag{16}
\end{align*}
$$

by (2.1), inequality (2.11) is true iff each term of the L.H.S. is

$$
O\left(v^{\gamma s+s-s / k}\left|u_{v v}\right|^{s}\right)
$$

On taking the first term, we have

$$
v^{\delta s+s-1}\left|t_{v v}\right|^{s}\left|\lambda_{v}\right|^{s}=O\left(v^{\gamma s+s-s / k}\left|u_{v v}\right|^{s}\left|\mu_{v}\right|^{s}\right)
$$

which implies(i).
Concerning the second term, as λ_{v} and $\Delta \lambda_{v}$ are linearly independent, it follows that each of the terms

$$
\sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|\Delta_{v}\left(\widehat{t}_{n v}\right) \lambda_{v}\right|^{s}, \quad \sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|\widehat{t}_{n, v+1} \Delta \lambda_{v}\right|^{s}
$$

is $O\left(v^{\gamma s+s-s / k}\left|u_{v v}\right|^{s}\left|\mu_{v}\right|^{s}\right.$), which implies (ii) and (iii). If we now apply (1.4) and (1.5) to $a_{v}=e_{v+1}$, we have

$$
\begin{align*}
X_{n} & =\left\{\begin{array}{lll}
0, & \text { if } & n \leq v \\
\widehat{u}_{n, v+1} \mu_{v+1}, & \text { if } & n>v
\end{array}\right. \tag{17}\\
Y_{n} & =\left\{\begin{array}{lll}
0, & \text { if } & n \leq v \\
\widehat{t}_{n, v+1} \lambda_{v+1}, & \text { if } & n>v
\end{array}\right.
\end{align*}
$$

The corresponding norms are

$$
\begin{align*}
& \|X\|=\left(\sum_{n=v+1}^{\infty} n^{k-1}\left|\widehat{u}_{n, v+1} \mu_{v+1}\right|^{k}\right)^{1 / k} \tag{18}\\
& \|Y\|=\left(\sum_{n=v+1}^{\infty} n^{s-1}\left|\widehat{t}_{n, v+1} \lambda_{v+1}\right|^{s}\right)^{1 / s} \tag{19}
\end{align*}
$$

Applying (2.6) and (2.1), we obtain (iv).

3. Applications

As an application to our result, we putting $\mu_{n}=1$ (Corollaries 3.1 and 3.2) in order to get equivalent results to Theorem 1.1 and 1.2. While Corollary 3.3 dealing with special kinds of summability such as $\left|R, q_{n}, \delta\right|_{k}$ and $\left|R, p_{n}\right|_{k}$.

Corollary 3.1. Let $1<k \leq s<\infty$, (λ_{n}) be a sequence of constants. Let T and U be triangles with bounded entries such that \hat{U} is factorable, that is $\hat{u}_{n v}$ can be written as $\hat{u}_{n v}=\phi_{n} \varphi_{v}$, and they satisfy the following:
(i) $t_{v v}=O\left(\left|\phi_{v} \varphi_{v}\right|\right)$,
(ii) $n^{\gamma s-\gamma k+s-k}\left|X_{n}\right|^{s-k}=O(1)$,
(iii) $\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\widehat{t}_{n v}\right)\right|=O\left(\left|t_{n n}\right|\right)$,
(iv) $\sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|t_{n n}\right|^{s-1}\left|\Delta_{v}\left(\widehat{t}_{n v}\right)\right|=O\left(v^{\delta s+s-1}\left|t_{v v}\right|^{s}\right)$,
(v) $\sum_{v=1}^{n-1}\left|t_{v v}\right|\left|\widehat{t}_{n, v+1}\right|=O\left(\left|t_{n n}\right|\right)$,
(vi) $\sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|t_{n n}\right|^{s-1}\left|\widehat{t}_{n, v+1}\right|=O\left(v^{\delta s+s-1}\left|t_{v v}\right|^{s-1}\right)$,
(vii) $\quad \lambda_{v}=O(1)$,
(viii) $\Delta\left(\lambda_{v}\right)=O\left(\left|\phi_{v}\right|\left|\varphi_{v+1}\right|\right)$, and
$(i x) \quad \Delta\left(\varphi_{v}^{-1}\right)=O\left(\left|\phi_{v}\right|\right)$.

Then the series $\sum a_{n} \lambda_{n}$ is summable $|T, \delta|_{s}$ whenever $\sum a_{n}$ is summable $|U, \gamma|_{k}$, $\delta \leq \gamma$.

Proof. Follows from Theorem 2.1 by putting $\mu_{n}=1$.
Corollary 3.2. Let $1<k \leq s<\infty$. Let T, U be lower triangular matrices such that U satisfying

$$
\begin{equation*}
\sum_{n=v+1}^{\infty} n^{\gamma k+k-1}\left|\Delta_{v} \widehat{u}_{n v}\right|^{k}=O\left(v^{\gamma k+k-1}\left|u_{v v}\right|^{k}\right) \tag{20}
\end{equation*}
$$

Then the necessary conditions for $\sum a_{n} \mu_{v}$ summable $|U, \gamma|_{k}$ to imply $\sum a_{n} \lambda_{n}$ is summable $|T, \delta|_{s}$ are
(i) $\left|t_{v v}\right|\left|\lambda_{v}\right|=O\left(v^{1 / s-1 / k}\left|u_{v v}\right|\right)$,
(ii) $\left|\lambda_{v}\right|^{s} \sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|\Delta_{v} \widehat{t}_{n v}\right|^{s}=O\left(v^{\delta s+s-s / k}\left|u_{v v}\right|^{s}\right)$,

$$
\begin{equation*}
\left|\Delta \lambda_{v}\right|^{s} \sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|\widehat{t}_{n, v+1}\right|^{s}=O\left(v^{\delta s+s-s / k}\left|u_{v v}\right|^{s}\right) \tag{iii}
\end{equation*}
$$

(iv) $\left|\lambda_{v+1}\right|^{s} \sum_{n=v+1}^{\infty} n^{\delta s+s-1}\left|\widehat{t}_{n, v+1}\right|^{s}=O\left(\sum_{n=v+1}^{\infty} n^{\gamma k+k-1}\left|\widehat{u}_{n, v+1}\right|^{k}\right)^{s / k}$.

Proof. Follows from Theorem 2.2 by putting $\mu_{n}=1$.
Corollary 3.3. Sufficient conditions for the series $\sum a_{n} \lambda_{n}$ is summable $\left|R, q_{n}, \delta\right|_{k}$, whenever $\sum a_{n}$ is summable $\left|R, p_{n}\right|_{k}, k \geq 1$, are
(i) $\sum_{n=v+1}^{\infty} \frac{n^{\delta k+k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}}=O\left(\frac{v^{\delta k+k-1} q_{v}^{k-1}}{Q_{v}^{k}}\right)$,
(ii) $\quad q_{n} P_{n}=O\left(p_{n} Q_{n}\right)$,
(iii) $\quad \lambda_{n}=O(1)$,
(iv) $\Delta \lambda_{n}=O\left(\frac{p_{n}}{P_{n-1}}\right)$.

Proof. The result can be obtained from Corollary 3.1 by putting $s=k$ as follows:
For a weighted matrices means, $U=\left(R, p_{n}\right), T=\left(R, q_{n}\right)$, we have

$$
\begin{gathered}
\bar{u}_{n v}=\sum_{i=v}^{n} \frac{p_{i}}{P_{n}}=\frac{P_{n}-P_{v-1}}{P_{n}}=1-\frac{P_{v-1}}{P_{n}} \\
\widehat{u}_{n v}=u_{n, v}-u_{n-1, v}=\frac{p_{n} P_{v-1}}{P_{n} P_{n-1}}
\end{gathered}
$$

We have to take

$$
\phi_{n}=\frac{p_{n}}{P_{n} P_{n-1}}, \varphi_{v}=P_{v-1}
$$

and also we have

$$
\widehat{t}_{n v}=\frac{q_{n} Q_{v-1}}{Q_{n} Q_{n-1}}
$$

The following steps shows that the conditions of Corollary 3.1 are all satisfied:

$$
\begin{align*}
\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{t}_{n v}\right| & =\sum_{v=1}^{n-1} \frac{q_{n} q_{v}}{Q_{n} Q_{n-1}}=O\left(\left|t_{n n}\right|\right) \tag{ii}\\
\sum_{n=v+1}^{\infty} n^{\delta k+k-1}\left|t_{n n}\right|^{k-1}\left|\Delta_{v} \widehat{t}_{n v}\right| & =\sum_{n=v+1}^{\infty} n^{\delta k+k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k-1} \frac{q_{n} q_{v}}{Q_{n} Q_{n-1}}=q_{v} \sum_{n=v+1}^{\infty} \frac{n^{\delta k+k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}} \tag{iii}
\end{align*}
$$

$$
=q_{v} O\left(v^{\delta k+k-1} \frac{q_{v}^{k-1}}{Q_{v}^{k}}\right)=O\left(\frac{v^{\delta k+k-1} q_{v}^{k}}{Q_{v}^{k}}\right)=O\left(\left(v^{\delta k+k-1}\left|t_{v v}\right|\right)^{k}\right)
$$

(iv)
(v)

$$
\left|\Delta \lambda_{v}\right|^{k}=O\left(\left(\frac{p_{v}}{P_{v-1}}\right)^{k}\right)=O\left(\left|\phi_{v}\right|^{k}\left|\varphi_{v+1}\right|^{k}\right)
$$

$$
\begin{align*}
t_{v v} & =\frac{q_{v}}{Q_{v}}=O\left(\frac{p_{v}}{P_{v}}\right)=O\left(\left|\phi_{v}\right|\left|\varphi_{v}\right|\right) . \tag{vi}\\
\Delta \varphi_{v}^{-1} & =\Delta\left(\frac{1}{P_{v-1}}\right)=\frac{p_{v}}{P_{v} P_{v-1}}=O\left(\left|\phi_{v}\right|\right) . \tag{vii}
\end{align*}
$$

Acknowledgment. The author is so grateful to the referee who guided to good improvement for this paper.

References

[1] B. E. Rhoades, Inclusion theorems for absolute summability methods, J. Math. Anal. Appl., 238 (1999), 82-90.
[2] B. E. Rhoades, On inclusion theorem for absolute matrix summability methods, Corrections, J. Math. Anal. Appl., 277 (2003), 375-378
[3] R. E. Rhoades and E. Savas, A summability factor theorem and applications, Appl. Math. Comp., 153 (2004), 155-163.
[4] B.E. Rhoades and E.Savas,General summability factor theorems and Applications, Sarajevo J. of Math.1(13),(2005)59-73.

Waad Sulaiman, Department of Computer Engineering, College of Engineering, University of Mosul, Iraq.

E-mail address: waadsulaiman@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 40F05, 4OD25.
 Key words and phrases. Absolute summability, summability factor, Hölder's inequality.
 (c)2010 Ilirias Publications, Prishtinë, Kosovë.

 Submitted January 9, 2012. Published March 22, 2012.

