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GENERAL EXTENSION RESULTS FOR ABSOLUTE

SUMMABILITY

W.T. SULAIMAN

Abstract. New general results concerning absolute summability of an infinite

series are presented. Other special cases are also deduced.

1. Introduction

Let T be a lower triangular matrix, (Sn) a sequence of the nth partial sums of∑
an, and

Tn :=

n∑
v=0

tnvSv. (1)

A series
∑
an is said to be summable |T, δ|k , δ ≥ 0, k ≥ 1, if

∞∑
n=1

nδk+k−1 |∆Tn−1|k <∞. (2)

Summability |T, δ|k reduces to summability |T |k whenever δ = 0.

Given any lower triangular matrix T one can associate the matrices T and T̂ ,
with entries defined by

tnv =

n∑
i=v

tni, n, i = 0, 1, 2, . . . , t̂nv = tnv − tn−1,v

respectively. With sn =
n∑
i=0

aiλi,

tn =

n∑
v=0

tnvsv =

n∑
v=0

tnv

v∑
i=0

aiλi =

n∑
i=0

aiλi

n∑
v=i

tnv =

n∑
i=0

t̂niaiλi (3)
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28 W.T. SULAIMAN

Yn : = tn − tn−1 =

n∑
i=0

tniaiλi −
n−1∑
i=0

tn−1,iaiλi

=

n∑
i=0

t̂niaiλi as tn−1,n = 0. (4)

Xn := un − un−1 =

n∑
i=0

ûniaiµi, where un =

n∑
i=0

uniµiai (5)

We call T a triangle if T is lower triangular and tnn 6= 0 for all n. A triangle A is
called factorable if its nonzero entries amn can be written in the form bmcn for each
m and n. We also assume that U = (uij) is a triangle. (pn) , (qn) are assumed to
be positive sequences of numbers such that

Pn = p0 + p1 + . . .+ pn →∞, as n→∞ ,

Qn = q0 + q1 + . . .+ qn →∞, as n→∞ .

BK-space is a sequence space endowed with a suitable norm to turn it into a Banach
Space. All BK-spaces are normable FK-spaces.

The series
∑
an is said to be summable |R, pn, δ|k , k ≥ 1, δ ≥ 0, if

∞∑
n=1

nδk+k−1 |∆zn−1|k <∞ ,

where

zn =

n∑
i=0

pisi.

When δ = 0, summability |R, pn, δ|k reduces to summability |R, pn|k .
In [4], Rhoades and Savas established a general summability factors theorem

involving two lower triangular matrices A and B. In their results they are repre-
senting for the first time two arbitrary triangles and obtained sufficient (Neces-
sary) conditions for the series

∑
anλn to be |B|k −summable whenever

∑
an is

|A|k −summable. In fact they have proved the following two results (see [4]).

Theorem 1.1. Let (λn) be a sequence of constants, A and B triangles satisfying
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(i)
|bnn|
|ann|

= O

(
1

|λn|

)
,

(ii) |ann − an+1,n| = O (|annan+1,n+1|) ,

(iii)
n−1∑
v=0

∣∣∣∆v

(
b̂nvλv

)∣∣∣ = O (|bnnλn|) ,

(iv)
∞∑

n=v+1
(n |bnnλn|)k−1

∣∣∣∆v

(
b̂nvλv

)∣∣∣ = O
(
vk−1 |bvvλv|k

)
,

(v)
n−1∑
v=0
|bvv|

∣∣∣̂bn,v+1λv+1

∣∣∣ = O (|bnnλn+1|) ,

(vi)
∞∑

n=v+1
(n |bnnλn+1|)k−1

∣∣∣̂bn,v+1

∣∣∣ = O
(

(v |bvvλv+1|)k−1
)
,

(vii)
∞∑
v=1

vk−1 |λv+1Xv|k = O(1),

(viii)
∞∑
n=1

nk−1
∣∣∣∣ n∑
v=2

b̂nvλv
v−2∑
i=0

â′viXi

∣∣∣∣k = O(1),

where Xn = xn−xn−1 =
n∑
v=0

ânvav, xn denotes the n-th term of the A-transform

of the series
∑
an, and an =

n∑
v=0

â′nvXv. Then the series
∑
anλn is summable |B|k

whenever
∑
an is summable |A|k .

Theorem 1.2. Let A and B be two lower triangular matrices with A satisfying

(i)
∞∑

n=v+1
nk−1 |∆vânv|k = O(|avv|k).

Then necessary conditions for the series
∑
anλn to be summable |B|k whenever∑

an is summable |A|k are

(ii) |bvvλv| = O(|avv|),

(iii)

( ∞∑
n=v+1

nk−1
∣∣∣∆v b̂nvλv

∣∣∣k)1/k

= O(v1−1/k |avv|),

(iv)
∞∑

n=v+1
nk−1

∣∣∣̂bn,v+1λv+1

∣∣∣k = O(
∞∑

n=v+1
nk−1 |ân,v+1|k).

Our aim in this paper is to present new results concerning more general cases
as well as via simpler conditions. We state and prove the following
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2. Results

The coming two results are main result in this paper. The object of our results
are to move in the same direction as theorems 1.1 and 1.2 but via factorable matrices
which gives us easier ways to obtain the result

Theorem 2.1. Let 1 < k ≤ s < ∞, (λn), (µn) be sequences of constants. Let T

and U be triangles with bounded entries such that Û is factorable, that is ûnv can
be written as ûnv = φnϕv, and they satisfy the following:

(i) tvv = O (|φvϕv|) ,

(ii) nδs−γk+s−k |Xn|s−k = O(1),

(iii)
n−1∑
v=1

∣∣∆v

(
t̂nv
)∣∣ = O (|tnn|) ,

(iv)
∞∑

n=v+1
nδs+s−1 |tnn|s−1

∣∣∆v

(
t̂ nv

)∣∣ = O
(
vδs+s−1 |tvv|s

)
,

(v)
n−1∑
v=1
|tvv|

∣∣t̂n,v+1

∣∣ = O (|tnn|) ,

(vi)
∞∑

n=v+1
nδs+s−1 |tnn|s−1

∣∣t̂n,v+1

∣∣ = O
(
vδs+s−1 |tvv|s−1

)
,

(vii) λv = O(|µv|),

(viii) ∆

(
λv
µv

)
= O (|φv| |ϕv+1|) , and

(ix) ∆
(
ϕ−1v

)
= O (|φv|) .

Then the series
∑
anλn is summable |T, δ|s whenever

∑
anµn is summable

|U, γ|k , δ ≤ γ.
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Proof. By Abel’s transformation we have

Yn =
n∑
v=1

ϕvavµv
t̂nvλv
ϕvµv

=
n−1∑
v=1

(
v∑
r=1

ϕrarµr

)
∆v

(
t̂nvλv
ϕvµv

)
+

(
n∑
v=1

ϕvavµv

)
t̂nnλn
ϕnµn

=
n−1∑
v=1
−Xv

φv

(
∆v

(
t̂nv
)
λv

ϕvµv
+ t̂n,v+1∆

(
ϕ−1v

) λv
µv

+
t̂n,v+1

ϕv+1
∆

(
λv
µv

))
− Xnt̂nnλn

φnϕnµn

= Yn1 + Yn2 + Yn3 + Yn4.

To complete the proof, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

nδs+s−1 |Ynj |s <∞, j = 1, 2, 3, 4.

Now applying Hölder’s inequality, we have

∞∑
n=1

nδs+s−1 |Yn1|s =
∞∑
n=1

nδs+s−1

∣∣∣∣∣n−1∑v=1

∆v

(
t̂nv
)
λv

φvϕvµv
Xv

∣∣∣∣∣
s

≤
∞∑
n=1

nδs+s−1
n−1∑
v=1

∣∣∆v

(
t̂nv
)∣∣ |Xv|s |λv|s

|φv|s |ϕv|s |µv|s
(
n−1∑
v=1

∣∣∆v

(
t̂nv
)∣∣)s−1

= O (1)
∞∑
n=1

nδs+s−1 |tnn|s−1
n−1∑
v=1

∣∣∆v

(
t̂nv
)∣∣ |Xv|s |λv|s

|φv|s |ϕv|s |µv|s

= O (1)
∞∑
v=1

|Xv|s |λv|s

|φv|s |ϕv|s |µv|s
∞∑

n=v+1
nδs+s−1 |tnn|s−1

∣∣∆v

(
t̂nv
)∣∣

= O (1)
∞∑
v=1

vδs+s−1 |tvv|s |λv|s |Xv|s

|φv|s |ϕv|s |µv|s

= O (1)
∞∑
v=1

vδs+s−s/k |Xv|s

= O (1)
∞∑
v=1

vγk+k−1 |Xv|k
(
vδs+s−s/k−k−γk+1 |Xv|s−k

)
= O (1)

∞∑
v=1

vγk+k−1 |Xv|k = O (1) .
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∞∑
n=1

nδs+s−1 |Yn2|s =
∞∑
n=1

nδs+s−1

∣∣∣∣∣n−1∑v=1
∆
(
ϕ−1v

) Xv t̂n,v+1λv
φvµv

∣∣∣∣∣
s

≤
∞∑
n=1

nδs+s−1
n−1∑
v=1

∣∣∆ (ϕ−1v )∣∣s ∣∣t̂n,v+1

∣∣ |λv|s |Xv|s |tvv|1−s

|φv|s |µv|s
(
n−1∑
v=0
|tvv|

∣∣t̂n,v+1

∣∣)s−1

= O (1)
∞∑
n=1

nδs+s−1 |tnn|s−1
n−1∑
v=1

∣∣∆ (ϕ−1v )∣∣s |λv|s |Xv|s |tvv|1−s
∣∣t̂n,v+1

∣∣
|φv|s |µv|s

= O (1)
∞∑
v=1

∣∣∆ (ϕ−1v )∣∣s |λv|s |Xv|s |tvv|1−s

|φv|s |µv|s
∞∑

n=v+1
nδs+s−1 |tnn|s−1

∣∣t̂n,v+1

∣∣
= O (1)

∞∑
v=1

∣∣∆ (ϕ−1v )∣∣s |λv|s |Xv|s |tvv|1−s

|φv|s |µv|s
vδs+s−1 |tvv|s−1

= O (1)
∞∑
v=1

vδs+s−1 |Xv|s

= O (1)
∞∑
v=1

vγk+k−1 |Xv|k vδs−γk+s−k |Xv|s−k

= O (1)
∞∑
v=1

vγk+k−1 |Xv|k = O (1) .

∞∑
n=1

nδs+s−1 |Yn3|s =
∞∑
n=1

nδs+s−1

∣∣∣∣∣n−1∑v=1

t̂n,v+1Xv

φvϕv+1
∆

(
λv
µv

)∣∣∣∣∣
s

≤
∞∑
n=1

nδs+s−1
n−1∑
v=1

|tvv|1−s
∣∣t̂n,v+1

∣∣ |Xv|s

|φv|s |ϕv+1|s
∣∣∣∣∆(λvµv

)∣∣∣∣s(n−1∑
v=1
|tvv|

∣∣t̂n,v+1

∣∣)s−1

= O (1)
∞∑
n=1

nδs+s−1 |tnn|s−1
n−1∑
v=1

|tvv|1−s
∣∣t̂n,v+1

∣∣ |Xv|s

|φv|s |ϕv+1|s
∣∣∣∣∆(λvµv

)∣∣∣∣s

= O (1)
∞∑
v=1

|tvv|1−s |Xv|s

|φv|s |ϕv+1|s
∣∣∣∣∆(λvµv

)∣∣∣∣s ∞∑
n=v+1

nδs+s−1 |tnn|s−1
∣∣t̂n,v+1

∣∣
= O (1)

∞∑
v=1

vδs+s−1 |tvv|1−s |Xv|s |tvv|s−1

|φv|s |ϕv+1|s
∣∣∣∣∆(λvµv

)∣∣∣∣s
= O (1)

∞∑
n=1

nδs+s−1 |Xn|s

= O (1)
∞∑
v=1

vγk+k−1 |Xv|k = O (1) .
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∞∑
n=1

nδs+s−1 |Yn4|s =
∞∑
n=1

nδs+s−1

∣∣∣∣∣ t̂nnλnXn

φnϕnµn

∣∣∣∣∣
s

= O(1)
∞∑
n=1

nδs+s−1
∣∣t̂nn∣∣s |λn|s |Xn|s

|φn|s |ϕn|s |µn|s

= O(1)
∞∑
n=1

nδs+s−1 |Xn|s

= O (1)
∞∑
n=1

vγk+k−1 |Xv|k = O (1) .

�

Theorem 2.2. Let 1 < k ≤ s < ∞. Let T,U be lower triangular matrices such
that U satisfying

∞∑
n=v+1

nγk+k−1 |∆v (ûnvµv)|k = O
(
vγk+k−1 |uvv|k |µv|k

)
. (6)

Then the necessary conditions for
∑
anµn summable |U, γ|k to imply

∑
anλn is

summable |T, δ|s are

(i) |tvv| |λv| = O
(
v1/s−1/k |uvv| |µv|

)
,

(ii) |λv|s
∞∑

n=v+1
nδs+s−1

∣∣∆v t̂nv
∣∣s = O

(
vδs+s−s/k |uvv|s |µv|s

)
,

(iii) |∆λv|s
∞∑

n=v+1
nδs+s−1

∣∣t̂n,v+1

∣∣s = O
(
vδs+s−s/k |uvv|s |µv|s

)
,

(iv) |λv+1|s
∞∑

n=v+1
nδs+s−1

∣∣t̂n,v+1

∣∣s = O

( ∞∑
n=v+1

nγk+k−1 |ûn,v+1|k |µv+1|k
)s/k

.

Proof. We are given that

∞∑
n=1

nδs+s−1 |Yn|s <∞, (7)

whenever
∞∑
n=1

nγk+k−1 |Xn|k <∞. (8)

The space of sequences (Xn) satisfying (2.3) is a Banach space if normed by

‖X‖ =

(
|X0|k +

∞∑
n=1

nγk+k−1 |Xn|k
)1/k

, (9)

and the space of sequences (Yn) satisfying (2.2) BK-space with respect to the norm

‖Y ‖ =

(
|Y0|s +

∞∑
n=1

nδs+s−1 |Yn|s
)1/s

, (10)

We observe that (1.4) and (1.5) transform the space of sequences satisfying (2.3)
into the space of sequences satisfying (2.2) . By the Banach-Steinhaus theorem,
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there exists a constant K > 0 such that

‖Y ‖ ≤ K ‖X‖ (11)

Applying (1.4) and (1.5) to av = ∆ev, where ev is the v−th coordinate vector, we
have

Xn =

 0, if n < v
ûnvµv, if n = v
∆v (ûnvµv) , if n > v,

(12)

Yn =


0, if n < v

t̂nvλv, if n = v

∆v

(
t̂nvλv

)
, if n > v.

(13)

By (2.4) and (2.5) if follows that

‖X‖ =

(
vγk+kk−1 |uvv|k |µv|k +

∞∑
n=v+1

nγk+k−1 |∆v (ûnvµv)|k
)1/k

, (14)

‖Y ‖ =

(
vδs+s−1 |tvv|s |λv|s +

∞∑
n=v+1

nδs+s−1
∣∣∆v

(
t̂nvλv

)∣∣s)1/s

. (15)

Now, using (2.9) and (2.10) in (2.6), along with (2.1), we have

vδs+s−1 |tvv|s |λv|s +

∞∑
n=v+1

nδs+s−1
∣∣∆v

(
t̂nv
)
λv + t̂n,v+1∆λv

∣∣s

≤ Ks

(
vγk+k−1 |uvv|k |µv|k +

∞∑
n=v+1

nγk+k−1 |∆v (ûnvµv)|k
)s/k

= O (1)
(
vγk+k−1 |uvv|k |µv|k + vγk+k−1 |uvv|k |µv|k

)
= O

(
vγk+k−1 |uvv|k |µv|k

)s/k
= O

(
vγs+s−s/k |uvv|s |µv|s

)
, (16)

by (2.1), inequality (2.11) is true iff each term of the L.H.S. is

O(vγs+s−s/k |uvv|s).

On taking the first term, we have

vδs+s−1 |tvv|s |λv|s = O
(
vγs+s−s/k |uvv|s |µv|s

)
,

which implies(i).
Concerning the second term, as λv and ∆λv are linearly independent, it follows

that each of the terms
∞∑

n=v+1

nδs+s−1
∣∣∆v

(
t̂nv
)
λv
∣∣s , ∞∑

n=v+1

nδs+s−1
∣∣t̂n,v+1∆λv

∣∣s
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is O(vγs+s−s/k |uvv|s |µv|s), which implies (ii) and (iii). If we now apply (1.4) and
(1.5) to av = ev+1, we have

Xn =

{
0, if n ≤ v
ûn,v+1µv+1, if n > v,

(17)

Yn =

{
0, if n ≤ v
t̂n,v+1λv+1, if n > v

The corresponding norms are

‖X‖ =

( ∞∑
n=v+1

nk−1 |ûn,v+1µv+1|k
)1/k

, (18)

‖Y ‖ =

( ∞∑
n=v+1

ns−1
∣∣t̂n,v+1λv+1

∣∣s)1/s

. (19)

Applying (2.6) and (2.1), we obtain (iv). �

3. Applications

As an application to our result, we putting µn = 1 (Corollaries 3.1 and 3.2) in
order to get equivalent results to Theorem 1.1 and 1.2. While Corollary 3.3 dealing
with special kinds of summability such as |R, qn, δ|k and |R, pn|k .

Corollary 3.1. Let 1 < k ≤ s < ∞, (λn) be a sequence of constants. Let T and

U be triangles with bounded entries such that Û is factorable, that is ûnv can be
written as ûnv = φnϕv, and they satisfy the following:

(i) tvv = O (|φvϕv|) ,

(ii) nγs−γk+s−k |Xn|s−k = O(1),

(iii)
n−1∑
v=1

∣∣∆v

(
t̂nv
)∣∣ = O (|tnn|) ,

(iv)
∞∑

n=v+1
nδs+s−1 |tnn|s−1

∣∣∆v

(
t̂ nv

)∣∣ = O
(
vδs+s−1 |tvv|s

)
,

(v)
n−1∑
v=1
|tvv|

∣∣t̂n,v+1

∣∣ = O (|tnn|) ,

(vi)
∞∑

n=v+1
nδs+s−1 |tnn|s−1

∣∣t̂n,v+1

∣∣ = O
(
vδs+s−1 |tvv|s−1

)
,

(vii) λv = O(1),

(viii) ∆ (λv) = O (|φv| |ϕv+1|) , and

(ix) ∆
(
ϕ−1v

)
= O (|φv|) .
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Then the series
∑
anλn is summable |T, δ|s whenever

∑
an is summable |U, γ|k ,

δ ≤ γ.

Proof. Follows from Theorem 2.1 by putting µn = 1. �

Corollary 3.2. Let 1 < k ≤ s < ∞. Let T,U be lower triangular matrices such
that U satisfying

∞∑
n=v+1

nγk+k−1 |∆vûnv|k = O
(
vγk+k−1 |uvv|k

)
. (20)

Then the necessary conditions for
∑
anµv summable |U, γ|k to imply

∑
anλn is

summable |T, δ|s are

(i) |tvv| |λv| = O
(
v1/s−1/k |uvv|

)
,

(ii) |λv|s
∞∑

n=v+1
nδs+s−1

∣∣∆v t̂nv
∣∣s = O

(
vδs+s−s/k |uvv|s

)
,

(iii) |∆λv|s
∞∑

n=v+1
nδs+s−1

∣∣t̂n,v+1

∣∣s = O
(
vδs+s−s/k |uvv|s

)
,

(iv) |λv+1|s
∞∑

n=v+1
nδs+s−1

∣∣t̂n,v+1

∣∣s = O

( ∞∑
n=v+1

nγk+k−1 |ûn,v+1|k
)s/k

.

Proof. Follows from Theorem 2.2 by putting µn = 1. �

Corollary 3.3. Sufficient conditions for the series
∑
anλn is summable |R, qn, δ|k ,

whenever
∑
an is summable |R, pn|k , k ≥ 1, are

(i)
∞∑

n=v+1

nδk+k−1qkn
QknQn−1

= O(
vδk+k−1qk−1v

Qkv
),

(ii) qnPn = O(pnQn),

(iii) λn = O(1),

(iv) ∆λn = O(
pn
Pn−1

).

Proof. The result can be obtained from Corollary 3.1 by putting s = k as follows:
For a weighted matrices means, U = (R, pn), T = (R, qn), we have

unv =

n∑
i=v

pi
Pn

=
Pn − Pv−1

Pn
= 1− Pv−1

Pn
,

ûnv = un,v − un−1,v =
pnPv−1
PnPn−1

.

We have to take

φn =
pn

PnPn−1
, ϕv = Pv−1
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and also we have

t̂nv =
qnQv−1
QnQn−1

.

The following steps shows that the conditions of Corollary 3.1 are all satisfied:

(i)
n−1∑
v=1
|tvv|

∣∣t̂n,v+1

∣∣ =
n−1∑
v=1

qv
Qv

qnQv
QnQn−1

=
qn

QnQn−1

n−1∑
v=1

qv =
qn

QnQn−1
(Qn − q0)

= O(
qn
Qn

) = O(|tnn|).

(ii)
n−1∑
v=1

∣∣∆v t̂nv
∣∣ =

n−1∑
v=1

qnqv
QnQn−1

= O(|tnn|).

(iii)
∞∑

n=v+1
nδk+k−1 |tnn|k−1

∣∣∆v t̂nv
∣∣ =

∞∑
n=v+1

nδk+k−1
(
qn
Qn

)k−1
qnqv

QnQn−1
= qv

∞∑
n=v+1

nδk+k−1qkn
QknQn−1

= qvO

(
vδk+k−1

qk−1v

Qkv

)
= O

(
vδk+k−1qkv

Qkv

)
= O

((
vδk+k−1 |tvv|

)k)
.

(iv)
∞∑

n=v+1
nδk+k−1 |tnn|k−1

∣∣t̂n,v+1

∣∣ =
∞∑

n=v+1
nδk+k−1

(
qn
Qn

)k−1
qnqv

QnQn−1
= Qv

∞∑
n=v+1

nδk+k−1qkn
QknQn−1

= O

(
vδk+k−1

(
qv
Qv

)k−1)
= O

(
vδk+k−1 |tvv|k−1

)
.

(v) |∆λv|k = O

((
pv
Pv−1

)k)
= O

(
|φv|k |ϕv+1|k

)
.

(vi) tvv =
qv
Qv

= O

(
pv
Pv

)
= O (|φv| |ϕv|) .

(vii) ∆ϕ−1v = ∆

(
1

Pv−1

)
=

pv
PvPv−1

= O (|φv|) .

�
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