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I-PRE-CAUCHY SEQUENCES AND ORLICZ FUNCTIONS

VAKEEL A. KHAN ! | KHALID EBADULLAH 2 AND AYAZ AHMAD?3

ABSTRACT. Let x = (zj) be a sequence and let M be a bounded Orlicz func-
tion. We prove that x is I-pre- Cauchy if and only if

1 lxs — ]
I=lim Z M(# =0.
i,j<k
This implies a theorem due to Connor,Fridy and Klin[4],Vakeel. A.Khan and
Q.M.Danish Lohani[21].

1. INTRODUCTION

The concept of statistical convergence was first introduced by Fast[8] and also in-
dependently by Buck [1] and Schoenberg [16] for real and complex sequences.Further
this concept was studied by Salat [14],Fridy[9],Connor[2]and many others. Statisti-
cal convergence is a generalization of the usual notation of convergence that parallels
the usual theory of convergence.

A sequence z = (zy) is said to be Statistically convergent to L if for a given
e>0

1
1. —{7: . — L| > ) < =
1}£nk|{z | | >e,i <k} =0,
and Statistically pre-Cauchy if
R ST .
hlgn ﬁ|{(],z) Has — x| > e, 4,0 <k} =0.

Connor,Fridy and Klin[4] proved that Statistically convergent sequences are Sta-
tistically pre-Cauchy and any bounded Statistically pre-Cauchy sequence with a
nowhere dense set of limit points is Statistically convergent. They also gave an ex-
ample showing Statistically pre-Cauchy sequences are not necessarily Statistically
convergent.
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An Orlicz function is a function M :[0,00)—[0,00), which is continuous, non-
decreasing and convex with M(0)=0, M(x)>0 for x>0 and M(x)— oo as x— oo. If
convexity of M is replaced by subaddivity then this function is called a modulus
function.(See Maddox[12]).

Lindenstrauss and Tzafriri[11] used the idea of Orlicz functions to construct the
sequence space

€M={m€w:ZM(@) < 00, for some p > 0}
k=1

The space £j; is a Banach space with the norm

[lz|| = inf{p > 0: ZM(WI:') <1}
k=1

The space £; is closely related to the space ¢, which is an Orlicz sequence space
with M(x)= xP for 1 < p < c0.

An Orlicz function M is said to satisfy As condition for all values of x if there
exists a constant K > 0 such that M (Lz) < KLM (x) for all values of L > 1. The
study of Orlicz sequence spaces have been made recently by various authors.
([6],[7],[13],[17],[22]).

In [4] Connor,Fridy and Klin proved that a bounded sequence x = () is Sta-
tistically pre-Cauchy if and only if

o1
lim > (|l — ) = 0.

4,J<k

The notion of I-convergence is a generalization of the statistical convergence. At
the initial stage it was studied by Kostyrko,Salat,Wilezynski[10]. Later on it was
studied by Salat, Tripathy,Ziman[15] and Demirci[5].

Recently further it was studied by Tripathy and Hazarika[18,19,20].Here we give
some preliminaries about the notion of I-convergence. Let X be a non empty set.
Then a family of sets IC 2% (power set of X)is said to be an ideal if I is additive i.e
A Bel =AU Bel and hereditary i.e Acl, BCA=-Bel.

A non-empty family of sets £ C 2% is said to be filter on X if and only if
¢ ¢ £.for A BE £ we have ANBe £ and for each A€ £ and ACB implies Be £.
An Ideal IC 2% is called non-trivial if I 2%,

A non-trivial ideal IC 2% is called admissible if {{z} : 2 € X} CL.
A non-trivial ideal T is maximal if there cannot exist any non-trivial ideal J#I con-
taining I as a subset.
For each ideal I, there is a filter £(I) corresponding to I.
ie £(I) = {K C N : K¢ € I}, where K° = N \ K.
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2. MAIN RESULTS

In this article we establish the following criterion for arbitrary sequences to be
I-pre-Cauchy.

Theorem 2.1. Let « = (x}) be a sequence and let M be Orlicz function then x
is I-pre-Cauchy if and only if

—hm— ZM |:cz— 1) = 0 for some p > 0.

1,j<k
Proof: Suppose that
Ifhlgn—‘z M(T) =0 for some p>0.
1,7<k
For each ¢ > 0,p > 0 and k£ € N we have that

|z — @
Ay = M7>— < I, (1
p={keN: M(TT s S <k el ()
lzi —x5| e ..
r={keN: M(— < — <k}tel (2
k { € ( D <2kaza]— }6 ()
. 1 |(Ei—l'j| T 1 |(Ei—$]‘| . 1 \xi—xj\
i (oS S Bl S st
4,J<k |;—x; | < 5% |mi—zj|> =
1 Z i

Now by (1) and (2) we have

{k €N :lim ZMlxl '>51j<k}cAkuAkeI
1,j<k

thus z is I-pre-Cauchy.

Now conversely suppose that x is I-pre-Cauchy, and that € has been given.
Then we have

{keN: hm ZM |>gzygk}cAkuA;eI.
i,j<k
where | 2|
oy
A =1k N:M’7>— <k I
k {E ( D 2]{3727]_ }'67
|z — 2]
¢ =1k N:Mi — <k I.
k {E ( p <2k77/?.7— }e

Let 6 > 0 be such that M(d) < 5. Since M is an Orlicz function there exists an
integer B such that M(z) < £ for all z > 0.Note that for each k € N,

1
hm — (

k2 k
1,7 <k

lzi—zj| <55 lzi—xi|> 5%

<M +hm— Z M( |xz _
1,j<k

|zi — ] 1 |z — $J| 1 |z — m]‘
MT)fhinﬁ > ME—E)H im > M(E—)
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g

<5+ 2(k2|{(w)| —@j| 2 €4, 5 < k})

< EﬁLB(@I{(i,j) Dl =gl = e,d, 5 < K}). (3)

Since z is I-pre-Cauchy, there is an N such that the right hand side of (3) is less
than e for all £ € N.Hence

—hm*Z \xz fﬂy\) 0

1,7 <k

Theorem 2.2. Let = (x)) be a sequence and let M be Orlicz function then x
is I-convergent to L if and only if

k
1
I—hinE;M(

Proof: Suppose that

|z; — L]

) = 0 for some p > 0.

k
1 i~ L
I—liinEE' M(|xp [ Z 0 for some p >0,

with an Orlicz function M, then x is I-convergent to L.(See[4])

Conversely suppose that z is I-convergent to L.We can prove that in the similar
manner to Theorem 2.1 that

k
1 i— L
I—li}gnE E_ M(|x 5 |) = 0 for some p > 0.
using that M is an Orlicz function.

Corollary 2.3.A sequence x = (z3,) is I-convergent if and only if

1
Ifhllcnﬁ Z |z — ;] =0

4,j<k
Proof: Let M(z) = . Then
i — ;]

M

) <|z; —xj| foralli,j <keN,

|zi — 2]
p

By ={keN:M( <eij<k}yel, (4)

and let

Bi=fhen: (U S s i<y e )

Therefore from (4) and (5) we have

|zi — 2]

{keN:M( >e,i,j <k} CBrUBj €.

Hence

I—hm—zml xj|—01fand0n1y1ff—hm ZM ) 0
1,7<k 1,7<k
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and an immediate application of Theorem 2.1 completes the proof.

Corollary 2.4. A sequence x = (xy) is I-convergent to L if and only if

k
1
I—h}gnE;|xi—L|—0

Proof:Let M(x) = x.
We can prove in the similar manner as in the proof of Corollary 2.3.
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