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SOME NEW DOUBLE SEQUENCE SPACES IN n-NORMED

SPACES DEFINED BY A SEQUENCE OF ORLICZ FUNCTION

KULDIP RAJ, SUNIL K. SHARMA

Abstract. In the present paper we introduce some new double sequence

spaces in n-normed spaces defined by a sequence of Orlicz functionℳ = (Mk,l)
and also examined some properties of the resulting sequence spaces.

1. Introduction and Preliminary

The initial works on double sequences is found in Bromwich [2]. Later on it
was studied by Hardy [9], Moricz [12], Moricz and Rhoades [13], Tripathy ([22],
[23]), Basarir and Sonalcan [1] and many others. Hardy[9] introduced the notion
of regular convergence for double sequences. The concept of paranormed sequences
was studied by Nakano [15] and Simmons [21] at the initial stage. The concept of 2-
normed spaces was initially developed by Gähler [5] in the mid of 1960’s while that
of n-normed spaces one can see in Misiak [14]. Since, then many others have studied
this concept and obtained various results, see Gunawan ([6], [7]) and Gunawan and
Mashadi [8]. By the convergence of a double sequences we mean the convergence
in the Pringsheim sense i.e. a double sequence x = (xk,l) has Pringsheim limit L
(denoted by P − limx = L) provided that given � > 0 there exists n ∈ N such
that ∣xk,l − L∣ < � whenever k, l > n, see [16]. We shall write more briefly as
P -convergent. The double sequence x = (xk,l) is bounded if there exists a positive
number M such that ∣xk,l∣ < M for all k and l. Let l′′∞ the space of all bounded
double sequences such that ∣∣xk,l∣∣∞,2 = sup

k,l
∣xk,l∣ <∞.

The idea of difference sequence spaces were introduced by Kizmaz [10] and he
defined the sequence spaces

X(Δ) =
{
x = (xk) : (Δxk) ∈ X

}
for X = l∞, c or c0, where Δx = (Δxk) = (xk − xk+1) for all k ∈ ℕ.
Later, these difference sequence spaces were generalized by Et and Colak see [3].
In [3] Et and Colak generalized the above sequence spaces to the sequence spaces
as follows :

X(Δm) =
{
x = (xk) : (Δmxk) ∈ X

}
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for X = l∞, c or c0, where m ∈ ℕ, Δ0x = (xk), Δx = (xk − xk+1),

Δmx = (Δmxk) = (Δm−1xk −Δm−1xk+1) for all k ∈ ℕ.
The generalized difference has the following binomial representation,

Δmxk =

m∑
v=0

(−1)v
(
m
v

)
xk+v

for all k ∈ ℕ.
An orlicz function M : [0,∞)→ [0,∞) is a continuous, non-decreasing and convex
function such that M(0) = 0, M(x) > 0 for x > 0 and M(x) −→∞ as x −→∞.
Lindenstrauss and Tzafriri [11] used the idea of Orlicz function to define the fol-
lowing sequence space,

ℓM =
{
x ∈ w :

∞∑
k=1

M
( ∣xk∣
�

)
<∞

}
which is called as an Orlicz sequence space. Also ℓM is a Banach space with the
norm

∣∣x∣∣ = inf
{
� > 0 :

∞∑
k=1

M
( ∣xk∣
�

)
≤ 1
}
.

Also, it was shown in [11] that every Orlicz sequence space ℓM contains a subspace
isomorphic to ℓp(p ≥ 1). The Δ2- condition is equivalent to M(Lx) ≤ LM(x), for
all L with 0 < L < 1. An Orlicz function M can always be represented in the
following integral form

M(x) =

∫ x

0

�(t)dt

where � is known as the kernel of M , is right differentiable for t ≥ 0, �(0) = 0, �(t) >
0, � is non-decreasing and �(t)→∞ as t→∞.
A double sequence space E is said to be solid if (�k,lxk,l) ∈ E whenever (xk,l) ∈ E
and for all double sequences (�k,l) of scalars with ∣�k,l∣ ≤ 1, for all k, l ∈ ℕ.
Let n ∈ ℕ and X be a linear space over the field K, where K is field of real
or complex numbers of dimension d, where d ≥ n ≥ 2. A real valued function
∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣ on Xn satisfying the following four conditions:

(1) ∣∣x1, x2, ⋅ ⋅ ⋅ , xn∣∣ = 0 if and only if x1, x2, ⋅ ⋅ ⋅ , xn are linearly dependent in
X;

(2) ∣∣x1, x2, ⋅ ⋅ ⋅ , xn∣∣ is invariant under permutation;
(3) ∣∣�x1, x2, ⋅ ⋅ ⋅ , xn∣∣ = ∣�∣ ∣∣x1, x2, ⋅ ⋅ ⋅ , xn∣∣ for any � ∈ K, and
(4) ∣∣x+ x′, x2, ⋅ ⋅ ⋅ , xn∣∣ ≤ ∣∣x, x2, ⋅ ⋅ ⋅ , xn∣∣+ ∣∣x′, x2, ⋅ ⋅ ⋅ , xn∣∣

is called a n-norm on X and the pair (X, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) is called a n-normed space over
the field K.
For example, we may takeX = ℝn being equipped with the n-norm ∣∣x1, x2, ⋅ ⋅ ⋅ , xn∣∣E
= the volume of the n-dimensional parallelopiped spanned by the vectors x1, x2, ⋅ ⋅ ⋅ , xn
which may be given explicitly by the formula

∣∣x1, x2, ⋅ ⋅ ⋅ , xn∣∣E = ∣det(xij)∣,
where xi = (xi1, xi2, ⋅ ⋅ ⋅ , xin) ∈ ℝn for each i = 1, 2, ⋅ ⋅ ⋅ , n. Let (X, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣)
be an n-normed space of dimension d ≥ n ≥ 2 and {a1, a2, ⋅ ⋅ ⋅ , an} be linearly
independent set in X. Then the following function ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣∞ on Xn−1 defined by

∣∣x1, x2, ⋅ ⋅ ⋅ , xn−1∣∣∞ = max{∣∣x1, x2, ⋅ ⋅ ⋅ , xn−1, ai∣∣ : i = 1, 2, ⋅ ⋅ ⋅ , n}
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defines an (n− 1)-norm on X with respect to {a1, a2, ⋅ ⋅ ⋅ , an}.
A sequence (xk) in a n-normed space (X, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) is said to converge to some
L ∈ X if

lim
k→∞

∣∣xk − L, z1, ⋅ ⋅ ⋅ , zn−1∣∣ = 0 for every z1, ⋅ ⋅ ⋅ , zn−1 ∈ X.

A sequence (xk) in a n-normed space (X, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) is said to be Cauchy if

lim
k,p→∞

∣∣xk − xp, z1, ⋅ ⋅ ⋅ , zn−1∣∣ = 0 for every z1, ⋅ ⋅ ⋅ , zn−1 ∈ X.

If every cauchy sequence in X converges to some L ∈ X, then X is said to be
complete with respect to the n-norm. Any complete n-normed space is said to be
n-Banach space.
Let X be a linear metric space. A function p : X → ℝ is called a paranorm, if

(1) p(x) ≥ 0, for all x ∈ X;
(2) p(−x) = p(x), for all x ∈ X;
(3) p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X;
(4) if (�n) is a sequence of scalars with �n → � as n→∞ and (xn) is a sequence

of vectors with p(xn−x)→ 0 as n→∞, then p(�nxn−�x)→ 0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [24], Theorem 10.4.2,
P-183). For more details about sequence spaces see ([4], [17], [18], [19]).
Let (X, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) be any n-normed space and let S′′(n − X) denote X-valued
sequence spaces. Clearly S′′(n − X) is a linear space under addition and scalar
multiplication.

Let ℳ = (Mk,l) be a sequence of Orlicz function and (X, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) an n-normed
space. Let p = (pk,l) be a bounded sequence of positive real numbers and u = (uk,l)
be any sequence of strictly positive real numbers. In the present paper, we define
the following classes of double sequences:
l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) ={

x ∈ S′′(n−X) :

∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

<∞,

for each z1, z2, ⋅ ⋅ ⋅ , zn−1 ∈ X and � > 0
}
.

If we take ℳ(x) = x, we get

l′′(Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) ={
x ∈ S′′(n−X) :

∞,∞∑
k, l=1

[
uk,l

(
∣∣Δ

mxk,l
�

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

<∞,

for each z1, z2, ⋅ ⋅ ⋅ , zn−1 ∈ X and � > 0
}
.

If we take p = (pk,l) = 1, we have
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l′′(ℳ,Δm, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) =

{
x ∈ S′′(n−X) :

∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]

<∞,

for each z1, z2, ⋅ ⋅ ⋅ , zn−1 ∈ X and � > 0
}
.

If we take m = 0, u = uk,l = 1 and Mk,l = M , we get the spaces which were defined
and studied by E. Savas [20]. The work of this paper is motivated by the work of
E. Savas [20], M. Basarir and O. Sonalcan [1], B. C. Tripathy [22], A. Esi [4] and
H. Gunawan and M. Mashadi [8].
The following inequality will be used throughout the paper. Let p = (pk,l) be
a double sequence of positive real numbers with 0 < pk,l ≤ sup

k,l
= H and let

K = max{1, 2H−1}. Then for the factorable sequences {ak,l} and {bk,l} in the
complex plane, we have

∣ak,l + bk,l∣pk,l ≤ K(∣ak,l∣pk,l + ∣bk,l∣pk,l). (1.1)

The aim of this paper is to introduce some new double sequence spaces in n-normed
spaces defined by a sequence of Orlicz function ℳ = (Mk,l) and to establish some
topological properties and some inclusion relation between above defined sequence
spaces.

2. Main Results

Theorem 2.1. Let ℳ = (Mk,l) be a sequence of Orlicz function, p = (pk,l) be a
bounded sequence of positive real numbers and u = (uk,l) be any sequence of strictly
positive real numbers. Then l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) is a linear space over the
field of complex number ℂ.

Proof. Let x = (xk,l), y = (yk,l) ∈ l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) and �, � ∈ ℂ. Then
there exist positive numbers �1 and �2 such that

∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�1

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

<∞, for some �1 > 0,

∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

myk,l
�2

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

<∞, for some �2 > 0

Define �3 = max(∣�∣�1, ∣�∣�2). Since ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣ is a n-norm on X and ℳ = (Mk,l)
is a sequence of Orlicz function, we get
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∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

m(�xk,l + �yk,l)

�3
, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣

)]pk,l

=

∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

m(�xk,l + �yk,l)

max(∣�∣�1, ∣�∣�2)
, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣

)]pk,l

≤ K
∞,∞∑
k, l=1

[ ∣�∣
(∣�∣�1 + ∣�∣�2)

uk,lMk,l

(
∣∣Δ

m(Δm�xk,l + �yk,l)

�1
, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣

)]pk,l

+K

∞,∞∑
k, l=1

[ ∣�∣
(∣�∣�1 + ∣�∣�2)

uk,lMk,l

(
∣∣Δ

m(�xk,l + �yk,l)

�2
, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣

)]pk,l

≤ KF
∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�1

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

+KF

∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

myk,l
�2

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

,

where

F = max
[
1,
( ∣�∣

(∣�∣�1 + ∣�∣�2)

)H
,
( ∣�∣

(∣�∣�1 + ∣�∣�2)

)H]
,

and this completes the proof of the theorem. □

Theorem 2.2. Let ℳ = (Mk,l) be a sequence of Orlicz function, p = (pk,l) be a
bounded sequence of positive real numbers and u = (uk,l) be any sequence of strictly
positive real numbers. Then l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) is a paranormed space with
the paranorm defined by

g(x) = inf
{
�

pk,l
H :

(∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

) 1
G

<∞
}
,

where 0 < pk,l ≤ sup pk,l = H, G = max(1, H).

Proof. Clearly, g(�) = 0, where � = (0, 0, ⋅ ⋅ ⋅ , 0) is the zero sequence and g(−x) =
g(x). Let x = (xk,l), y = (yk,l) ∈ l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) and �, � ∈ ℂ. Then
there exist positive numbers �1 and �2 such that

∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�1

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

<∞, for some �1 > 0

and

∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

myk,l
�2

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

<∞, for some �2 > 0

Let � = �1 + �2, we have
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uk,lMk,l

(
∣∣Δ

m(xk,l+yk,l)
� , z1, z2, ⋅ ⋅ ⋅ zn−1∣∣

)
= uk,lMk,l

(
∣∣Δ

m(xk,l + yk,l)

�1 + �2
, z1, z2, ⋅ ⋅ ⋅ zn−1∣∣

)
≤ uk,lMk,l

(
∣∣Δ

mxk,l
�1 + �2

, z1, z2, ⋅ ⋅ ⋅ zn−1∣∣+ ∣∣
Δmyk,l
�1 + �2

, z1, z2, ⋅ ⋅ ⋅ zn−1∣∣
)

≤
( �1

�1 + �2

)
uk,lMk,l

(
∣∣Δ

mxk,l
�1

, z1, z2, ⋅ ⋅ ⋅ zn−1∣∣
)

+
( �2

�1 + �2

)
uk,lMk,l

(
∣∣Δ

myk,l
�2

, z1, z2, ⋅ ⋅ ⋅ zn−1∣∣
)
,

and thus
g(x+ y)

= inf
{

(�1 + �2)
pk,l
H :

(∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

m(xk,l + yk,l)

�1 + �2
, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣

)]pk,l
) 1

G
}

≤ inf
{

(�1)
pk,l
H :

(∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�1

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

) 1
G
}

+ inf
{

(�2)
pk,l
H :

(∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

myk,l
�2

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

) 1
G
}
.

Now, let �→ 0 and g(xn − x)→ 0 as n→∞. Since

g(�x) = inf
{

(�)
pk,l
H :

(∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣�Δmxk,l

�
, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣

)]pk,l
) 1

G

<∞
}
.

This gives us g(�xn)→ 0 as n→∞. □

Theorem 2.3. If 0 < pk,l < qk,l <∞ for each k and l, then

l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) ⊆ l′′(ℳ,Δm, q, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣).

Proof. If x ∈ l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣), then there exists some � > 0 such that

∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z2, ⋅ ⋅ ⋅ zn−1∣∣
)]pk,l

<∞.

This implies that

uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)
< 1,

for sufficiently large value of k and l. Sinceℳ = (Mk,l) is non-decreasing, we have
∞,∞∑
k,l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z1, ⋅ ⋅ ⋅ , zn−1∣∣
)]qk,l

≤
∞,∞∑
k,l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z1, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

<∞.

Thus x ∈ l′′(ℳ,Δm, q, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣). This completes the proof. □
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Theorem 2.4. (i) If 0 < pk,l < 1 for each k and l, then

l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) ⊆ l′′(ℳ,Δm, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣),
(ii) If pk,l ≥ 1 for each k and l, then

l′′(ℳ,Δm, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) ⊆ l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣).

Proof. (i) Let x = (xk,l) ∈ l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣). Since 0 < inf pk,l < 1, we
have

∞,∞∑
k,l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z1, ⋅ ⋅ ⋅ , zn−1∣∣
)]

≤
∞,∞∑
k,l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z1, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

and hence x = (xk,l) ∈ l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣).

(ii) Let pk,l for each (k, l) and sup
k,l

pk,l <∞. Let x = (xk,l) ∈ l′′(ℳ,Δm, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣).

Then, for each 0 < � < 1, there exists a positive integer ℕ such that
∞,∞∑
k,l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z1, ⋅ ⋅ ⋅ , zn−1∣∣
)]
≤ � < 1,

for all k, l ∈ ℕ. This implies that
∞,∞∑
k,l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z1, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

≤
∞,∞∑
k,l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z1, ⋅ ⋅ ⋅ , zn−1∣∣
)]
.

Thus x = (xk,l) ∈ l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) and this completes the proof. □

Theorem 2.5. Letℳ′ = (M ′k,l) andℳ′′ = (M ′′k,l) be sequences of Orlicz function.
Then

l′′(ℳ′,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣)∩l′′(ℳ′′,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) ⊆ l′′(ℳ′+ℳ′′,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣).

Proof. We have[
uk,l(M

′
k,l +M ′′k,l)

(
∣∣Δ

mxk,l

� , z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

=
[
uk,lM

′
k,l

(
∣∣Δ

mxk,l
�

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)

+ uk,lM
′′
k,l

(
∣∣Δ

mxk,l
�

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

≤ K
[
uk,lM

′
k,l

(
∣∣Δ

mxk,l
�

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

+K
[
uk,lM

′′
k,l

(
∣∣Δ

mxk,l
�

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

.

Let x = (xk,l) ∈ l′′(ℳ′,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) ∩ l′′(ℳ′′,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣), when
adding the above inequality from k, l = 0, 0 to ∞,∞ we get x = (xk,l) ∈ l′′(ℳ′ +
ℳ′′,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) and this completes the proof. □
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Theorem 2.6. The sequence space l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) is solid.

Proof. Let x = (xk,l) ∈ l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣), i.e.

∞,∞∑
k. l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

<∞.

Let (�k,l) be double sequence of scalars such that ∣�k,l∣ ≤ 1 for all k, l ∈ ℕ × ℕ.
Then, the result follows from the following inequality

∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

m�k,lxk,l
�

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

≤
∞,∞∑
k, l=1

[
uk,lMk,l

(
∣∣Δ

mxk,l
�

, z1, z2, ⋅ ⋅ ⋅ , zn−1∣∣
)]pk,l

,

and this completes the proof. □

Theorem 2.7. The sequence space l′′(ℳ,Δm, p, u, ∣∣⋅, ⋅ ⋅ ⋅ , ⋅∣∣) is monotone.

Proof. It is obvious. □
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