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GROWTH AND OSCILLATION THEORY OF [P,Q]-ORDER

ANALYTIC SOLUTIONS OF LINEAR DIFFERENTIAL

EQUATIONS IN THE UNIT DISC

BENHARRAT BELAÏDI

Abstract. In this paper, we study the growth and the oscillation of analytic

solutions of homogeneous linear differential equations with analytic coefficients
of [p, q]−order in the unit disc. We also consider the nonhomogeneous linear

differential equations.

1. Introduction and main results

Throughout this paper, we assume that the reader is familiar with the fundamental
results and the standard notations of the Nevanlinna’s theory in the unit disc Δ =
{z ∈ ℂ : ∣z∣ < 1} (see [11, 12, 18, 21]). Recently, there has been an increasing
interest in studying the growth of analytic solutions of linear differential equations
in the unit disc by making use of Nevanlinna theory (see [2, 3, 4, 6, 7, 8, 9, 10, 12,
13, 18, 19]).

Consider for k ⩾ 2 the linear differential equations

f (k) +Ak−1 (z) f (k−1) + ...+A1 (z) f ′ +A0 (z) f = 0, (1.1)

f (k) +Ak−1 (z) f (k−1) + ...+A1 (z) f ′ +A0 (z) f = F (z) , (1.2)

where A0 (z) , ..., Ak−1 (z) , F (z) are analytic functions in the unit disc Δ = {z ∈
ℂ : ∣z∣ < 1}. It is well-known that all solutions of equation (1.1) and (1.2) are
analytic functions in Δ and that there are exactly k linearly independent solutions
of (1.1) (see [12]). In [14, 15], Juneja, Kapoor and Bajpai have investigated some
properties of entire functions of [p, q]-order and obtained some results. In [20], by
using the concept of [p, q]-order Liu, Tu and Shi have considered equations (1.1),
(1.2) with entire coefficients and obtained different results concerning the growth
of its solutions. In this paper, we continue to consider this subject and investi-
gate the complex linear differential equations (1.1) and (1.2) when the coefficients
A0, A1, ..., Ak−1, F are analytic functions of [p, q]−order in Δ.

Before, we state our results we need to give some definitions and discussions.
Firstly, let us give definition about the degree of small growth order of functions in
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2 B. BELAÏDI

Δ as polynomials on the complex plane ℂ. There are many types of definitions of
small growth order of functions in Δ (i.e., see [8, 9]).

Definition 1.1. For a meromorphic function f in Δ let

D (f) := lim sup
r→1−

T (r, f)

log 1
1−r

,

where T (r, f) is the characteristic function of Nevanlinna of f . If D (f) < ∞, we
say that f is of finite degree D (f) (or is non-admissible); if D (f) = ∞, we say
that f is of infinite degree (or is admissible). If f is an analytic function in Δ, and

DM (f) := lim sup
r→1−

log+M (r, f)

log 1
1−r

,

in which M (r, f) = max
∣z∣=r

∣f (z)∣ is the maximum modulus function, then we say

that f is a function of finite degree DM (f) if DM (f) < ∞; otherwise, f is of
infinite degree.

Now, we give the definitions of iterated order and growth index to classify
generally the functions of fast growth in Δ as those in ℂ (see [5, 16, 17]). Let
us define inductively, for r ∈ [0, 1), exp1 r := er and expp+1 r := exp

(
expp r

)
,

p ∈ ℕ. We also define for all r sufficiently large in (0, 1) , log1 r := log r and
logp+1 r := log

(
logp r

)
, p ∈ ℕ. Moreover, we denote by exp0 r := r, log0 r := r,

log−1 r := exp1 r and exp−1 r := log1 r.

Definition 1.2. [6, 7, 18] Let f be a meromorphic function in Δ. Then the iterated
p−order of f is defined by

�p (f) = lim sup
r→1−

log+
p T (r, f)

log 1
1−r

(p ⩾ 1 is an integer) ,

where log+
1 x = log+ x = max {log x, 0} , log+

p+1 x = log+ log+
p x. For p = 1, this

notation is called order and for p = 2 hyper-order [12, 19]. If f is analytic in Δ,
then the iterated p−order of f is defined by

�M,p (f) = lim sup
r→1−

log+
p+1M (r, f)

log 1
1−r

(p ⩾ 1 is an integer) .

Remark 1.3. It follows by M. Tsuji ([21], p. 205) that if f is an analytic function
in Δ, then we have the inequalities

�1 (f) ⩽ �M,1 (f) ⩽ �1 (f) + 1,

which are the best possible in the sense that there are analytic functions g and ℎ
such that �M,1 (g) = �1 (g) and �M,1 (ℎ) = �1 (ℎ) + 1, see [9]. However, it follows
by Proposition 2.2.2 in [17] that �M,p (f) = �p (f) for p ⩾ 2.

Definition 1.4. (see [6]) The growth index of the iterated order of a meromorphic
function f(z) in Δ is defined by

i (f) =

⎧⎨⎩ 0, if f is non-admissible,
min {j ∈ ℕ : �j (f) < +∞} if f is admissible,

+∞, if �j (f) = +∞ for all j ∈ ℕ.
For an analytic function f in Δ, we also define
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iM (f) =

⎧⎨⎩ 0, if f is non-admissible,
min {j ∈ ℕ : �M,j (f) < +∞} if f is admissible,

+∞, if �M,j (f) = +∞ for all j ∈ ℕ.

Remark 1.5. If �p(f) < ∞ or i(f) ⩽ p, then we say that f is of finite iterated
p−order; if �p(f) = ∞ or i(f) > p, then we say that f is of infinite iterated
p−order. In particular, we say that f is of finite order if �1(f) < ∞ or i(f) ⩽ 1;
f is of infinite order if �1(f) =∞ or i(f) > 1.

Definition 1.6. (see [2, 7]) Let f be a meromorphic function in Δ. Then the
iterated exponent of convergence of the sequence of zeros of f (z) is defined by

�p (f) = lim sup
r→1−

log+
p N

(
r, 1

f

)
log 1

1−r
(p ⩾ 1 is an integer) ,

where N
(
r, 1

f

)
is the counting function of zeros of f (z) in {z : ∣z∣ < r}. For p = 1,

this notation is called exponent of convergence of the sequence of zeros and for
p = 2 hyper-exponent of convergence of the sequence of zeros. Similarly, the iterated
exponent of convergence of the sequence of distinct zeros of f (z) is defined by

�p (f) = lim sup
r→1−

log+
p N

(
r, 1

f

)
log 1

1−r
(p ⩾ 1 is an integer) ,

where N
(
r, 1

f

)
is the counting function of distinct zeros of f (z) in {z : ∣z∣ < r}.

For p = 1, this notation is called exponent of convergence of the sequence of distinct
zeros and for p = 2 hyper-exponent of convergence of the sequence of distinct zeros.

Now, we introduce the concept of [p, q]-order of meromorphic and analytic functions
in the unit disc.

Definition 1.7. (see [4]) Let p ⩾ q ⩾ 1 be integers. Let f be meromorphic function
in Δ, the [p, q]-order of f (z) is defined by

�[p,q] (f) = lim sup
r→1−

log+
p T (r, f)

logq
1

1−r
.

For an analytic function f in Δ, we also define

�M,[p,q] (f) = lim sup
r→1−

log+
p+1M (r, f)

logq
1

1−r
.

Remark 1.8. It is easy to see that 0 ⩽ �[p,q] (f) ⩽ ∞. If f (z) is non-admissible,
then �[p,q] (f) = 0 for any p ⩾ q ⩾ 1. By Definition 1.7, we have that �[1,1] (f) =
�1 (f) = � (f) , �[2,1] (f) = �2 (f) and �[p+1,1] (f) = �p+1 (f) .

Proposition 1.9. (see [4]) Let p ⩾ q ⩾ 1 be integers. Let f be analytic function
in Δ of [p, q]-order. The following two statements hold:
(i) If p = q, then

�[p,q] (f) ⩽ �M,[p,q] (f) ⩽ �[p,q] (f) + 1.

(ii) If p > q, then

�[p,q] (f) = �M,[p,q] (f) .
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Definition 1.10. The [p, q]-exponent of convergence of the zero sequence of f (z)
in Δ is defined by

�[p,q] (f) = lim sup
r→1−

log+
p N

(
r, 1

f

)
logq

1
1−r

.

Similarly, the [p, q]-exponent of convergence of the sequence of distinct zeros of f (z)
is defined by

�[p,q] (f) = lim sup
r→1−

log+
p N

(
r, 1

f

)
logq

1
1−r

.

For F ⊂ [0, 1), the upper and lower densities of F are defined by

densΔF = lim sup
r→1−

m (F ∩ [0, r))

m ([0, r))
and densΔF = lim inf

r→1−

m (F ∩ [0, r))

m ([0, r))

respectively, where m (G) =
∫
G

dt
1−t for G ⊂ [0, 1) . We obtain the following results.

Theorem 1.11. Let p ⩾ q ⩾ 1 be integers. Let H be a set of complex numbers
satisfying densΔ{∣z∣ : z ∈ H ⊆ Δ} > 0, and let A0 (z) , ..., Ak−1 (z) be analytic
functions in the unit disc Δ such that for real constants �, � where 0 ⩽ � < �, we
have

∣A0 (z)∣ ⩾ expp+1

{
� logq

(
1

1− ∣z∣

)}
(1.3)

and

∣Aj (z)∣ ⩽ expp+1

{
� logq

(
1

1− ∣z∣

)}
(j = 1, ..., k − 1) (1.4)

as ∣z∣ → 1− for z ∈ H. Then every solution f ∕≡ 0 of equation (1.1) satisfies
�[p,q] (f) = �M,[p,q] (f) =∞ and �[p+1,q] (f) = �M,[p+1,q] (f) ⩾ �.

Theorem 1.12. Let p ⩾ q ⩾ 1 be integers. Let H be a set of complex numbers satis-
fying densΔ {∣z∣ : z ∈ H ⊆ Δ} > 0, and let A0 (z) , ..., Ak−1 (z) be analytic functions
in the unit disc Δ satisfying max{�M,[p,q] (Aj) : j = 1, ..., k−1} ⩽ �M,[p,q] (A0) = �.
Suppose that there exists a real number � satisfying 0 ⩽ � < � such that for any
given " (0 < " < �− �) sufficiently small, we have

∣A0 (z)∣ ⩾ expp+1

{
(�− ") logq

(
1

1− ∣z∣

)}
(1.5)

and

∣Aj (z)∣ ⩽ expp+1

{
� logq

(
1

1− ∣z∣

)}
(j = 1, ..., k − 1) (1.6)

as ∣z∣ → 1− for z ∈ H. Then every solution f ∕≡ 0 of equation (1.1) satisfies
�[p,q] (f) = �M,[p,q] (f) =∞ and �[p+1,q] (f) = �M,[p+1,q] (f) = �M,[p,q] (A0) = �.

Theorem 1.13. Suppose that the assumptions of Theorem 1.12 are satisfied, and
let F ∕≡ 0 be analytic function in Δ of [p, q]-order. Then, the following two state-
ments hold:
(i) If �[p+1,q] (F ) < �M,[p,q] (A0) , then every solution f of (1.2) satisfies �[p+1,q] (f) =
�[p+1,q] (f) = �[p+1,q] (f) = �M,[p,q] (A0) with at most one exception f0 satisfying
�[p+1,q] (f0) < �M,[p,q] (A0) .
(ii) If �[p+1,q] (F ) > �M,[p,q] (A0) , then every solution f of (1.2) satisfies �[p+1,q] (f) =
�[p+1,q] (F ).
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2. Preliminary lemmas

In this section we give some lemmas which are used in the proofs of our theo-
rems.

Lemma 2.1. ([9], Theorem 3.1) Let k and j be integers satisfying k > j ⩾ 0, and
let " > 0 and d ∈ (0, 1). If f is a meromorphic in Δ such that f (j) does not vanish
identically, then

∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ⩽
((

1

1− ∣z∣

)2+"

max

{
log

1

1− ∣z∣
, T (s (∣z∣) , f)

})k−j

(∣z∣ /∈ E1),

(2.1)
where E1 ⊂ [0, 1) is a set with

∫
E1

dr
1−r <∞ and s (∣z∣) = 1− d (1− ∣z∣) .

Lemma 2.2. ([12]) Let f be a meromorphic function in the unit disc Δ, and let
k ⩾ 1 be an integer. Then

m

(
r,
f (k)

f

)
= S (r, f) , (2.2)

where S(r, f) = O
(

log+ T (r, f) + log( 1
1−r )

)
, possibly outside a set E2 ⊂ [0, 1) with∫

E2

dr
1−r <∞.

Lemma 2.3. ([4]) Let p ⩾ q ⩾ 1 be integers. Let f be a meromorphic function in
the unit disc Δ such that �[p,q] (f) = � <∞, and let k ⩾ 1 be an integer. Then for
any " > 0,

m

(
r,
f (k)

f

)
= O

(
expp−1

{
(�+ ") logq

(
1

1− r

)})
(2.3)

holds for all r outside a set E3 ⊂ [0, 1) with
∫
E3

dr
1−r <∞.

Lemma 2.4. ([1]) Let g : (0, 1) → ℝ and ℎ : (0, 1) → ℝ be monotone increasing
functions such that g (r) ⩽ ℎ (r) holds outside of an exceptional set E4 ⊂ [0, 1) for
which

∫
E4

dr
1−r < ∞. Then there exists a constant d ∈ (0, 1) such that if s (r) =

1− d (1− r) , then g (r) ⩽ ℎ (s (r)) for all r ∈ [0, 1).

Lemma 2.5. ([4]) Let p ⩾ q ⩾ 1 be integers. If A0 (z) , ..., Ak−1 (z) are analytic
functions of [p, q]−order in the unit disc Δ, then every solution f ∕≡ 0 of (1.1)
satisfies

�[p+1,q] (f) = �M,[p+1,q] (f) ⩽ max
{
�M,[p,q] (Aj) : j = 0, 1, ..., k − 1

}
. (2.4)

Lemma 2.6. Let A0, A1, ..., Ak−1, F ∕≡ 0 be finite [p, q]−order analytic functions
in the unit disc Δ. If f is a solution with �[p,q] (f) = ∞ and �[p+1,q] (f) = � < ∞
of equation (1.2), then �[p,q] (f) = �[p,q] (f) = �[p,q] (f) = ∞ and �[p+1,q] (f) =
�[p+1,q] (f) = �[p+1,q] (f) = �.

Proof. Since A0, A1, ..., Ak−1, F ∕≡ 0 are analytic in Δ, then all solutions of (1.2)
are analytic in Δ (see [12]). By (1.2), we can write

1

f
=

1

F

(
f (k)

f
+Ak−1

f (k−1)

f
+ ...+A1

f
′

f
+A0

)
. (2.5)
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If f has a zero at z0 ∈ Δ of order 
 (> k) , then F must have a zero at z0 of order
at least 
 − k. Hence,

N

(
r,

1

f

)
⩽ k N

(
r,

1

f

)
+N

(
r,

1

F

)
. (2.6)

By (2.5), we have

m

(
r,

1

f

)
⩽

k∑
j=1

m

(
r,
f (j)

f

)
+

k−1∑
j=0

m (r,Aj) +m

(
r,

1

F

)
+O (1) . (2.7)

Applying the Lemma 2.3, we have

m

(
r,
f (j)

f

)
= O

(
expp

{
(�+ ") logq

(
1

1− r

)})
(j = 1, ..., k) , (2.8)

where �[p+1,q] (f) = � <∞, holds for all r outside a set E3 ⊂ [0, 1) with
∫
E3

dr
1−r <

∞. By (2.6)-(2.8), we get

T (r, f) = T

(
r,

1

f

)
+O (1) ⩽ kN

(
r,

1

f

)
+

k−1∑
j=0

T (r,Aj) + T (r, F )

+O

(
expp

{
(�+ ") logq

(
1

1− r

)})
(∣z∣ = r /∈ E3) . (2.9)

Set
� = max {�p (Aj) (j = 0, ..., k − 1) , �p (F )} .

Then for r → 1−, we have

T (r,A0) + ...+ T (r,Ak−1) + T (r, F ) ⩽ (k + 1) expp

{
(�+ ") logq

(
1

1− r

)}
.

(2.10)
Thus, by (2.9) and (2.10), we have for r → 1−

T (r, f) ⩽ k N

(
r,

1

f

)
+ (k + 1) expp

{
(�+ ") logq

(
1

1− r

)}
+O

(
expp

{
(�+ ") logq

(
1

1− r

)})
= k N

(
r,

1

f

)
+O

(
expp

{
� logq

(
1

1− r

)})
, (∣z∣ = r /∈ E3) , (2.11)

where � <∞. Hence for any f with �[p,q] (f) =∞ and �[p+1,q] (f) = �, by Lemma
2.4 and (2.11), we have

�[p,q] (f) ⩾ �[p,q] (f) ⩾ �[p,q] (f) =∞
and �[p+1,q] (f) ⩾ �[p+1,q] (f) ⩾ �[p+1,q] (f). Since �[p+1,q] (f) ⩽ �[p+1,q] (f) ⩽
�[p+1,q] (f) , we have �[p+1,q] (f) = �[p+1,q] (f) = �[p+1,q] (f) = �. □

Lemma 2.7. Let p ⩾ q ⩾ 1 be integers, and let f and g be meromorphic functions
of [p, q]-order in Δ. Then we have

�[p,q] (f + g) ⩽ max
{
�[p,q] (f) , �[p,q] (g)

}
and

�[p,q] (fg) ⩽ max
{
�[p,q] (f) , �[p,q] (g)

}
,
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Furthermore, if �[p,q] (f) > �[p,q] (g) , then we obtain

�[p,q] (f + g) = �[p,q] (fg) = �[p,q] (f) .

Proof. Set �[p,q] (f) = �1 and �[p,q] (g) = �2. For any given " > 0, we have

T (r, f + g) ⩽ T (r, f) + T (r, g) +O (1) ⩽ expp

{
(�1 + ") logq

(
1

1− r

)}
+ expp

{
(�2 + ") logq

(
1

1− r

)}
+O (1)

⩽ 2 expp

{
(max {�1, �2}+ ") logq

(
1

1− r

)}
+O (1) (2.12)

and

T (r, fg) ⩽ T (r, f) + T (r, g) ⩽ 2 expp

{
(max {�1, �2}+ ") logq

(
1

1− r

)}
(2.13)

for all r sufficiently large. Since " > 0 is arbitrary, from (2.12) and (2.13), we easily
obtain

�[p,q] (f + g) ⩽ max
{
�[p,q] (f) , �[p,q] (g)

}
(2.14)

and
�[p,q] (fg) ⩽ max

{
�[p,q] (f) , �[p,q] (g)

}
. (2.15)

Suppose now that �[p,q] (f) > �[p,q] (g) . Considering that

T (r, f) = T (r, f + g − g) ⩽ T (r, f + g) + T (r, g) +O (1) (2.16)

and

T (r, f) = T

(
r,
fg

g

)
⩽ T (r, fg) + T

(
r,

1

g

)
= T (r, fg) + T (r, g) +O (1) . (2.17)

By (2.16) and (2.17), by the same method as above we obtain that

�[p,q] (f) ⩽ max
{
�[p,q] (f + g) , �[p,q] (g)

}
= �[p,q] (f + g) , (2.18)

�[p,q] (f) ⩽ max
{
�[p,q] (fg) , �[p,q] (g)

}
= �[p,q] (fg) . (2.19)

By using (2.14) and (2.18) we obtain �[p,q] (f + g) = �[p,q] (f) and by (2.15) and
(2.19), we get �[p,q] (fg) = �[p,q] (f) . □

Lemma 2.8. Let p ⩾ q ⩾ 1 be integers, and let f be a meromorphic function of
[p, q]−order in Δ. Then �[p,q] (f ′) = �[p,q] (f).

Proof. Let f be a meromorphic function of [p, q]−order in Δ. By ([6], p. 281) we
have for r → 1−

T (r, f) < O

(
T

(
r + 3

4
, f ′
)

+ ln
1

1− r

)
. (2.20)

On the other hand,

T (r, f ′) = m (r, f ′) +N (r, f ′) ⩽ m (r, f) +m

(
r,
f ′

f

)
+ 2N (r, f)

⩽ 2T (r, f) +m

(
r,
f ′

f

)
. (2.21)

Hence, by using (2.20) and (2.21) we obtain �[p,q] (f ′) = �[p,q] (f) . □
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Proof of Theorem 1.11. Suppose that f ∕≡ 0 is a solution of (1.1). From the condi-
tions of Theorem 1.11, there is a set H of complex numbers satisfying densΔ{∣z∣ :
z ∈ H ⊆ Δ} > 0 such that for z ∈ H, we have (1.2) and (1.3) as ∣z∣ → 1−. Set
H1 = {r = ∣z∣ : z ∈ H ⊆ Δ}, since densΔ{∣z∣ : z ∈ H ⊆ Δ} > 0, then H1 is a
set with

∫
H1

dr
1−r =∞. By Lemma 2.1, there exist s (∣z∣) = 1− d (1− ∣z∣) and a set

E1 ⊂ [0, 1) with
∫
E1

dr
1−r <∞ such that for r = ∣z∣ /∈ E1, we have∣∣∣∣f (j)(z)

f(z)

∣∣∣∣ ⩽
((

1

1− ∣z∣

)2+"

max

{
log

1

1− ∣z∣
, T (s (∣z∣) , f)

})j

(j = 1, ..., k).

(2.22)
By (1.1), we can write

∣A0 (z)∣ ⩽
∣∣∣∣f (k)

f

∣∣∣∣+ ∣Ak−1 (z)∣
∣∣∣∣f (k−1)

f

∣∣∣∣+ ...+ ∣A0 (z)∣

∣∣∣∣∣f
′

f

∣∣∣∣∣ . (2.23)

It follows by (1.3), (1.4), (2.22) and (2.23) that

expp+1

{
� logq

(
1

1− ∣z∣

)}
⩽ ∣A0 (z)∣ ⩽ k expp+1

{
� logq

(
1

1− ∣z∣

)}

×

((
1

1− ∣z∣

)2+"

max

{
log

1

1− ∣z∣
, T (s (∣z∣) , f)

})k

(2.24)

holds for all z satisfying ∣z∣ = r ∈ H1∖E1 as ∣z∣ → 1−, where E1 ⊂ [0, 1) is a set
with

∫
E1

dr
1−r <∞. Noting that � > � ⩾ 0, by (2.24) we have

(1− o (1)) expp+1

{
� logq

(
1

1− ∣z∣

)}
⩽

(
1

1− ∣z∣

)k(2+")

T k(s (∣z∣) , f) (2.25)

for all z satisfying ∣z∣ = r ∈ H1∖E1 as ∣z∣ → 1−. Hence by Lemma 2.4 and (2.25),
we obtain �[p,q] (f) = �M,[p,q] (f) =∞ and

�[p+1,q] (f) = �M,[p+1,q] (f) = lim sup
r→1−

log+
p+1 T (r, f)

logq
1

1−r
⩾ �.

□

Proof of Theorem 1.12. Suppose that f ∕≡ 0 is a solution of (1.1). Then for any
given " > 0, by the results of Theorem 1.11, we have �[p,q] (f) = �M,[p,q] (f) = ∞
and

�[p+1,q] (f) = �M,[p+1,q] (f) ⩾ �− ". (2.26)

Since " > 0 is arbitrary we get from (2.26) that �[p+1,q] (f) = �M,[p+1,q] (f) ⩾ �.
On the other hand, by Lemma 2.5, we have

�[p+1,q] (f) = �M,[p+1,q] (f)

⩽ max
{
�M,[p,q] (Aj) : j = 0, 1, ..., k − 1

}
= �M,[p,q] (A0) = �. (2.27)

It yields �[p+1,q] (f) = �M,[p+1,q] (f) = �M,[p,q] (A0) = �. □
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Proof of Theorem 1.13. (i) Suppose that �[p+1,q] (F ) < �M,[p,q] (A0) . We assume
that f is a solution of (1.2) and {f1, f2, ..., fk} is a solution base of the corresponding
homogeneous equation (1.1) of (1.2). By Theorem 1.12, we know that �[p,q] (fj) =
∞ and �[p+1,q] (fj) = �M,[p,q] (A0) (j = 1, 2, ..., k) . Then f can be expressed in the
form

f (z) = B1 (z) f1 (z) +B2 (z) f2 (z) + ...+Bk (z) fk (z) , (2.28)

where B1 (z) , ..., Bk (z) are suitable analytic functions determined by

B′1 (z) f1 (z) +B′2 (z) f2 (z) + ...+B′k (z) fk (z) = 0
B′1 (z) f ′1 (z) +B′2 (z) f ′2 (z) + ...+B′k (z) f ′k (z) = 0

...............................

B′1 (z) f
(k−1)
1 (z) +B′2 (z) f

(k−1)
2 (z) + ...+B′k (z) f

(k−1)
k (z) = F (z) .

(2.29)

Since the Wronskian W (f1, f2, ..., fk) is a differential polynomial in f1, f2, ..., fk
with constant coefficients, it is easy by using Theorem 1.12 to deduce that

�[p+1,q] (W ) ⩽ max
{
�[p+1,q] (fj) : j = 1, 2, ..., k

}
= �M,[p,q] (A0) . (2.30)

From (2.29), we get

B′j = F.Gj (f1, f2, ..., fk) . (W (f1, f2, ..., fk))
−1

(j = 1, 2, ..., k) , (2.31)

where Gj (f1, f2, ..., fk) are differential polynomials in f1, f2, ..., fk with constant
coefficients. Thus

�[p+1,q] (Gj) ⩽ max
{
�[p+1,q] (fj) : j = 1, 2, ..., k

}
= �M,[p,q] (A0) (j = 1, 2, ..., k) . (2.32)

Since �[p+1,q] (F ) < �M,[p,q] (A0), then by using Lemma 2.7, Lemma 2.8, (2.30) and
(2.32), we have from (2.31) for j = 1, 2, ..., k

�[p+1,q] (Bj) = �[p+1,q]

(
B′j
)
⩽ max

{
�[p+1,q] (F ) , �M,[p,q] (A0)

}
= �M,[p,q] (A0) .

(2.33)
Then, by (2.33) and Lemma 2.7, we get from (2.28)

�[p+1,q] (f) ⩽ max
{
�[p+1,q] (fj) , �[p+1,q] (Bj) : j = 1, 2, ..., k

}
= �M,[p,q] (A0) . (2.34)

Now, we assert that every solution f of (1.2) satisfies �[p+1,q] (f) = �M,[p,q] (A0)
with at most one exceptional solution f0 satisfying �[p+1,q] (f0) < �M,[p,q] (A0).
In fact, if f∗ is another solution with �[p+1,q] (f∗) < �M,[p,q] (A0) of equation (1.2),
then �[p+1,q] (f0 − f∗) < �M,[p,q] (A0). But f0−f∗ is a solution of the corresponding
homogeneous equation (1.1) of (1.2). This contradicts Theorem 1.12. By Lemma
2.6, we know that every solution with �[p,q] (f) =∞ and �[p+1,q] (f) = �M,[p,q] (A0)

satisfies �[p+1,q] (f) = �[p+1,q] (f) = �[p+1,q] (f) = �M,[p,q] (A0) .



10 B. BELAÏDI

(ii) If �M,[p,q] (A0) < �[p+1,q] (F ), then by using Lemma 2.7, Lemma 2.8, (2.30) and
(2.32), we have from (2.31) for j = 1, 2, ..., k

�[p+1,q] (Bj) = �[p+1,q]

(
B′j
)

⩽ max
{
�[p+1,q] (F ) , �[p+1,q] (fj) : j = 1, 2, ..., k

}
= �[p+1,q] (F ) . (2.35)

Then from (2.35) and (2.28), we get

�[p+1,q] (f) ⩽ max
{
�[p+1,q] (fj) , �[p+1,q] (Bj) : j = 1, 2, ..., k

}
= �[p+1,q] (F ) .

(2.36)
On the other hand, if �M,[p,q] (A0) < �[p+1,q] (F ), it follows from equation (1.2)
that a simple consideration of [p, q]−order implies �[p+1,q] (f) ⩾ �[p+1,q] (F ). By
this inequality and (2.36) we obtain �[p+1,q] (f) = �[p+1,q] (F ) . □
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[4] B. Beläıdi, Growth of solutions to linear differential equations with analytic coefficients of

[P,Q]-order in the unit disc, Electron. J. Diff. Equ., Vol. 2011 (2011), No. 156, 1–11.
[5] L. G. Bernal, On growth k-order of solutions of a complex homogeneous linear differential

equation, Proc. Amer. Math. Soc. 101 (1987), no. 2, 317–322.

[6] T. B. Cao, H. X. Yi, The growth of solutions of linear differential equations with coefficients
of iterated order in the unit disc, J. Math. Anal. Appl. 319 (2006), 278-294.

[7] T. B. Cao, The growth, oscillation and fixed points of solutions of complex linear differential

equations in the unit disc, J. Math. Anal. Appl. 352 (2009), 739–748.
[8] Z. X. Chen, K.H. Shon, The growth of solutions of differential equations with coefficients of

small growth in the disc, J. Math. Anal. Appl. 297 (2004), 285–304.

[9] I. E. Chyzhykov, G. G. Gundersen, J. Heittokangas, Linear differential equations and loga-
rithmic derivative estimates, Proc. London Math. Soc. 86 (2003), 735–754.
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