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NEW ITERATIVE SCHEMES FOR GENERAL HARMONIC

VARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR AND KHALIDA INAYAT NOOR

Abstract. Some new classes of general harmonic convex sets and convex
functions are introduced and studied in this paper. The optimality criteria of

the differentiable general harmonic functions is characterized by the general

harmonic variational inequalities. Special cases are also pointed out as applica-
tions of the new concepts. Auxiliary principle technique involving an arbitrary

operator is applied to suggest and analysis several inertial type methods are

suggested. Convergence criteria is investigated of the proposed methods un-
der weaker conditions. The results obtained in this paper may inspire further

research along with implementable numerical methods for solving the general

harmonic variational inequalities and related optimization problems.

1. Introduction

The optimization theory has been one of an important branch of mathematical
sciences for centuries. It is a tool of great power that can be applied to investi-
gate a wide variety of problems in pure and applied sciences. This theory is being
applied to interpret the basic principles of mathematical and physical sciences in
the form of simplicity and elegance. During this period, this theory has played an
important and significant part as a unifying influence in pure and applied sciences
and as a guide in the mathematical interpretation of many physical phenomena.
In recent years, variational principles have been enriched by the discovery of the
variational inequality theory, which is mainly due to Stampacchia [33]. The ideas
and techniques of variational inequalities are being applied in a variety of diverse
areas of sciences and prove to be productive and innovative. In fact, this theory
provides the most natural, direct, simple, unified and efficient framework for a gen-
eral treatment of a wide class of unrelated linear and nonlinear problems. The
variational inequality theory is related to the simple fact that the minimum of a
differentiable convex functional on a convex set in a normed space can be charac-
terized by the variational inequality. It is amazing that this theory allows many
diversified applications in various directions. We would like to point out that the
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variational inequality theory can be regarded as a natural development of the 19th
and 20th problems of Hilbert, in which he formulated his famous Paris lecture in
1900. During the last five decades, in which have elapsed since its discovery, varia-
tional inequality theory has produced a tremendous impact in various branches of
mathematical and engineering sciences. For the applications, motivation, numerical
methods, generalization and other aspects of variational inequalities, see [1, 6, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33]
and the references therein.

Related to variational inequalities, we have convexity theory, which contains a
wealth of novel ideas and techniques. This theory had played a leading role in the
development of almost all the branches of pure and applied sciences. Several new
generalizations and extensions of the convex functions and convex sets have been
introduced and studied to tackle unrelated complicated and complex problems in
a unified manner. Harmonic functions and harmonic convex sets are important
generalizations of the convex functions and convex sets. The harmonic means have
novel applications in electrical circuits theory, entropy, game theory, data analysis,
machine learning and information theory. Al-Azemi et al.[3] studied the Asian op-
tions with harmonic average, which can be viewed a new direction in the study of
the risk analysis and financial mathematics. Noor et al.[19] have shown that the
minimum of the differentiable harmonic convex function on the harmonic convex
set can be characterized by a class of variational inequalities, known as harmonic
variational. For the formulation, motivation, numerical methods, generalizations
and other aspects of harmonic convex functions and harmonic inequalities, see
[1, 2, 3, 5, 7, 10, 19, 20, 21, 22, 23, 24, 25, 26].

It have been observed that the convex sets and convex function may not apply to
tackle some problems efficiently due to nonlinear structure and other constraints.
To overcome theses deficiency, several new convex sets and convex functions have
been considered with respect to arbitrary functions. Noor [18] introduced and stud-
ied the general (g-convex) sets and general convex functions, which are known as
Noor-convexity. General convex sets and convex functions contain the m-convex
sets and m-convex functions considered by Toader [34] as special cases. Cristescu
et al. [8] have studied the several applications of Noor-convex sets in optimiza-
tion problems such as ecologic-economic efficiency, computer aided design, railway
transport system,image processing, machine learning and data analysis.
We would like to emphasize that the general variational inequalities and harmonic
variational inequalities are two distinct generalizations of the variational inequalities
and related optimizations problems. It is natural to study these different problems
in a unified framework. This motivated us to introduce and consider some new
classes of harmonic variational inequalities.
In this paper, we prove that the minimum of the differentiable general harmonic
function is the solution of the general harmonic variational inequality. Several
special cases such as harmonic variational inequalities, harmonic complementarity
problems and related problems are discussed. The projection method, resolvent
method, Wiene-Hopf equations technique and descent methods are not applicable
to propose numerical methods for solving general harmonic variational inequalities.
One usually apply the auxiliary principle technique, the origin of can be traced
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back to Lions et al. [11] and Glowinski et al. [9]. Noor [12, 14, 17] and Noor et al.
[18, 19, 20, 21, 24, 25, 27, 28, 29] have used this technique to suggest several iter-
ative schemes for solving various classes of variational inequalities and equilibrium
problems. In this paper, we use the auxiliary principle technique involving an ar-
bitrary operator to suggest and analyze some new hybrid inertial iterative schemes
for solving general harmonic variational inequalities. The inertial type methods
were suggested by Polyak [38] to speed up the convergence of iterative methods.
We also prove that the convergence of these new methods requires pseudomono-
tonicity, which is weaker conation than monotonicity. We have indicated several
new and known cases, which can be obtained for harmonic variational inequalities,
variational inequalities and related optimization problems. It is an open problem
to explore the applications of general harmonic convexity and general Bregman dis-
tance functions in various branches of mathematical, information technology and
engineering sciences.

2. Preliminaries and basic results

Let H be a real Hilbert space whose inner product and norm are denoted by
〈., .〉 and ‖.‖, respectively. First of all, we recall the following concepts and results
from convex and nonsmooth analysis [7] to convey the main ideas. For the sake of
completeness, we include the relevant details.

Definition 1. A set C ⊆ H is said to be convex set, if

u+ λ(v − u) ∈ C, ∀u, v ∈ C.

The ideas and techniques of the convexity are being applied in a variety of diverse
areas of sciences and prove to be productive and innovative. In many complicated
problems, these concepts have to generalize and extend using some novel ideas
and techniques. Noor [15] introduced and studied the new convex sets replacing
linear structure by the straight-line segment joining two points of a given set by a
displaced straight-line segment.

Definition 2. A set C⊆Hs said to be a general (g-convex) convex set with respect
to an arbitrary function g, if

u+ λ(g(v)− u) ∈ Cg, ∀u, v ∈ Cg.

Cristescu et al.[13] called the general convex set as the Noor-convex set. If g(v) =
mv, where m is a constant, then the general convex set reduces to an m-convex set,
the origin of which can be traced back to Toader [34]. The concept of Noor-convex
set Cg differs from that of E -convex set introduced by Youness [33]. Cristescu et al.
[8] have studied the applications of Noor-convex sets in optimization problems such
as ecologic-economic efficiency, railway transport system,image processing, machine
learning and data analysis. Cristescu et al. [8] compared these concepts by using
the digitization method of the plane R2 into the grid Z2.

Definition 3. A functions ϕ on the convex set C is said to be convex, if

ϕ(u+ λ(v − u)) ≤ (1− λ)ϕ(u) + λϕ(v), ∀u, v ∈ C, λ ∈ [0, 1].

It is known that the minimum u ∈ C of the differentiable convex function ϕ is
equivalent to fining u ∈ such that

〈ϕ′(u), v − u〉 ≥ 0, ∀v ∈ C, (1) (2.1)
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which is called the variational inequality.

Definition 4. A function ϕ on the convex set C is said to be strongly convex, if
there exists a constant α ≥ 0 such that

ϕ(u+ λ(v − u)) ≤ (1− λ)ϕ(u) + λϕ(v) ≥ α‖v − u‖2, ∀u, v ∈ C.

For the differentiable strongly convex functions, we have the following:

Lemma 1. A differentiable function ϕ is strongly convex, if and only if,

ϕ(v)− ϕ(u) ≥ 〈ϕ′(u), v − u〉 ≥ α‖v − u‖2, ∀u, v ∈ C.

For the differentiable convex functions, Bregman [4] introduced the distance
function

B(v, u) = ϕ(v)− ϕ(u) ≥ 〈ϕ′(u), v − u〉, ∀u, v ∈ C
= ϕ(v)− ϕ(u) ≥ 〈ϕ′(u), v − u〉 ≥ α‖v − u‖2, ∀u, v ∈ C.

which is known as the Bregman distance function and has applications in entropy,
data analysis, information technology, machine learning and variational inequalities.
Applying Lemma 1, we introduce the following new distance function

M(v, u) = M(v)−M(u), v − u〉, ∀u, v ∈ C,
or, equivalently for strongly operator M with constant α ≥ 0, as

M(v, u) = M(v)−M(u), v − u〉 ≥ α‖v − u‖2, ∀u, v ∈ C,
which is called the modified M -distance function. It is an interesting open problem
to explore the applications of this equivalent M -distance function in information
sciences, entropy, machine learning, data analysis and variational inequalities.

Definition 5. [15] A function ϕ on the general convex set Cg is said to be general
(g-convex) convex with respect to an arbitrary function g, if

ϕ(u+ λ(g(v)− u) ≤ (1− λ)ϕ(u) + λϕ(g(v)), ∀u, v ∈ Cg.

Clearly, every convex function is a general convex function, but the converse is
not true. For g(v) = mv, the general homogenous convex function reduces to:

ϕ(u+ λ(mv − u) ≤ (1− λ)ϕ(u) + λmϕ(v), ∀u, v ∈ Cm.
which is called the m- convex function as considered by Toader [34].
It has been shown [15] that u ∈ Cg is the minimum of the differentiable generalized
convex function ϕ, if and only if, u ∈ Cg satisfies the inequality

〈ϕ′(u), g(v)− u〉 ≥ 0, ∀v ∈ Cg, (2.2)

which is called the general variational inequality. It is worth mentioning that the
inequalities (2.1) and (2.2) are quite and distinctly different from each other and
have applications in various fields of pure and applied sciences.

Definition 6. A set Ch ⊆ H is said to be a harmonic convex set, if
uv

v + λ(u− v)
∈ Ch, ∀u, v ∈ Ch, λ ∈ [0, 1].

Definition 7. A function ϕ on the harmonic convex set Ch is said to be harmonic
convex, if, if

ϕ(
uv

v + λ(u− v)
) ≤ (1− λ)ϕ(u) + λϕ(v) ∀u, v ∈ Ch, λ ∈ [0, 1].
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The function ϕ is said to be a harmonic concave function, if −ϕ is harmonic
convex function.

We recall that the minimum of a differentiable harmonic convex function on the
harmonic convex set Ch can be characterized by the variational inequality. This
result is due to Noor and Noor [19].
For the differentiable harmonic convex function ϕ, u ∈ Ch is a minimum of ϕ, if
and only if, u ∈ Ch satisfies the inequality.

〈ϕ′(u),
uv

u− v
〉 ≥ 0, ∀v ∈ Ch. (2.3)

The inequality of type (2.3) is called the harmonic variational inequality.
From the above discussion, we note that the convex sets and convex functions have
been generalized in different way to tackle the complicated problems. All these
concepts are different and distinct from each other. It is natural to unify these
concepts. We introduce and study some new classes of harmonic convex sets and
harmonic convex functions, which is the main aim of this paper.

Definition 8. [5] A set Chg is said to be a harmonic general convex set with respect
to the an arbitrary function g, if

ug(v)

g(v) + λ(u− g(v))
∈ Chg, ∀u, v ∈ Chg, λ ∈ [0, 1].

Definition 9. A function φ on the harmonic convex set Chg is said to be har-
monic general convex with respect to the an arbitrary function g, if

ϕ(
ug(v)

g(v) + λ(u− g(v))
) ≤ (1− λ)ϕ(u) + λϕ(g(v)), ∀u, v ∈ Chg λ ∈ [0, 1].

A function ϕ is said to be harmonic general concave function, if and only if, −ϕ
is harmonic general convex function.

Applying the technique of Noor et al. [19], one can show that the minimum of
a differentiable harmonic general convex function on the harmonic general convex
set Chg can be characterized by the harmonic general variational inequality. For
the sake of completeness and to convey the main idea, we include all the details.

Theorem 1. Let ϕ be a differentiable general harmonic convex function on the
harmonic general convex set Chg. Then η ∈ Chg is a minimum of ϕ, if and only if,
u ∈ Chg is the solution of the inequality

〈ϕ′(u),
ug(v)

u− g(v)
〉 ≥ 0, ∀ξ ∈ Chg, (2.4)

which is called the harmonic general variational inequality.

Proof. Let u ∈ Chg is a minimum of ϕ. Then

φ(u) ≤ φ(g(v)), ∀v ∈ Chg, (2.5)

Since Chg is a harmonic general convex se, for all u, v ∈ Chg
vt = ug(v)

g(v)+λ(u−g(v)) ∈ Chg. Replacing g(v) by vt) in (2.5) and diving by λ and taking

limit as λ→ 0, we have

0 ≤
ug(v)

g(v)+λ(u−g(v)) )− ϕ(g(η))

λ
= 〈ϕ′(u),

ug(v)

u− g(v)
〉
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which is the required result (2.4).
Conversely, let the function ϕ be harmonic general convex function on the harmonic
general convex set Chg. Then

ϕ(
ug(v)

g(v) + λ(u− g(v)
) ≤ ϕ(u) + λ(ϕ(g(v))− ϕ(u)),

which implies that

ϕ(g(ξ))− ϕ(g(η)) ≥ lim
λ→0

ϕ( ug(v)
g(v)+λ(u)−g(v)) )− φ(u)

λ

= 〈(ϕ)′(u),
ug(v)

u− g(v)
〉 ≥ 0, using (2.4). (2.6)

Consequently, it follows that

ϕ(u) ≤ ϕ(g(v)), ∀v ∈ Chg.
This shows that u ∈ Chg is the minimum of the differentiability harmonic general
convex function. �

One can define the Bregman distance general harmonic function as:

B(v, u) = ϕ(g(v))− ϕ(u) ≥ 〈ϕ′(u),
ug(v)

u− g(v)
,∀u, v ∈ Chg. (2.7)

From (2.7) and (2.4), it follows that u ∈ Chg is the minimum of the differentiable
harmonic convex functions. It is amazing to observe that general harmonic varia-
tional inequality and the Bregman distance general harmonic convex function are
closely related. We would like to mention that Theorem 1 implies that general har-
monic optimization programming problem can be studied via the general harmonic
variational inequality (2.4). Using the ideas and techniques of Theorem 1, we can
derive the following result.

Theorem 2. Let ϕ be a differentiable harmonic general convex functions on the
harmonic general convex set Chg. Then

i φ(g(v))− φ(u) ≥ 〈(ϕ′(u),
ug(v)

u− g(v)
〉, ∀u, v ∈ Chg.

ii 〈(ϕ′(u)− ϕ′(g(v)),
ug(v)

g(v)− u
〉 ≥ 0, ∀u, v ∈ Chg.

In many applications, the inequalities of the type (4) may not arise as the mini-
mum of the differentiable general harmonic convex functions. These facts motivated
us to consider more general harmonic variational inequality, which contains the in-
equalities (2.4) as a special case.

For given nonlinear continuous operators T, g : H → H, we consider the problem
of finding u ∈ Chg such that

〈Tu, ug(v)

u− g(v)
〉 ≥ 0,∀v ∈ Chg (2.8)

which is called the general harmonic variational inequality.
We now discuss some new and known classes of variational inequalities and related
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optimization problems.
i. If g = I, then the problem (2.8) reduces to finding u ∈ Chg such that

〈Tu, uv

u− v
〉 ≥ 0, ∀v ∈ Chg (2.9)

which is called the harmonic variational inequality, see Noor and Noor [19]

ii. If 〈Tu, ug(v)
u−g(v) 〉 = T (u, ug(v)

u−g(v) , then problem (2.8) reduces to finding u ∈ Chg
such that

T (u,
ug(v)

u− g(v)
) ≥ 0, ∀v ∈ Chg (2.10)

which ic called the directional harmonic variational inequality.

iii. For 〈Tu, ug(v)
u−g(v) = B(Tu, ug(v)

u−g(v) ), the problem (2.8) reduces to finding u ∈ Chg
such that

B(Tu,
ug(v)

u− g(v)
) ≥ 0, ∀v ∈ Chg, (2.11)

which is known as bifunction general harmonic variational inequality.

iv. If C∗hg = {u ∈ H : 〈u, ug(v)
u−g(v) 〉,∀v ∈ Chgis a polar harmonic convex cone of the

harmonic convex set, then the problem (2.8) is equivalent to fining u ∈ H, such
that

ug(v)

u− g(v)
≥ 0, Tu ∈ C∗hg, 〈Tu, ug(v)

u− g(v)
= 0,

is called the general harmonic complementarity problem. For the applications,
numerical methods and other aspects of complementarity problems, see [6, 17, 30]
and the references therein.
v. If Chg = H, then the problem (2.8) is equivalent to fining u ∈ H, such that

〈Tu, ug(v)

u− g(v)
〉 = 0, ∀v ∈ H, (2.12)

which is called the weak formulation of the nonlinear harmonic boundary value
problem.
vi. For Tu = T |u|,, the problem (refeq2.12) reduces to finding u ? H such that

〈T |u|, ug(v)

u− g(v)
〉 = 0, ∀v ∈ H (2.13)

which is called the system of absolute value general harmonic equations. One can
easily show that the systems of absolute value equations considered are special cases
of the problem (2.8). This shows that the problem (2.8) is quite and unified one.

3. Iterative methods and convergence analysis

It is worth mentioning that the projection, resolvent, descent methods and fixed
point techniques can not applied to compute the approximate solutions of the har-
monic variational inequalities. In this section, we apply the auxiliary principle
technique involving an arbitrary operator to suggest and analyze some inertial it-
erative methods for solving general harmonic variational inequalities (2.8). This
approach is mainly due to Glowinski et al. [9] and Lions et al.[11] as developed in
[12, 14, 17, 18, 19, 20, 21, 22, 23, 24, 28, 29, 31].
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For a given u ∈ Chg satisfying (2.8), consider the problem of finding w ∈ Chg
such that

〈T (w + η(u− w)),
vg(w)

v − g(w)
〉+ 〈A(w)−A(u), v − w〉 ≥ 0, ∀v ∈ Chg. (3.1)

where ρ, η ∈ [0, 1] are constants and A : H → H is an arbitrary operator. Inequality
of type (3.1) is called the auxiliary general harmonic variational inequality involving
an arbitrary operator. This approach was introduced by Noor [14] to suggest some
iterative methods for solving the variational inequities.

Remark 1. We now discuss three special cases of the auxiliary problem (15), which
are being used frequently.

(I) For A(u) = Φ′(u), the derivative of the differentiable general harmonic func-
tion ϕ, the auxiliary problem (3.1) reduces to:

〈T (w + η(u− w)),
vg(w)

v − g(w)
〉+ 〈ϕ′(w)− ϕ′(u), v − w〉 ≥ 0, ∀v ∈ Chg.

which is known as the auxiliary principle involving the Bregman distance function
problem. In this case, the general Bregman distance harmonic functions can be
defined as

B(g(v), u) = Φ(g(v))− Φ(u)− 〈Φ′(u),
ug(v)

u− g(v)
〉, u, v ∈ Chg

= Φ(g(v))− Φ(u)− 〈Φ′(u),
ug(v)

u− g(v)
〉 ≥ ζ‖ ug(v)

u− g(v)
‖2

using the strongly general harmonic convexity of the function Φ and ζ ≥ 0, a
constant.
Or equivalently

B(g(v), u) = Φ(g(v))− Φ(u)− 〈Φ′(u),
ug(v)

u− g(v)
〉 ≥ ζ‖ ug(v)

u− g(v)
‖2, ∀u, v ∈ Chg.

Such type of the distance function was introduced and studied by Bregman [4] for
differentiable convex functions.
(II) For any arbitrary operator A; we consider the distance function as:

B(g(v), u) = 〈Av −Au− ug(v)

u− g(v)
〉, u, v ∈ Chg,

from which, we can obtain

B(g(v), u) = 〈Av −Au− ug(v)

u− g(v)
〉 ≥ ζ‖u− g(v)

ug(v)
‖2,∀u, v ∈ Chg,

if A is strongly monotone with constant ζ ≥ 0.
(III) If A = I, the identity operator, then the auxiliary problem (3.1) collapses to

〈T (w + η(u− w)),
vg(w)

v − g(w)
〉+ 〈w − u, v − w〉 ≥ 0, ∀v ∈ Chg,

which is another auxiliary problem related to the problem (2.8).
This shows that the auxiliary problem (3.1) is quite flexible and unifying one.

We observe that, if w = u, then w is a solution of (2.8). This simple observation
enables us to suggest the following iterative method for solving (2.8).
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Algorithm 1. For given u0 ∈ Chg, compute the approximate solution un+1 by the
iterative scheme

〈ρT (un+1 + η(un − un+1)),
vg(un+1)

v − g(un+1)
〉

+〈A(un+1)−A(un), v − un+1〉 ≥ 0, ∀v ∈ Chg.

Algorithm 1 is called the hybrid proximal point algorithm for solving the general
harmonic variational inequalities(2.8).

Special Cases

We now discuss some special cases of Algorithm 1.
For η = 0, Algorithm 1 reduces to

Algorithm 2. For given u0 ∈ Chg, compute the approximate solution un+1 by the
iterative scheme

〈ρTun+1,
vg(un+1)

v − g(un+1)
〉+ 〈A(un+1)−A(un), v − un+1〉 ≥ 0, ∀v ∈ Chg. (3.2)

For η = 1, Algorithm 1 reduces to

Algorithm 3. For given u0 ∈ Chg, compute the approximate solution un+1 by the
iterative scheme

〈ρTun,
vg(un+1)

v − g(un+1)
〉+ 〈A(un+1)−A(un), v − un+1〉 ≥ 0, ∀v ∈ Chg.

For η = 1
2 , Algorithm 1 reduces to

Algorithm 4. For given u0 ∈ Chg, compute the approximate solution un+1 by the
iterative scheme

〈ρT (
un+1 + un

2
),

vg(un+1)

v − g(un+1)
〉+ 〈A(un+1)−A(un), v − un+1〉 ≥ 0, ∀v ∈ Chg.

which is called the mid-point proximal method for solving the problem (2.8).
For A = I, Algorithm 1 reduces to

Algorithm 5. For given u0 ∈ Chg, compute the approximate solution un+1 by the
iterative scheme

〈ρT (un+1 + η(un − un+1),
vg(un+1)

v − g(un+1)
〉+ 〈un+1 − un, v − un+1〉 ≥ 0, ∀v ∈ Chg.

for solving general harmonic variational inequality.
For the convergence analysis of Algorithm 2, we recall the following concepts and
results.

Definition 10. For u, v, z ∈ H, an operator T is said to be:
(i) general harmonic monotone with respect to an operator g, if and only if,

〈Tu− Tv, ug(v)

u− g(v)
〉 ≥ 0;

(ii) general harmonic pseudomonotone with respect to an operator g, if and only if,

〈Tu, ug(v)

u− g(v)
〉 ≥ 0 =⇒ −〈Tv, ug(v)

u− g(v)
〉 ≥ 0;
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(iii) partially relaxed strongly general harmonic monotone with respect to an oper-
ator g, if there exists a constant ζ > 0 such that

〈Tu− Tv, zg(v)

z − g(v)
〉 ≥ ζ‖z − u‖2.

Note that, for z = u, partially relaxed strongly general harmonic monotonicity
re- duces to monotonicity. It is known that partially relaxed strongly harmonic
monotonicity is general monotone, but the converse is not true. It is known that
general harmonic monotonicity implies general harmonic pseudomonotonicity, but
the converse is not true. Consequently, the class of general harmonic pseudomono-
tone operators is bigger than the one of general harmonic monotone operators.
We now consider the convergence criteria of Algorithm 2.

Theorem 3. Let u ∈ Chg be a solution of (2.8) and let ηn+1 be the approximated
solution obtained from Algorithm 2. Let T be a general harmonic speudomonotone
operator. If the operator A is a strongly monotone operator with constant η > 0
and Lipschitz continuous with constant ζ > 0, then

η‖un+1 − u‖ ≤ ζ‖un − u‖. (3.3)

Proof. Let η ∈ Chg be a solution of (2.8). Then

−〈Tv, ug(v)

u− g(v)
〉 ≥ 0, ∀v ∈ Chg, (3.4)

since T is a general harmonic pseudomonotone operator.
Taking v = un+1 in (3.4), we have

〈Tun+1,
ug(un+1)

g(un+1)− u
〉 ≥ 0. (3.5)

Taking v = u in (3.2), we get

〈ρTun+1,
ug(un+1)

u− g(un+1)
〉+ 〈A(un+1)−A(un), u− un+1〉 ≥ 0, ∀v ∈ Chg. (3.6)

From (3.5) and (3.8), we have

〈Aun+1 −An, u− un+1〉 ≥ 〈ρTun+1,
ug(un+1)

u− g(un+1)
〉 ≥ 0. (3.7)

from which, using (3.5), we have

0 ≤ 〈Aun+1 −An, u− un+1〉 = 〈Aun+1 −An, u− un + un − un+1〉
= 〈Aun+1 −Aun, un − un+1〉+ 〈Aun+1 −Aun, u− un〉

Consequently

〈Aun+1 −Aun, un+1| − un〉 ≤ 〈Aun+1 −Aun, u− un〉.
Since the operator A is strongly monotone with constant η and Lipschitz continuous
with constant ζ, applying Cauchy-Scharzt inequality, we obtain

η‖un+1 − un‖2 ≤ ‖Tun+1 − Tun‖‖un+1 − un‖ ≤ ζ‖un+1 − un‖‖u− un‖.
This implies that

η‖un+1 − un‖ ≤ ζ‖u− un‖,
which is the required result (3.3). �
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Theorem 4. Let H be a finite dimensional space and all the assumptions of Theo-
rem 3 hold. Then the sequence {un}∞1 given by Algorithm 2 converges to a solution
u ∈ Chg of the problem (2.8).

Proof. Let u ∈ Chg be a solution of (2.8). From (3.3), we see that the sequence
{‖η− ηn‖} is nondecreasing and consequently, the sequence {un} is bounded. Also
from (3.3), we obtain

η

ζ

∞∑
n=0

‖un − un+1‖ ≤ ‖u− u0‖,

which implies that

‖un − un+1‖ = 0. (3.8)

Let û be the limit point of {un}∞0 , whose subsequent of {un}∞1 of {un}∞0 Replacing
un by ηnj

in (3.2), taking the limit as nj −→∞ and using (3.8), we obtain

〈T û, g(v)û

û− g(v)
〉 ≥ 0, ∀v ∈ Chg,

which shows that û solves the general harmonic variational inequality (2.8) and

η‖û− un+1‖ ≤ ζ‖û− un‖.

Thus, it follows from the above inequality that the {un}∞1 has exactly one limit
point û and

lim
n−→∞

un = û.

This is the required result. �

We again consider the auxiliary principle technique to suggest some hybrid iner-
tial proximal point methods for solving the problem (2.8). Polyak [32] considered
the inertial methods to speed up convergence of the iterative methods. For the ap-
plications of the inertial type methods and its variant forms, see [17, 20, 28, 29]. We
again apply the auxiliary principle idea to suggest some inertial iterative methods
for solving the harmonic inequalities (2.8).

For a given u ∈ Chg satisfying (2.8), consider the problem of finding w ∈ Chg
such that

〈T (w + η(u− w)),
vg(w)

v − g(w)
〉

+〈A(w)−A(u) + α(u− u), v − w〉 ≥ 0, ∀v ∈ Chg. (3.9)

where ρ, α, η ∈ [0, 1] are constants and A : H → H is an arbitrary operator.
Clearly, for w = u, w is a solution of (2.8). This fact motivated us to suggest the
following inertial iterative method for solving (2.8).

Algorithm 6. For given u0, u1 ∈ Chg, compute the approximated solution un+1

by the iterative scheme

〈ρT (un+1 + η(un − un+1)),
vg(un+1)

v − g(un+1)
〉

+〈A(un+1)−A(un) + α(un − un−1), v − un+1〉 ≥ 0, ∀v ∈ Chg.
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For α = 0, Algorithm 6 is exactly Algorithm 1. Using essentially the technique
of Theorem 3 and Noor [17], one can study the convergence of Algorithm 6.
If η = 1

2 , η = 1, η = 0, then Algorithm 6 reduces to the following inertial iterative
schemes for solving the problem (2.8).

Algorithm 7. For given u0, u1 ∈ Chg, compute the approximated solution un+1

by the iterative scheme

〈ρT (
un+1 + un

2
),

vg(un+1)

v − g(un+1)
〉

+〈A(un+1)−A(un) + α(un − un−1), v − un+1〉 ≥ 0, ∀v ∈ Chg,

which is known as the hybrid inertial mid point proximal method.

Algorithm 8. For given u0, u1 ∈ Chg, compute the approximated solution un+1

by the iterative scheme

〈ρTun,
vg(un+1)

v − g(un+1)
〉

+〈A(un+1)−A(un) + α(un − un−1), v − un+1〉 ≥ 0, ∀v ∈ Chg,

which is known as the hybrid inertial explicit iterative method.

Algorithm 9. For given u0, u1 ∈ Chg, compute the approximated solution un+1

by the iterative scheme

〈ρTun+1,
vg(un+1)

v − g(un+1)
〉

+〈A(un+1)−A(un) + α(un − un−1), v − un+1〉 ≥ 0, ∀v ∈ Chg,

which is known as the hybrid inertial implicit iterative method.

For different and appropriate values of the parameters η, α, the operators T,A
and spaces, one can obtain a wide class of inertial type iterative methods for solving
the general harmonic variational inequalities and related optimization problems.

Conclusion. Some new classes of general harmonic variational inequalities are
introduced in this paper. It is shown that several important problems such as har-
monic complementarity problems, system of harmonic absolute value problems and
related problems can be obtained as special cases. The auxiliary principle technique
involving an arbitrary operator is applied to suggest several inertial type methods
for solving general harmonic variational inequalities with suitable modifications.
We note that this technique is independent of the projection and the resolvent of
the operator. Moreover, we have studied the convergence analysis of these new
methods under weaker conditions. Applications of the fuzzy set theory, stochastic,
quantum calculus, fractal, fractional and random can be found in many branches
of mathematical and engineering sciences including artificial intelligence, computer
science, control engineering, management science, operations research and varia-
tional inequalities. One may explore these aspects for the harmonic variational
inequality and its variant forms. We have only considered the theoretical aspects
of the hybrid inertial proximal methods. It is an interesting problem to implement
these methods numerically and compare with other iterative schemes.
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