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ON LACUNARY STATISTICAL BOUNDEDNESS OF ORDER α

OF GENERALIZED DIFFERENCE SEQUENCES

FATIH TEMIZSU, ABDULLAH AYDIN, MIKAIL ET, MUHAMMED ÇINAR

Abstract. In this work, a new generalization of statistical boundedness is

provided for difference sequences in regard to lacunary α−density and lacunary
statistical sense. Apart from examining some inclusion theorems on related

sequence spaces, we show that ∆m
θ (Sαb ) does not form a sequence algebra

unlike Sαθ (b).

1. Introduction

In 1935, Zygmund [34] mentioned the idea of statistical convergence in the first
edition of his monograph puplished in Warsaw. This concept, as a generalized
type of ordinary convergence, appeared in the papers of Steinhaus [31] and Fast
[13] independently. Later, Schoenberg [30] studied it as a summability method.
Researches on statistical convergence have had an obvious rise after the frequently
cited papers of Salat [28] and Fridy [15]. It was further investigated from the
sequence space point of view and linked with summability theory by Bhardwaj et
al. [4, 5], Braha et al. [6, 7], Colak [8], Connor [9], Et et al. [3, 20, 32, 33], Fridy
and Orhan [16], Işık et al. [2, 21, 22], Mohiuddine et al. [25], Mursaleen [26], Rath
and Tripathy [27] and many others.

Before advancing more, we pause to compile some notation and definitions.
Throughout the sequel, we let
ω := the set of all real (or complex) valued sequences
`∞ := the set of all bounded sequences
c := the set of all convergent sequences
c0 := the set of all null sequences
χ := the set of all sequences of zeros and ones.

We also would like to recall some concepts on seqeunce spaces that will take
place in following sections. A sequence space X is said to be

Solid (or normal), if (αkxk) ∈ X for all sequences (αk) of scalars with |αk| ≤ 1
for all k ∈ N, whenever (xk) ∈ X
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Monotone, if (ukxk) ∈ X for all (uk) ∈ χ and (xk) ∈ X
Symmetric, if (xk) ∈ X implies (xπ(k)) ∈ X, where π is any permutation of N
Sequence algebra, if (xkyk) ∈ X whenever (xk) and (yk) ∈ X.
The definition of statistical convergence relies on the density of subsets of the

set N of natural numbers. The density of a subset E of N is defined by

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k), provided that the limit exists.

A sequence x = (xk) is said to be statistically convergent to L if δ ({k ∈ N : |xk − L| ≥ ε}) =
0 for every ε > 0.

The concept of statistical boundedness was given by Fridy and Orhan [17] as
follows:

The real number sequence x = (xk) is statistically bounded if there is a number
M ≥ 0 such that δ ({k : |xk| > M}) = 0.

It is well known that every bounded sequence is statistically bounded, but the
converse is not true.

The order of statistical convergence of a sequence of numbers was given by Gad-
jiev and Orhan [18] and afterwards statistical convergence of order α was studied
by Çolak [8].

By a lacunary sequence we mean an increasing sequence θ = (kr) of non-negative
integers such that k0 = 0 and hr = (kr − kr−1) → ∞ as r → ∞. The intervals
determined by θ will be denoted by Ir = (kr−1, kr] and the ratio kr

kr−1
will be

abbreviated by qr, and q1 = k1 for convenience. In recent years, lacunary sequences
have been studied in [4, 7, 11, 14, 16, 24].

Study of difference sequence spaces is quite new in summability theory. This
concept was introduced by Kızmaz [23] and generalized by Et and Çolak [10].
Afterwards Et and Nuray [12] studied it in order to mainly generalize statistical
convergence with respect to ∆m difference operator as follows

∆m (X) = {x = (xk) : (∆mxk) ∈ X}

where X is any sequence space, m ∈ N, ∆0x = (xk) , ∆x = (xk − xk+1) , ∆mx =
(∆mxk) =

(
∆m−1xk −∆m−1xk+1

)
and so ∆mxk =

∑m
v=0 (−1)

v (m
v

)
xk+v.

If x ∈∆m (X) then there exists one and only one y = (yk) ∈ X such that
yk = ∆mxk and

xk =

k−m∑
v=1

(−1)
m

(
k − v − 1

m− 1

)
yv =

k∑
v=1

(−1)
m

(
k +m− v − 1

m− 1

)
yv−m, (1)

y1−m = y2−m = · · · = y0 = 0

for sufficiently large k, for instance k > 2m. For more information reader is referred
to [1, 19, 29, 32].

In this paper we introduce ∆m−lacunary statistical boundedness of order α and
give some inclusion theorems on this concept. We wish to state that main definitions
and results generalize that of some former works mentioned above.
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2. Main Results

In this section we present the main results of the paper.

Definition 2.1. [11] Let θ = (kr) be a lacunary sequence and 0 < α ≤ 1 be given.
The lacunary α−density of a subset E of N is defined by

δαθ (E) = lim
r→∞

1

hαr
|{kr−1 < k ≤ kr : k ∈ E}| provided the limit exists.

Lacunary α−density δαθ (E) reduces to natural density δ (E) in the special case α = 1
and θ = (2r).

Throughout this work, |.| will denote the cardinality of the enclosed set.

Proposition 2.2. [11] Let θ = (kr) be a lacunary sequence and α, β ∈ (0, 1] such

that α ≤ β, then δαθ (E) ≤ δβθ (E).

Definition 2.3. [1] Let θ = (kr) be a lacunary sequence and 0 < α ≤ 1 be given.
The sequence x = (xk) ∈ ω is said to be ∆m−lacunary statistically convergent of
order α ( or ∆m

θ (Sα)−convergent to L ) if there is a real number L such that

lim
r→∞

1

hαr
|{k ∈ Ir : |∆mxk − L| ≥ ε}| = 0 for each ε > 0 (2)

where hαr denotes the αth power (hr)
α

of hr, that is hα = (hαr ) = (hα1 , h
α
2 , ..., h

α
r , ...).

In this case we write ∆m
θ (Sα)− limxk = L. By ∆m

θ (Sα), we will denote the set
of such sequences.

In the sequel, ∆m
θ (Sα) shall be replaced by

∆m(Sα) for the special case θ = (2r),
∆m
θ (S) for the special case α = 1,

∆m(S) for the special cases θ = (2r) and α = 1.

Now we provide the main definition of this work.

Definition 2.4. Let θ = (kr) be a lacunary sequence and 0 < α ≤ 1 be given. The
sequence x = (xk) ∈ ω is said to be ∆m−lacunary statistically bounded of order α
(or ∆m

θ (Sαb )−bounded ) if there is an M ≥ 0 such that

lim
r→∞

1

hαr
|{k ∈ Ir : |∆mxk| > M}| = 0. (3)

By ∆m
θ (Sαb ), we will denote the set of such sequences.

In the following, ∆m
θ (Sαb ) shall be replaced by

∆m(Sαb ), which was studied in [32], for the special case θ = (2r),
∆m
θ (Sb) for the special case α = 1,

∆m(Sb) for the special cases θ = (2r) and α = 1.

We begin with a basic theorem between the spaces ∆m(`∞) and ∆m
θ (Sαb ).

Theorem 2.5. Every ∆m−bounded sequence is ∆m−lacunary statistically bounded
of order α, but the converse is not true.
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Proof. Let θ = (kr), 0 < α ≤ 1 be given and x ∈ ∆m(`∞). Then there exists such a
number M ≥ 0 that |∆mxk| ≤ M for every k ∈ N. So {k ∈ Ir : |∆mxk| > M} = ∅
which yields

lim
r→∞

1

hαr
|{k ∈ Ir : |∆mxk| > M}| = 0.

Thus, x is ∆m
θ (Sαb )−bounded. To show the strictness, take θ = (2r), α = 1, m = 1

and define x as follows:

xk =

{
0, k = 1,

n(1−n)
2 , (n− 1)! + 1 ≤ k ≤ n!.

(4)

We obtain ∆xk =

{
n, k = n!,
0, else,

which means x ∈ ∆(Sco) ⊂ ∆(Sb) (= ∆θ(S
α
b )).

But it is obvious that x is not ∆−bounded. �

Theorem 2.5 yields the following result.

Corollary 2.6. Every ∆m−convergent sequence is ∆m−lacunary statistically bounded
of order α, not conversely.

Theorem 2.7. ∆m−lacunary statistically convergent sequences of order α are
strictly included by ∆m−lacunary statistically bounded sequences of order α.

Proof. Let x ∈ ∆m
θ (Sα) and ε > 0 be given. Then there exists an L ∈ R such that

lim
r→∞

1

hαr
|{k ∈ Ir : |∆mxk − L| ≥ ε}| = 0.

The result follows from the following inequality

lim
r→∞

1

hαr
|{k ∈ Ir : |∆mxk| > |L|+ ε}| ≤ lim

r→∞

1

hαr
|{k ∈ Ir : |∆mxk − L| ≥ ε}| .

For the opposite, let θ = (2r) be given and consider the sequence y = (yk) defined
by

yk =

{
1, k = 2n
−1, k 6= 2n

k, n ∈ N. (5)

In view of (1) we can determine a sequence x such that ∆mxk = yk. Then we have
x ∈ ∆m

θ (Sαb ) \∆m
θ (Sα). �

Theorem 2.7 yields the following result.

Corollary 2.8. Every ∆m−lacunary statistically convergent sequence is ∆m−lacunary
statistically bounded, but the converse is not true.

Theorem 2.9.

i) ∆m
θ (Sαb ) is not symmetric,

ii) Although Sαθ (b) is normal and monotone, ∆m
θ (Sαb ) is not normal and mono-

tone,
iii) Although Sαθ (b) is a sequence algebra ∆m

θ (Sαb ) is not a sequence algebra.
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Proof. (i) Let denote the sequence x = (xk) as follows:

(0,−1,−1,−1,−3,−3,−3,−3,−3,−6,−6,−6,−6,−6,−6,−6, · · · )
and take m = 1. Since ∆x = (1, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, ..) ∈ Sαθ (b) we have x ∈
∆θ(S

α
b ) where θ = (2r). Now define sequence y = (yk) as a rearrangement of

x by y = (yk) = (0,−1,−3,−1,−3,−1,−3,−6,−3,−6,−3,−6, ..) which yields to
∆y = (1, 2,−2, 2,−2, 2, 3,−3, 3,−3, ...). We observe

lim
r→∞

1

hαr
|{k ∈ Ir : |∆yk| > M}| 6= 0 for any M ≥ 0.

This means (xπ(k)) = (yk) /∈ ∆θ(S
α
b ) and so ∆θ(S

α
b ) is not symmetric.

(ii) Take the sequence x defined in part i. We showed x ∈ ∆θ(S
α
b ) when m = 1

and θ = (2r). Now picking the sequence u = (uk) = (0, 1, 0, 1, ...) ∈ χ we obtain
ux = (0,−1, 0,−1, 0,−3, 0,−3, 0,−6, 0,−6, 0, ...) which is not in ∆θ(S

α
b ) since

lim
r→∞

1

hαr
|{k ∈ Ir : |∆(ux)k| > M}| 6= 0 for any M ≥ 0

where ∆(ux)k = (1,−1, 1,−1, 3,−3, 3,−3, 6,−6, ...). Thus ∆θ(S
α
b ) is not mono-

tone. It follows ∆θ(S
α
b ) is not normal from the fact that any normal space is

monotone.
(iii) In view of (1) we can construct a sequence x = (xk) ∈ ω such that

∆mxk =

{
n, k = n2

0, else

for all k, n ∈ N. Following part (i), we get x ∈ ∆m
θ (Sαb ) where θ = (2r). Now

consider the sequence y = (yk) = (1, 2, 3, ..). Due to y being ∆m−bounded it is
obvious that y ∈ ∆m

θ (Sαb ). However, we observe yx = (kxk)∞k=1 /∈ ∆m
θ (Sαb ). Thus

∆m
θ (Sαb ) is not a sequence algebra. �

In the next result we establish an inclusion theorem explaining the relationship
between the spaces of ∆m−lacunary statistically bounded sequences of distinct
orders.

Theorem 2.10. If 0 < α ≤ β ≤ 1 and θ = (kr) is a lacunary sequence. Then

∆m
θ (Sαb ) ⊆ ∆m

θ (Sβb ) and the inclusion is strict.

Proof. The first part of proof is straightforward. To show the opposite, observe
there exists some sequence x = (xk) ∈ ω such that

∆mxk =

{ [√
hr
]

, k = 1, 2, 3, ...,
[√
hr
]

0, else
by (1). (6)

Then x ∈ ∆m
θ (Sβb ) for 1

2 < β ≤ 1 but x /∈ ∆m
θ (Sαb ) for 0 < α ≤ 1

2 . �

Theorem 2.10 yields the following corollary.

Corollary 2.11.

i) If a sequence is ∆m−lacunary statistically bounded of order α, then it is
∆m−lacunary statistically bounded.

ii) If a sequence is ∆m−statistically bounded of order α, then it is ∆m−statistically
bounded of order β.
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iii) If a sequence is ∆m−statistically bounded of order α, then it is ∆m−statistically
bounded.

In the next two theorems, we present some certain conditions on lacunary se-
quence θ so that the inclusions ∆m(Sαb ) ⊂ ∆m

θ (Sαb ) and ∆m
θ (Sαb ) ⊂ ∆m(Sαb ) occur

respectively.

Theorem 2.12. Let 0 < α ≤ 1 and θ = (kr) be a lacunary sequence. If lim inf
r
qr >

1, then ∆m(Sαb ) ⊂ ∆m
θ (Sαb ).

Proof. Suppose that lim inf
r
qr > 1, then there exists a δ > 0 such that qr ≥ 1 + δ

for sufficiently large r, which implies that

hr
kr
≥ δ

1 + δ
=⇒

(
hr
kr

)α
≥
(

δ

1 + δ

)α
=⇒ 1

kαr
≥ δα

(1 + δ)
α

1

hαr
.

If x ∈ ∆m(Sαb ), then there exists an M ≥ 0 such that

1

kαr
|{k ≤ kr : |∆mxk| > M}|

≥ 1

kαr
|{k ∈ Ir : |∆mxk| > M}| ≥ δα

(1 + δ)
α

1

hαr
|{k ∈ Ir : |∆mxk| > M}|

holds for sufficiently large r. Taking limit as r →∞ we get x ∈ ∆m
θ (Sαb ). �

Theorem 2.13. Let 0 < α ≤ 1 and θ = (kr) be a lacunary sequence. If lim sup
r
qr <

∞, then ∆m
θ (Sαb ) ⊂ ∆m(Sαb ).

Proof. Omitted. �

Combining Theorem 2.12 and Theorem 2.13 we have what follows.

Corollary 2.14. Let θ = (kr) be a lacunary sequence such that 1 < lim inf
r
qr ≤

lim sup
r
qr <∞. Then ∆m

θ (Sαb ) = ∆m(Sαb ).

Theorem 2.15. ∆m(Sαb ) = ∩
lim inf

r
qr>1

∆m
θ (Sαb ) = ∪

lim sup
r
qr<∞

∆m
θ (Sαb )

Proof. ∆m(Sαb ) being included by ∩
lim inf

r
qr>1

∆m
θ (Sαb ) is a direct result of Theorem

2.12. Now let θ = (kr) be Fibonacci sequence with k0 = 0, k1 = 1, k2 = 2 and
kr = kr−2 + kr−1 for r ≥ 3. Then lim

r
qr ∼= 1.618, the golden ratio. Suppose x /∈

∆m(Sαb ) which implies that x /∈ ∆m
θ (Sαb ) by Corollary 2.14. This follows that x ∈

∪
lim inf

r
qr>1

[∆m
θ (Sαb )]

c
=

[
∩

lim inf
r
qr>1

∆m
θ (Sαb )

]c
and so x /∈ ∩

lim inf
r
qr>1

∆m
θ (Sαb ). Thus

∆m(Sαb ) = ∩
lim inf

r
qr>1

∆m
θ (Sαb ). The remaining equality can be proved analogously

hence is omitted. �



70 F. TEMISU, A. AYDIN, M. ET, M. ÇINAR

Theorem 2.16. If we have

lim
r→∞

inf
hαr
kr

> 0, (7)

then ∆m(Sb) ⊂ ∆m
θ (Sαb ).

Proof. Let x ∈ ∆m(Sb). Then, knowing kr
r→∞→ ∞, there exists some M ≥ 0 so

that

lim
r→∞

1

kr
|{k ≤ kr : |∆mxk| > M}| = 0.

Besides, the inclusion

{k ≤ kr : |∆mxk| > M} ⊃ {k ∈ Ir : |∆mxk| > M}
is true. Therefore,

1

kr
|{k ≤ kr : |∆mxk| > M}| ≥ 1

kr
{k ∈ Ir : |xk| > M}

=
hαr
kr

1

hαr
{k ∈ Ir : |∆mxk| > M} for all r ∈ N.

Taking limit as r →∞ and using (7), we get x ∈ ∆m
θ (Sαb ). �

Theorem 2.17. Let θ = (kr) and θ′ = (sr) be two lacunary sequences such that
Ir ⊂ Jr for all r ∈ N where Ir = (kr−1, kr], Jr = (sr−1, sr], hr = kr − kr−1 and
`r = sr − sr−1 and let α and β be such that 0 < α ≤ β ≤ 1.

(i) If

lim
r→∞

inf
hαr

`βr
> 0 (8)

then ∆m
θ′

(Sβb ) ⊂ ∆m
θ (Sαb ).

(ii) If

lim
r→∞

`r

hβr
= 1 (9)

then ∆m
θ (Sαb ) ⊂ ∆m

θ′
(Sβb ).

Proof. Omitted. �

From Theorem 2.17, we derive the following results.

Corollary 2.18. If the condition (8) is satisfied, then

(i) ∆m
θ′

(Sαb ) ⊂ ∆m
θ (Sαb ) for each α ∈ (0, 1],

(ii) ∆m
θ′

(Sb) ⊂ ∆m
θ (Sαb ) for each α ∈ (0, 1],

(iii) ∆m
θ′

(Sb) ⊂ ∆m
θ (Sb).

Furthermore, if the condition (9) is satisfied, then

(i) ∆m
θ (Sαb ) ⊂ ∆m

θ′
(Sαb ) for each α ∈ (0, 1],

(ii) ∆m
θ (Sαb ) ⊂ ∆m

θ′ (Sb) for each α ∈ (0, 1],

(iii) ∆m
θ (Sb) ⊂ ∆m

θ′ (Sb).
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In the following, we give inclusion results regarding different lacunary methods
in a more generally described way. Before fulfilling that we recall a concept defined
in [14]:

A lacunary sequence θ′ = (sr) is named to be a lacunary refinement of another
lacunary sequence θ = (kr) provided that (kr) ⊆ (sr).

Theorem 2.19. Let θ′ be a lacunary refinement of θ and α ∈ (0, 1]. If there exists
some η > 0 such that

|Jj |
|Ii|
≥ α
√
η for every Jj ⊆ Ii,

Then ∆m
θ (Sαb ) ⊂ ∆m

θ′ (S
α
b ).

Proof. Let x = (xk) ∈ ∆m
θ (Sαb ). This implies that there exists some M > 0 such

that

lim
r→∞

1

|Ir|α
|{k ∈ Ir : |∆mxk| > M}| = 0.

Besides, we can find some Ii such that Jj ⊆ Ii for every Jj . Now we have what
follows:

1

|Jj |α
|{k ∈ Jj : |∆mxk| > M}| =

(
|Ii|
|Jj |

)α
1

|Ii|α
|{k ∈ Jj : |∆mxk| > M}|

≤
(
|Ii|
|Jj |

)α
1

|Ii|α
|{k ∈ Ii : |∆mxk| > M}|

≤
(

1

η

)
1

|Ii|α
|{k ∈ Ii : |∆mxk| > M}| .

Taking limit as i→∞ we complete the proof. �

In the remainder we discuss inclusion results of ∆m−lacunary statistical bound-
edness of order α via different lacunary methods for α = 1 case. We leave the case
α ∈ (0, 1) as an open problem.

Proposition 2.20. If θ′ is a lacunary refinement of θ then ∆m
θ′ (Sb) ⊆ ∆m

θ (Sb).

Proof. The inclusion follows from Lemma 2.3 of [12] and Theorem 4.1 of [4]. �

Theorem 2.21. Suppose θ′ = (sr) and θ = (kr) are two arbitrary lacunary
sequences with intervals Jr = (sr−1, sr] and Ir = (kr−1, kr] respectively. Let
Iij = Ii ∩ Jj, i, j = 1, 2, 3, .... If there is some η > 0 such that

|Iij |
|Ii|
≥ η for every i, j = 1, 2, 3, ...

provided Iij 6= ∅, then ∆m
θ (Sb) ⊂ ∆m

θ′ (Sb).
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Proof. Let θ′′ = θ′ ∪ θ. Then θ′′ is lacunary refinment of θ′ and θ both. Therefore,
the set {Iij = Ii ∩ Jj : Iij 6= ∅} forms the sequence of intervals for θ′′. In view

of Theorem 10, since
|Iij |
|Ii| ≥ η for every i, j = 1, 2, 3, ..., provided Iij 6= ∅ we

get the inclusion ∆m
θ (Sb) ⊂ ∆m

θ′′(Sb). Moreover, it follows from Proposition 2
that ∆m

θ′′(Sb) ⊂ ∆m
θ′ (Sb) as θ′′ is also lacunary refinment of θ′. Hence ∆m

θ (Sb) ⊂
∆m
θ′ (Sb). �

References

[1] H. Altınok, M. Et, M. Isık, ∆m
i −lacunary statistical convergence of order α, AIP Conference

Proceedings 1926 020004 (2018); https://doi.org/10.1063/1.502045
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ness, J. Inequal. Appl. 311 (2014) 1–11. https://doi.org/10.1186/1029-242X-2014-311

[5] V. K. Bhardwaj, S. Gupta, On some generalizations of statistical boundedness, J. Inequal.
Appl. 12 (2014) 1–11. https://doi.org/10.1186/1029-242X-2014-12

[6] N. L. Braha, H. M. Srivastava, M. Et, Some weighted statistical convergence and associated

Korovkin and Voronovskaya type theorems, J. Appl. Math. Comput. 65 (2021) 429–450.
https://doi.org/10.1007/s12190-020-01398-5

[7] N. L. Braha, M. Et, The sequence space Eqn(M,p, s) and Nk−lacunary statistical convergence,

Banach J. Math. Anal. 7 1 (2013) 88–96. https://doi.org/10.15352/bjma/1358864550
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[10] M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow J. Math. 21 4

(1995) 377–386.
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[19] M. Güngör, M. Et, ∆r−strongly almost summable sequences defined by

Orlicz functions, Indian J. Pure Appl. Math. 34 8 (2003) 1141–1151.
https://doi.org/10.14492/hokmj/1285766306
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