Journal of Mathematical Analysis ISSN: 2217-3412, URL: www.ilirias.com/jma Volume 15 Issue 2 (2024), Pages 48-63 https://doi.org/10.54379/jma-2024-2-4.

INEQUALITIES INVOLVING NUMERICAL RADIUS AND OPERATOR NORM FOR A CLASS OF OPERATORS RELATED TO (α, β) -CLASS (Q) OPERATORS

ESHRAGA MUBARK AHMED ALI SALIH AND SID AHMED OULD AHMED MAHMOUD

ABSTRACT. In this paper, we study some properties of the class of operators related to the class (α, β) -Class (\mathcal{Q}) operators. Some inequalities linked to concepts of numerical radius and norm of *m*-quasi- (α, β) -Class (\mathcal{Q}) operators.

1. INTRODUCTION

Let \mathcal{H} be a complex separable Hilbert space. If $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$, we denote by \mathbf{R}^* its adjoint, $\mathbf{Ran}(\mathbf{R})$ its range and ker(\mathbf{R}) for its kernel. Any operator $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ is said to be

(1) Class (\mathcal{Q}) operator if $\mathbf{R}^{*2}\mathbf{R}^2 = (\mathbf{R}^*\mathbf{R})^2$ or $\|\mathbf{R}^2w\| = \|\mathbf{R}^*\mathbf{R}w\| \quad \forall w \in \mathcal{H}$ ([16]),

(2) Almost Class (\mathcal{Q}) if $(\mathbf{R}^*\mathbf{R})^2 \leq (\mathbf{R}^*)^2\mathbf{R}^2$ $(\|\mathbf{R}^*\mathbf{R}w\| \leq \|\mathbf{R}^2w\| \quad \forall \ w \in \mathcal{H})$ ([26]),

(3) (n,m)-power class (\mathcal{Q}) if $\left(\mathbf{R}^{*m}\mathbf{R}^n\right)^2 = \left(\mathbf{R}^{*m}\right)^2\mathbf{R}^{2n}$ ([27]),

(4) *n*-Almost Class (\mathcal{Q}) operators if $(\mathbf{R}^*\mathbf{R}^n)^2 \leq (\mathbf{R}^*)^2\mathbf{R}^{2n}$ ([26]),

(5) (n,m)-Almost Class (\mathcal{Q}) operators if $(\mathbf{R}^{*m}\mathbf{R}^n)^2 \leq (\mathbf{R}^{*m})^2\mathbf{R}^{2n}$ ([26]),

(6) (α, β) -Class (\mathcal{Q}) operators $(0 \le \alpha \le 1 \le \beta)$ ([25]) if

$$\alpha^2 \mathbf{R}^{*2} \mathbf{R}^2 \le \left(\mathbf{R}^* \mathbf{R}\right)^2 \le \beta^2 \mathbf{R}^{*2} \mathbf{R}^2,$$

or

$$\alpha \|\mathbf{R}^2 w\| \le \|\mathbf{R}^* \mathbf{R} w\| \le \beta \|\mathbf{R}^2 w\| \quad \forall \ w \in \mathcal{H},$$

(7) (α, β) -normal operator $(0 \le \alpha \le 1 \le \beta)$ ([11], [8], [21]) if

 $\alpha^2 \mathbf{R}^* \mathbf{R} \le \mathbf{R} \mathbf{R}^* \le \beta^2 \mathbf{R}^* \mathbf{R},$

²⁰⁰⁰ Mathematics Subject Classification. 47A05, 47A55, 47B15.

Key words and phrases. Class (\mathcal{Q}) operators, (α, β) -normal, (α, β) - (\mathcal{Q}) operators.

^{©2024} Ilirias Research Institute, Prishtinë, Kosovë.

Submitted January 25, 2024. Published March 30, 2024.

Communicated by S. Mecheri.

(8) *m*-quasi- (α, β) -normal operator $(0 \le \alpha \le 1 \le \beta)$ ([22]) if

$$\alpha^{2}(\mathbf{R}^{*})^{m+1}\mathbf{R}^{m+1} \leq (\mathbf{R}^{*})^{m}\mathbf{R}\mathbf{R}^{*}(\mathbf{R})^{m} \leq \beta^{2}(\mathbf{R}^{*})^{m+1}\mathbf{R}^{m+1}.$$

There are many classes of operators that have been studied in [14, 19, 15, 24].

The authors in [2] has presented a new class of operators termed as *m*-quasi- (α, β) -Class (\mathcal{Q}) operators parallel to (α, β) -normal operators ([3, 8, 21]) and *m*-quasi- (α, β) -normal operators ([20, 22]).

The paper will be organized two section. In section 2 we study some additional properties of the class of *m*-quasi- (α, β) -Class (\mathcal{Q}) operators for $0 \leq \alpha \leq 1 \leq \beta$. In Section 3, our attention focuses on studying some inequalities linked to concepts of numerical radius and norm of *m*-quasi- (α, β) -Class (\mathcal{Q}) operators. We will extended some of inequalities to operator norm and numerical radius for *m*-quasi- (α, β) -Class (\mathcal{Q})- operators in Hilbert spaces by using some known results for vectors in inner product spaces.

2. Main Results

In this section, we present more properties for the class of *m*-quasi- (α, β) -Class (\mathcal{Q}) operators, under study which is recently introduced in [2].

Deminition 2.1. ([2]) An operator $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ is said to be an *m*-quasi- (α, β) -Class (Q) operators for $0 \le \alpha \le 1$ and $1 \le \beta$ if \mathbf{R} satisfies

$$\alpha^2 (\mathbf{R}^*)^{m+2} \mathbf{R}^{m+2} \leq (\mathbf{R}^*)^m (\mathbf{R}^* \mathbf{R})^2 \mathbf{R}^m \leq \beta^2 (\mathbf{R}^*)^{m+2} \mathbf{R}^{m+2},$$

or equivalently

$$\begin{cases} \mathbf{R}^{*m} \left(\left(\mathbf{R}^{*} \mathbf{R} \right)^{2} - \alpha^{2} \mathbf{R}^{*2} \mathbf{R}^{2} \right) \mathbf{R}^{m} \geq 0 \\ \mathbf{R}^{*m} \left(\beta^{2} \mathbf{R}^{*2} \mathbf{R}^{2} - \left(\mathbf{R}^{*} \mathbf{R} \right)^{2} \right) \mathbf{R}^{m} \geq 0 \end{cases}$$

for some nonnegative integer m.

The following theorem gives a characterization of *m*-quasi- (α, β) -Class (\mathcal{Q}) operators.

Theorem 2.2. Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$, then \mathbf{R} is an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators if and only if

$$\begin{cases} \lambda^{2} (\mathbf{R}^{*})^{m} (\mathbf{R}^{*} \mathbf{R})^{2} \mathbf{R}^{m} + 2\lambda \alpha^{2} (\mathbf{R}^{*})^{m+2} \mathbf{R}^{m+2} + (\mathbf{R}^{*})^{m} (\mathbf{R}^{*} \mathbf{R})^{2} \mathbf{R}^{m} \ge 0, \\ \lambda^{2} (\mathbf{R}^{*})^{m+2} \mathbf{R}^{m+2} + 2\lambda (\mathbf{R}^{*})^{m} (\mathbf{R}^{*} \mathbf{R})^{2} \mathbf{R}^{m} + \beta^{4} (\mathbf{R}^{*})^{m+2} \mathbf{R}^{m+2} \ge 0 \end{cases}$$

for all $\lambda \in \mathbb{R}$.

Proof. By using elementary properties of real quadratic forms, we infer

$$\lambda^{2} (\mathbf{R}^{*})^{m} (\mathbf{R}^{*} \mathbf{R})^{2} \mathbf{R}^{m} + 2\lambda \alpha^{2} (\mathbf{R}^{*})^{m+2} \mathbf{R}^{m+2} + (\mathbf{R}^{*})^{m} (\mathbf{R}^{*} \mathbf{R})^{2} \mathbf{R}^{m} \ge 0$$

$$\Leftrightarrow \quad \lambda^{2} \|\mathbf{R}^{*} \mathbf{R}^{m+1} w\|^{2} + 2\lambda \alpha^{2} \|\mathbf{R}^{m+2} w\|^{2} + \|\mathbf{R}^{*} \mathbf{R}^{m+1} w\|^{2} \ge 0 \quad \forall \ w \in \mathcal{H} \text{ and } \quad \forall \ \lambda \in \mathbb{R}$$

$$\Leftrightarrow \quad \alpha \|\mathbf{R}^{m+2} w\| \le \|\mathbf{R}^{*} \mathbf{R}^{m+1} w\| \quad \forall \ w \in \mathcal{H}.$$

Similarly,

$$\lambda^{2} (\mathbf{R}^{*})^{m+2} \mathbf{R}^{m+2} + 2\lambda (\mathbf{R}^{*})^{m} (\mathbf{R}^{*} \mathbf{R})^{2} \mathbf{R}^{m} + \beta^{4} (\mathbf{R}^{*})^{m+2} \mathbf{R}^{m+2} \ge 0$$

$$\Leftrightarrow \quad \lambda^{2} \|\mathbf{R}^{m+2} w\|^{2} + 2\lambda \|\mathbf{R}^{*} \mathbf{R}^{m+1} w\|^{2} + \beta^{4} \|\mathbf{R}^{m+2} w\|^{2} \ge 0 \quad \forall \ w \in \mathcal{H} \text{ and } \quad \forall \ \lambda \in \mathbb{R}$$

$$\Leftrightarrow \quad \beta \|\mathbf{R}^{m+2} w\| \ge \|\mathbf{R}^{*} \mathbf{R}^{m+1} w\| \quad \forall \ w \in \mathcal{H}.$$

Therefore **R** is an *m*-quasi- (α, β) -Class (\mathcal{Q}) operator.

Theorem 2.3. Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ be an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators such that $\alpha\beta = 1$. Then

$$\alpha \|\mathbf{R}^* \mathbf{R}^{m+1} w\| \le \|\mathbf{R}^{m+2} w\| \le \beta \|\mathbf{R}^* \mathbf{R}^{m+1} w\|, \ \forall \ w \in \mathcal{H}.$$

that is \mathbf{R}^* is (α, β) -normal operator on $\overline{\mathbf{Ran}(\mathbf{R}^{m+1})}$.

Proof. We observe that **R** is an *m*-quasi- (α, β) -Class (\mathcal{Q}) operator if and only if

$$\alpha^{2} (\mathbf{R}^{*})^{m+2} \mathbf{R}^{m+2} \leq (\mathbf{R}^{*})^{m} (\mathbf{R}^{*} \mathbf{R})^{2} \mathbf{R}^{m} \leq \beta^{2} (\mathbf{R}^{*})^{m+2} \mathbf{R}^{m+2}.$$

From which we may write

$$\begin{cases} \alpha^4 (\mathbf{R}^*)^{m+2} \mathbf{R}^{m+2} \le \alpha^2 (\mathbf{R}^*)^m (\mathbf{R}^* \mathbf{R})^2 \mathbf{R}^m \le \alpha^2 \beta^2 (\mathbf{R}^*)^{m+2} \mathbf{R}^{m+2} \\ \alpha^2 \beta^2 (\mathbf{R}^*)^{m+2} \mathbf{R}^{m+2} \le \beta^2 (\mathbf{R}^*)^m (\mathbf{R}^* \mathbf{R})^2 \mathbf{R}^m \le \beta^4 (\mathbf{R}^*)^{m+2} \mathbf{R}^{m+2} \end{cases}$$

Combining these inequalities and taking into account the condition $\alpha\beta = 1$, we get

$$\alpha^{2} (\mathbf{R}^{*})^{m} (\mathbf{R}^{*} \mathbf{R})^{2} \mathbf{R}^{m} \leq (\mathbf{R}^{*})^{m+2} \mathbf{R}^{m+2} \leq \beta^{2} (\mathbf{R}^{*})^{m} (\mathbf{R}^{*} \mathbf{R})^{2} \mathbf{R}^{m}$$

and so,

$$\alpha^{2}\left\langle \left(\mathbf{R}^{*}\right)^{m}\left(\mathbf{R}^{*}\mathbf{R}\right)^{2}\mathbf{R}^{m}w \mid w\right\rangle \leq \left\langle \left(\mathbf{R}^{*}\right)^{m+2}\mathbf{R}^{m+2}w \mid w\right\rangle \leq \beta^{2}\left\langle \left(\mathbf{R}^{*}\right)^{m}\left(\mathbf{R}^{*}\mathbf{R}\right)^{2}\mathbf{R}^{m}w \mid w\right\rangle.$$
This around that

This means that

$$\alpha \|\mathbf{R}^* \mathbf{R}^{m+1} w\| \le \|\mathbf{R}^{m+2} w\| \le \beta \|\mathbf{R}^* \mathbf{R}^{m+1} w\|, \ \forall w \in \mathcal{H}.$$

Hence, the result is proved.

Theorem 2.4. ([2]) Let **R** be an *m*-quasi-(α, β)-Class (\mathcal{Q}) operators. If $\overline{\mathbf{Ran}(\mathbf{R}^m)} = \mathcal{H}$, then **R** is (α, β)-Class (\mathcal{Q}) operators.

Corollary 2.5. Let **R** be an m-quasi- (α, β) -Class (\mathcal{Q}) operators. If $\mathbf{R}^m \neq 0$ and **R** has no nontrivial \mathbf{R}^m -invariant closed subspace, then **R** is (α, β) -Class (\mathcal{Q}) operators.

Proof. By taking into account that \mathbf{R}^m has no nontrivial invariant closed subspace, it has no nontrivial hyperinvariant subspace. But ker(\mathbf{R}^m) and $\overline{\mathbf{Ran}(\mathbf{R}^m)}$ are hyperinvariant subspaces, and $\mathbf{R}^m \neq \{0\}$, hence ker(\mathbf{R}^m) = $\{0\}$ and $\overline{\mathbf{Ran}(\mathbf{R}^m)} = \mathcal{H}$. Therefore \mathbf{R} is (α, β) -Class (\mathcal{Q}) operators.

Corollary 2.6. Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$. If $\mu + \lambda \mathbf{R}$ is an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators for all $\mu, \lambda \in \mathbb{R}$, then \mathbf{R} is (α, β) -Class (\mathcal{Q}) operators.

Proof. If **R** is an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators but not (α, β) -Class (\mathcal{Q}) operators, then \mathbf{R}^m is not invertible. It is possible to find scalars μ_0 and $\lambda \neq 0$ such that $\mathbf{N} = \mu_0 + \lambda_0 \mathbf{R}$ is invertible *m*-quasi- (α, β) -Class (\mathcal{Q}) operators. So **N** is (α, β) -Class (\mathcal{Q}) operators. Since

$$\mathbf{N} = \mu_0 + +\lambda_0 \mathbf{R} \Rightarrow \mathbf{R} = \frac{1}{\lambda_0} (\mathbf{N} - \mu_0)$$

Consequently, **R** is also (α, β) -Class (\mathcal{Q}) operators.

The following theorem represents a matrix representation.

Theorem 2.7. ([2]) Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ such that $\overline{\mathbf{Ran}(\mathbf{R}^m)} \neq \mathcal{H}$. Then the following are equivalent.

(1) **R** is an m-quasi- (α, β) -class- (\mathcal{Q}) operators.

(2)
$$\mathbf{R} = \begin{pmatrix} \mathbf{R}_1 & \mathbf{R}_2 \\ 0 & \mathbf{R}_3 \end{pmatrix}$$
 on $\mathcal{H} = \overline{\mathbf{Ran}(\mathbf{R}^m)} \oplus ker(\mathbf{R}^{*m})$, where
 $\alpha^2 \mathbf{R}_1^{*2} \mathbf{R}_1^2 \le (\mathbf{R}_1^* \mathbf{R}_1)^2 + \mathbf{R}_1^* \mathbf{R}_2 \mathbf{R}_2^* \mathbf{R}_1 \le \beta^2 \mathbf{R}_1^{*2} \mathbf{R}_1^2$,

and $\mathbf{R}_3^m = 0$. Furthermore $\sigma(\mathbf{R}) = \sigma(\mathbf{R}_1) \cup \{0\}$.

Corollary 2.8. Let $\mathbf{R} \in \mathbf{B}[\mathcal{H}]$ be an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators. If the restriction $\mathbf{R}_1 = \mathbf{R}|_{\overline{\mathbf{Ran}(\mathbf{R}^m)}}$ is invertible, then \mathbf{R} is similar to a direct sum of an (α, β) -Class (\mathcal{Q}) operators and a nilpotent operator with index of nilpotence less than or equal *m*.

Proof. Let

$$\mathbf{R} = \begin{pmatrix} \mathbf{R}_1 & \mathbf{R}_2 \\ 0 & \mathbf{R}_3 \end{pmatrix} \text{ on } \mathcal{H} = \overline{\mathbf{Ran}(\mathbf{R}^m)} \oplus \ker(\mathbf{R}^{*m}).$$

Since \mathbf{R}_1 is invertible in view of theorem 2.2, \mathbf{R}_1 is (α, β) -Class (\mathcal{Q}) operators and R_3 is nilpotent. Moreover by the fact that \mathbf{R}_1 is invertible, it follows that $0 \notin \sigma(R_1)$. and hence, $\sigma(\mathbf{R}_1) \cap \sigma(\mathbf{R}_3) = \emptyset$. By Rosenblum's Corollary [23], there exists $\mathbf{T} \in \mathbf{B}[\mathbf{H}]$ for which $\mathbf{R}_1\mathbf{T} - \mathbf{TR}_3 = \mathbf{R}_2$. Thus, we have

$$\mathbf{R} = \begin{pmatrix} \mathbf{I} & -\mathbf{T} \\ 0 & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{R}_{1} & 0 \\ 0 & \mathbf{R}_{3} \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{T} \\ 0 & \mathbf{I} \end{pmatrix}$$
$$= \begin{pmatrix} \mathbf{I} & \mathbf{T} \\ 0 & \mathbf{I} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{R}_{1} & 0 \\ 0 & \mathbf{R}_{3} \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{T} \\ 0 & \mathbf{I} \end{pmatrix}$$
$$= \begin{pmatrix} \mathbf{I} & \mathbf{T} \\ 0 & \mathbf{I} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{R}_{1} \oplus \mathbf{R}_{3} \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{T} \\ 0 & \mathbf{I} \end{pmatrix}.$$

Question. Let $\mathbf{R}_1, \mathbf{R}_2, \mathbf{R}_3 \in \mathcal{B}[\mathcal{H}]$. If \mathbf{R}_1 is (α, β) -Class (\mathcal{Q}) operators and $\mathbf{R}_3^m = 0$. Is the operator matrix $\mathbf{R} = \begin{pmatrix} \mathbf{R}_1 & \mathbf{R}_2 \\ 0 & \mathbf{R}_3 \end{pmatrix} \in \mathcal{B}[\mathcal{H} \oplus \mathcal{H}]$ *m*-quasi- (α, β) -Class (\mathcal{Q}) operators?

Theorem 2.9. Let $\mathbf{N} \in \mathcal{B}[\mathcal{H}]$ be an invertible operator and $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ be an operator such that \mathbf{R} commutes with $\mathbf{N}^*\mathbf{N}$. Then \mathbf{R} is an m-quasi- (α, β) -Class (\mathcal{Q}) operators if and only if $\mathbf{N}\mathbf{R}\mathbf{N}^{-1}$ is an m-quasi- (α, β) -Class (\mathcal{Q}) operators.

Proof. Assume that **R** be an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators. Then

$$\begin{cases} \mathbf{R}^{*m} \left(\left(\mathbf{R}^{*} \mathbf{R} \right)^{2} - \alpha^{2} \mathbf{R}^{*2} \mathbf{R}^{2} \right) \mathbf{R}^{m} \geq 0 \\ \mathbf{R}^{*m} \left(\beta^{2} \mathbf{R}^{*2} \mathbf{R}^{2} - \left(\mathbf{R}^{*} \mathbf{R} \right)^{2} \right) \mathbf{R}^{m} \geq 0. \end{cases}$$

From this we have that

$$\mathbf{N}\mathbf{R}^{*m}\left(\left(\mathbf{R}^{*}\mathbf{R}\right)^{2} - \alpha^{2}\mathbf{R}^{*2}\mathbf{R}^{2}\right)\mathbf{R}^{m}\mathbf{N}^{*} \geq 0$$
$$\mathbf{N}\mathbf{R}^{*m}\left(\beta^{2}\mathbf{R}^{*2}\mathbf{R}^{2} - \left(\mathbf{R}^{*}\mathbf{R}\right)^{2}\right)\mathbf{R}^{m}\mathbf{N}^{*} \geq 0.$$

A computation shows that

$$\mathbf{N}\mathbf{R}^{*m}\left(\left(\mathbf{R}^{*}\mathbf{R}\right)^{2} - \alpha^{2}\mathbf{R}^{*2}\mathbf{R}^{2}\right)\mathbf{R}^{m}\mathbf{N}^{*}(\mathbf{N}\mathbf{N}^{*})$$

$$= \mathbf{N}\mathbf{R}^{*m}\left(\left(\mathbf{R}^{*}\mathbf{R}\right)^{2} - \alpha^{2}\mathbf{R}^{*2}\mathbf{R}^{2}\right)\mathbf{R}^{m}\left(\mathbf{N}^{*}\mathbf{N}\right)\mathbf{N}^{*}$$

$$= \mathbf{N}(\mathbf{N}^{*}\mathbf{N})\mathbf{R}^{*m}\left(\left(\mathbf{R}^{*}\mathbf{R}\right)^{2} - \alpha^{2}\mathbf{R}^{*2}\mathbf{R}^{2}\right)\mathbf{R}^{m}\mathbf{N}^{*}$$

$$= (\mathbf{N}\mathbf{N}^{*})\mathbf{N}\mathbf{R}^{*m}\left(\left(\mathbf{R}^{*}\mathbf{R}\right)^{2} - \alpha^{2}\mathbf{R}^{*2}\mathbf{R}^{2}\right)\mathbf{R}^{m}\mathbf{N}^{*}.$$

This shows that the operator \mathbf{NN}^* commutes with operator

$$\mathbf{N}\mathbf{R}^{*m}\left(\left(\mathbf{R}^{*}\mathbf{R}\right)^{2}-\alpha^{2}\mathbf{R}^{*2}\mathbf{R}^{2}\right)\mathbf{R}^{m}\mathbf{N}^{*}.$$

Hence the operator $(\mathbf{NN}^*)^{-1}$ also commutes with operator

$$\mathbf{N}\mathbf{R}^{*m}\bigg(\left(\mathbf{R}^{*}\mathbf{R}\right)^{2}-\alpha^{2}\mathbf{R}^{*2}\mathbf{R}^{2}\bigg)\mathbf{R}^{m}\mathbf{N}^{*}.$$

Using the fact that the operators $(\mathbf{NN}^*)^{-1}$ and $\mathbf{NR}^{*m} \left(\left(\mathbf{R}^* \mathbf{R} \right)^2 - \alpha^2 \mathbf{R}^{*2} \mathbf{R}^2 \right) \mathbf{R}^m \mathbf{N}^*$ are positive and since they commute with each other we get that their product is also positive operator

$$\mathbf{N}\mathbf{R}^{*m}\left(\left(\mathbf{R}^{*}\mathbf{R}\right)^{2}-\alpha^{2}\mathbf{R}^{*2}\mathbf{R}^{2}\right)\mathbf{R}^{m}\mathbf{N}^{*}(\mathbf{N}\mathbf{N}^{*})^{-1}\geq0.$$

This implies that

$$\mathbf{N}\mathbf{R}^{*m}\left(\left(\mathbf{R}^{*}\mathbf{R}\right)^{2}-\alpha^{2}\mathbf{R}^{*2}\mathbf{R}^{2}\right)\mathbf{R}^{m}\mathbf{N}^{-1}\geq0.$$

Similar technics show that

$$\mathbf{N}\mathbf{R}^{*m}\left(\beta^{2}\mathbf{R}^{*2}\mathbf{R}^{2}-\left(\mathbf{R}^{*}\mathbf{R}\right)^{2}\right)\mathbf{R}^{m}\mathbf{N}^{-1}\geq0.$$

From the fact that $\mathbf{RN}^*\mathbf{N} = \mathbf{N}^*\mathbf{NR}$ it follows that

$$(\mathbf{NRN}^{-1})^{*m} = (\mathbf{NRN}^{-1})^{*}\mathbf{NRN}^{-1})^{*}\cdots\mathbf{NRN}^{-1})^{*} = (\mathbf{N}^{*})^{-1}\mathbf{R}^{*m}\mathbf{N}^{*},$$

$$(\mathbf{NRN}^{-1})^{m} = \mathbf{NR}^{m}\mathbf{N}^{-1},$$

$$(\mathbf{NRN}^{-1})^{*}(\mathbf{NRN}^{-1}) = (\mathbf{N}^{*})^{-1}\mathbf{R}^{*}\mathbf{N}^{*}\mathbf{NRN}^{-1} = \mathbf{NR}^{*}\mathbf{RN}^{-1}.$$

$$(\mathbf{NRN}^{-1})^{*2}(\mathbf{NRN}^{-1})^{2} = (\mathbf{N}^{*})^{-1}\mathbf{R}^{*2}\mathbf{N}^{*}\mathbf{NR}^{2}\mathbf{N}^{-1} = \mathbf{NR}^{*2}\mathbf{R}^{2}\mathbf{N}^{-1}.$$

(INGIN) (INGIN) = (IN) K IN ING IN = ING K IN . Now we show that \mathbf{NRN}^{-1} is an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators. In fact

$$\left(\mathbf{NRN}^{-1}\right)^{*m} \left(\left((\mathbf{NRN}^{-1})^{*}(\mathbf{NRN}^{-1})\right)^{2} - \alpha^{2}(\mathbf{NRN}^{-1})^{*2}(\mathbf{NRN}^{-1})^{2} \right) \left(\mathbf{NRN}^{-1}\right)^{m}$$

$$= \left(\mathbf{N}^{*}\right)^{-1} \mathbf{R}^{*m} \mathbf{N}^{*} \left(\mathbf{N}\left(\mathbf{R}^{*}\mathbf{R}\right)^{2} \mathbf{N}^{-1} - \alpha^{2} \mathbf{NR}^{*2} \mathbf{R}^{2} \mathbf{N}^{-1} \right) \mathbf{NR}^{m} \mathbf{N}^{-1}$$

$$= \left(\mathbf{N}^{*}\right)^{-1} \mathbf{R}^{*m} \mathbf{N}^{*} \mathbf{N} \left(\left(\mathbf{R}^{*}\mathbf{R}\right)^{2} - \alpha^{2} \mathbf{R}^{*2} \mathbf{R}^{2} \right) \mathbf{N}^{-1} \mathbf{NR}^{m} \mathbf{N}^{-1}$$

$$= \left(\mathbf{N}^{*}\right)^{-1} \mathbf{N}^{*} \mathbf{NR}^{*m} \left(\left(\mathbf{R}^{*}\mathbf{R}\right)^{2} - \alpha^{2} \mathbf{R}^{*2} \mathbf{R}^{2} \right) \mathbf{R}^{m} \mathbf{N}^{-1}$$

$$= \mathbf{NR}^{*m} \left(\left(\mathbf{R}^{*}\mathbf{R}\right)^{2} - \alpha^{2} \mathbf{R}^{*2} \mathbf{R}^{2} \right) \mathbf{R}^{m} \mathbf{N}^{-1}$$

$$\geq 0.$$

By similar steps we prove that

$$\left(\mathbf{NRN}^{-1}\right)^{*m} \left(\beta^2 \left(\mathbf{NRN}^{-1}\right)^{*2} \left(\mathbf{NRN}^{-1}\right)^2 - \left(\left(\mathbf{NRN}^{-1}\right)^* \left(\mathbf{NRN}^{-1}\right)\right)^2\right) \left(\mathbf{NRN}^{-1}\right)^m \right)$$
$$= \mathbf{NR}^{*m} \left(\left(\beta^2 \mathbf{R}^{*2} \mathbf{R}^2 - \mathbf{R}^* \mathbf{R}\right)^2\right) \mathbf{R}^m \mathbf{N}^{-1}$$
$$\geq 0.$$

Based on these calculations we conclude that \mathbf{NRN}^{-1} is *m*-quasi- (α, β) -Class (\mathcal{Q}) operators.

Conversely, assume that **NRN**⁻¹ is an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators. Then

$$\left(\mathbf{NRN}^{-1}\right)^{*m} \left(\beta^2 \left(\mathbf{NRN}^{-1}\right)^{*2} \left(\mathbf{NRN}^{-1}\right)^2 - \left(\left(\mathbf{NRN}^{-1}\right)^* \left(\mathbf{NRN}^{-1}\right)\right)^2\right) \left(\mathbf{NRN}^{-1}\right)^m \ge 0$$

and

$$(\mathbf{NRN}^{-1})^{*m} \left(\left((\mathbf{NRN}^{-1})^{*} (\mathbf{NRN}^{-1}) \right)^{2} - \alpha^{2} (\mathbf{NRN}^{-1})^{*2} (\mathbf{NRN}^{-1})^{2} \right) (\mathbf{NRN}^{-1})^{m} \ge 0$$

Similar as before we get

$$\mathbf{NR}^{*m} \left(\left(\mathbf{R}^{*} \mathbf{R} \right)^{2} - \alpha^{2} \mathbf{R}^{*2} \mathbf{R}^{2} \right) \mathbf{R}^{m} \mathbf{N}^{-1} \ge 0.$$

and

$$\mathbf{N}\mathbf{R}^{*m}\left(\beta^{2}\mathbf{R}^{*2}\mathbf{R}^{2}-\left(\mathbf{R}^{*}\mathbf{R}\right)^{2}\right)\mathbf{R}^{m}\mathbf{N}^{-1}\geq0.$$

Hence,

$$\mathbf{N}^* \mathbf{N} \mathbf{R}^{*m} \left(\left(\mathbf{R}^* \mathbf{R} \right)^2 - \alpha^2 \mathbf{R}^{*2} \mathbf{R}^2 \right) \mathbf{R}^m \mathbf{N}^{-1} \mathbf{N} \ge 0.$$

and

$$\mathbf{N}^* \mathbf{N} \mathbf{R}^{*m} \left(\beta^2 \mathbf{R}^{*2} \mathbf{R}^2 - \left(\mathbf{R}^* \mathbf{R} \right)^2 \right) \mathbf{R}^m \mathbf{N}^{-1} \mathbf{N} \ge 0.$$

or equivalently

$$\mathbf{N}^* \mathbf{N} \mathbf{R}^{*m} \left(\left(\mathbf{R}^* \mathbf{R} \right)^2 - \alpha^2 \mathbf{R}^{*2} \mathbf{R}^2 \right) \mathbf{R}^m \ge 0.$$

and

$$\mathbf{N}^* \mathbf{N} \mathbf{R}^{*m} \left(\beta^2 \mathbf{R}^{*2} \mathbf{R}^2 - \left(\mathbf{R}^* \mathbf{R} \right)^2 \right) \mathbf{R}^m \ge 0.$$

By using that $\mathbf{N}^*\mathbf{N}$ commutes with operator \mathbf{R} and hence commute with operators

$$\mathbf{N}^* \mathbf{N} \mathbf{R}^{*m} \left(\left(\mathbf{R}^* \mathbf{R} \right)^2 - \alpha^2 \mathbf{R}^{*2} \mathbf{R}^2 \right) \mathbf{R}^m$$

and

$$\mathbf{N}^*\mathbf{N}\mathbf{R}^{*m}\left(\beta^2\mathbf{R}^{*2}\mathbf{R}^2-\left(\mathbf{R}^*\mathbf{R}\right)^2\right)\mathbf{R}^m.$$

It follows that $\left(\mathbf{N}^{*}\mathbf{N}\right)^{-1}$ commute with

$$\mathbf{N}^* \mathbf{N} \mathbf{R}^{*m} \left(\left(\mathbf{R}^* \mathbf{R} \right)^2 - \alpha^2 \mathbf{R}^{*2} \mathbf{R}^2 \right) \mathbf{R}^m$$

and with

$$\mathbf{N}^* \mathbf{N} \mathbf{R}^{*m} \left(\beta^2 \mathbf{R}^{*2} \mathbf{R}^2 - \left(\mathbf{R}^* \mathbf{R} \right)^2 \right) \mathbf{R}^m.$$

By observing that $(\mathbf{N}^*\mathbf{N})^{-1}$ and $\mathbf{N}^*\mathbf{N}\mathbf{R}^{*m}\left((\mathbf{R}^*\mathbf{R})^2 - \alpha^2\mathbf{R}^{*2}\mathbf{R}^2\right)\mathbf{R}^m$ are positive and since they commutes with each other we have

$$(\mathbf{N}^*\mathbf{N})^{-1}\mathbf{N}^*\mathbf{N}\mathbf{R}^{*m}\left((\mathbf{R}^*\mathbf{R})^2 - \alpha^2\mathbf{R}^{*2}\mathbf{R}^2\right)\mathbf{R}^m \ge 0.$$

For similar reason

$$(\mathbf{N}^*\mathbf{N})^{-1}\mathbf{N}^*\mathbf{N}\mathbf{R}^{*m}\left(\beta^2\mathbf{R}^{*2}\mathbf{R}^2 - (\mathbf{R}^*\mathbf{R})^2\right)\mathbf{R}^m \ge 0.$$

Therefore,

$$\mathbf{R}^{*m} \left(\left(\mathbf{R}^{*} \mathbf{R} \right)^{2} - \alpha^{2} \mathbf{R}^{*2} \mathbf{R}^{2} \right) \mathbf{R}^{m} \ge 0$$

and

$$\mathbf{R}^{*m} \left(\beta^2 \mathbf{R}^{*2} \mathbf{R}^2 - \left(\mathbf{R}^* \mathbf{R} \right)^2 \right) \mathbf{R}^m \ge 0$$

Whit does it mean that **R** is an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators.

Corollary 2.10. Let $\mathbf{N} \in \mathcal{B}[\mathcal{H}]$ be an *m*-quasi- (α, β) -Class (\mathcal{Q})-operators and \mathbf{T} any invertible operator such that $\mathbf{T}^{-1} = \mathbf{T}^*$. Then $\mathbf{R} = \mathbf{T}^{-1}\mathbf{N}\mathbf{T}$ is an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators.

Proof. Assume that N be an *m*-quasi- (α, β) -Class (Q) operator. Then

$$\begin{cases} \left\langle \mathbf{N}^{*m} \Big(\left(\mathbf{N}^{*} \mathbf{N} \right)^{2} - \alpha^{2} \mathbf{N}^{*2} \mathbf{N}^{2} \right) \mathbf{N}^{m} w \mid w \right\rangle \geq 0 \quad \forall \ w \in \mathcal{H} \\ \left\langle \mathbf{N}^{*m} \Big(\beta^{2} \mathbf{N}^{*2} \mathbf{N}^{2} - \left(\mathbf{N}^{*} \mathbf{N} \right)^{2} \Big) \mathbf{N}^{m} w \mid w \right\rangle \geq 0 \quad \forall \ w \in \mathcal{H} \end{cases}$$

By expanding this and by simple calculations we have

$$\mathbf{R}^{*m} \left(\left(\mathbf{R}^{*} \mathbf{R} \right)^{2} - \alpha^{2} \mathbf{R}^{*2} \mathbf{R}^{2} \right) \mathbf{R}^{m}$$

$$= \left(\mathbf{T}^{-1} \mathbf{N} \mathbf{T} \right)^{*m} \left(\left(\mathbf{T}^{-1} \mathbf{N} \mathbf{T} \right)^{*} \left(\mathbf{T}^{-1} \mathbf{N} \mathbf{T} \right) \right)^{2} - \alpha^{2} \left(\mathbf{T}^{-1} \mathbf{N} \mathbf{T} \right)^{*2} \left(\mathbf{T}^{-1} \mathbf{N} \mathbf{T} \right)^{2} \right) \left(\mathbf{T}^{-1} \mathbf{N} \mathbf{T} \right)^{m}$$

$$= \mathbf{T}^{*} \mathbf{N}^{m} \left(\left(\mathbf{N}^{*} \mathbf{N} \right)^{2} - \alpha^{2} \mathbf{N}^{*2} \mathbf{N}^{2} \right) \mathbf{N}^{m} \mathbf{T}$$

$$= \mathbf{T}^{*} \mathbf{N}^{m} \left(\left(\mathbf{N}^{*} \mathbf{N} \right)^{2} - \alpha^{2} \mathbf{N}^{*2} \mathbf{N}^{2} \right) \mathbf{N}^{m} \mathbf{T}$$

$$\geq 0.$$

Similarly,

$$\mathbf{R}^{*m} \left(\beta^{2} \mathbf{R}^{*2} \mathbf{R}^{2} - (\mathbf{R}^{*} \mathbf{R})^{2} \right) \mathbf{R}^{m}$$

$$= (\mathbf{T}^{-1} \mathbf{N} \mathbf{T})^{*m} \left(\beta^{2} (\mathbf{T}^{-1} \mathbf{N} \mathbf{T})^{*2} (\mathbf{T}^{-1} \mathbf{N} \mathbf{T})^{2} - (\mathbf{T}^{-1} \mathbf{N} \mathbf{T})^{*} (\mathbf{T}^{-1} \mathbf{N} \mathbf{T}) \right)^{2} - (\mathbf{T}^{-1} \mathbf{N} \mathbf{T})^{m}$$

$$= \mathbf{T}^{-1} \mathbf{N}^{*m} \left(\beta^{2} \mathbf{N}^{*2} \mathbf{N}^{2} - (\mathbf{N}^{*} \mathbf{N})^{2} \right) \mathbf{N}^{m} \mathbf{T}$$

$$= \mathbf{T}^{*} \mathbf{N}^{m} \left(\beta^{2} \mathbf{N}^{*2} \mathbf{N}^{2} - (\mathbf{N}^{*} \mathbf{N})^{2} \right) \mathbf{N}^{m} \mathbf{T}$$

$$\geq 0.$$

Hence, $\mathbf{R} = \mathbf{T}^{-1}\mathbf{N}\mathbf{T}$ is *m*-quasi- (α, β) -Class (\mathcal{Q}) operators as required.

3. INEQUALITIES INVOLVING NUMERICAL RADIUS AND OPERATOR NORM

In this section, our attention focuses on studying some inequalities linked to concepts of numerical radius and norm of *m*-quasi- (α, β) -Class (\mathcal{Q})- operators. It represents an extension of many relationships that were previously proven through [4, 5, 6, 7, 8, 9, 10, 12, 21]. The authors in [22] have given various inequalities between the operator norm and the numerical radius of *m*-quasi- (α, β) -normal operators in Hilbert spaces. Motivated by this work, we will extended some of these inequalities to operator norm and numerical radius for *m*-quasi- (α, β) - Class (\mathcal{Q})operators in Hilbertian spaces by using some known results for vectors in inner product spaces.

Recall that the numerical radius of an operator $\mathbf{R}\in\mathcal{B}\big[\mathcal{H}\big]$ is defined by

$$\omega(R) = \sup\{ |\langle \mathbf{R}\psi \mid \psi \rangle|, \ \psi \in \mathcal{H} : \ \|\psi\| = 1 \}.$$

Theorem 3.1. Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ be an *m*-quasi- (α, β) -Class (Q)-operators. Then the following inequality hold.

$$\left(1 + \left(\frac{\alpha}{\beta}\right)^{2q}\right) \|\mathbf{R}^{m+2}\|^2 \le \frac{2}{\beta} \omega \left(\mathbf{R}^{*(m+1)} \mathbf{R}^{m+3}\right) + \frac{q^2}{\beta^2} \|\beta \mathbf{R}^{m+2} - \mathbf{R}^* \mathbf{R}^{m+1}\|^2, \text{ if } q \ge 1.$$
(3.1)

and

$$\left(1 + \left(\frac{\alpha}{\beta}\right)^{2q}\right) \|\mathbf{R}^{m+2}\|^2 \le \frac{2}{\beta}\omega \left(\mathbf{R}^{*(m+1)}\mathbf{R}^{m+3}\right) + \frac{1}{\beta^2} \|\beta \mathbf{R}^{m+2} - \mathbf{R}^* R^{m+1}\|^2, if q < 1$$
(3.2)

Proof. Referring to [12] the following inequalities can be used for $q \in \mathbb{R}$ and $\varphi_1, \varphi_2 \in \mathcal{H}$ with $\|\varphi_1\| \ge \|\varphi_2\|$,

$$\|\varphi_1\|^{2q} + \|\varphi_2\|^{2q} - 2\|\varphi_1\|^{q-1} \|\varphi_2\|^{q-1} Re \langle \varphi_1 \mid \varphi_2 \rangle \le q^2 \|\varphi_1\|^{2q-2} \|\varphi_1 - \varphi_2\|^2, \text{ for } q \ge 1,$$

and

$$\|\varphi_1\|^{2q} + \|\varphi_2\|^{2q} - 2\|\varphi_1\|^{q-1}\|\varphi_2\|^{q-1} Re\langle\varphi_1 \mid \varphi_2\rangle \le \|\varphi_2\|^{2q-2}\|\varphi_1 - \varphi_2\|^2, \text{ for } q < 1$$

Since **R** is an *m*-quasi- (α, β) -Class (\mathcal{Q})-operators, it follows that

$$\alpha \|\mathbf{R}^{m+2}\psi\| \le \|\mathbf{R}^*\mathbf{R}^{m+1}\psi\| \le \beta \|R^{m+2}\psi\|, \quad \forall \ \psi \in \mathcal{H}.$$

By making the right choice with $\varphi_1 = \beta \mathbf{R}^{m+2} \psi$ and $\varphi_2 = \mathbf{R}^* \mathbf{R}^{m+1} \psi$ we obtain $\|\beta \mathbf{R}^{m+2} \psi\|^{2q} + \|\mathbf{R}^* \mathbf{R}^{m+1} \psi\|^{2q} \leq q^2 \|\beta \mathbf{R}^{m+2} \psi\|^{2q-2} \|\beta \mathbf{R}^{m+2} \psi - \mathbf{R}^* \mathbf{R}^{m+1} \psi\|^2 + 2\|\beta \mathbf{R}^{m+2} x\|^{q-1} \|\mathbf{R}^* \mathbf{R}^{m+1} \psi\|^{q-1} Re \left\langle \beta \mathbf{R}^{m+2} \psi \mid \mathbf{R}^* \mathbf{R}^{m+1} \psi \right\rangle$

for any $\psi \in \mathcal{H}$ with $\|\psi\| = 1$ and $q \ge 1$.

Hence,

$$\begin{aligned} \left(\alpha^{2q} + \beta^{2q}\right) \|\mathbf{R}^{m+2}\psi\|^{2q} &= \alpha^{2q} \|\mathbf{R}^{m+2}\psi\|^{2q} + \beta^{2q} \|\mathbf{R}^{m+2}\psi\|^{2q} \\ &\leq \|\mathbf{R}^*\mathbf{R}^{m+1}x\|^{2q} + \beta^{2q} \|\mathbf{R}^{m+2}x\|^{2q} \\ &\leq q^2\beta^{2q-2} \|\mathbf{R}^{m+2}\psi\|^{2q-2} \|\beta\mathbf{R}^{m+2}\psi - \mathbf{R}^*\mathbf{R}^{m+}\psi\|^2 \\ &+ 2\beta^{2q-1} \|\mathbf{R}^{m+2}\psi\|^{2q-2} |\langle\mathbf{R}^{*m}\mathbf{R}^{m+3}\psi|\psi\rangle|. \end{aligned}$$

Applying sup over $\psi \in \mathcal{H}$, $\|\psi\| = 1$ of both sides of the above inequality, we infer

$$(\alpha^{2q} + \beta^{2q}) \|\mathbf{R}^{m+2}\|^{2q} \leq q^2 \beta^{2q-2} \|\mathbf{R}^{m+2}\|^{2q-2} \|\beta \mathbf{R}^{m+2} - \mathbf{R}^* \mathbf{R}^{m+1}\|^2 + 2\beta^{2q-1} \|\mathbf{R}^{m+2}\|^{2q-2} \omega \left((\mathbf{R}^{*(m+1)} \mathbf{R}^{m+3}) \right).$$

This proves the first inequality.

Analogously, with similar steps we prove the second inequality for q < 1.

Theorem 3.2. Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ be an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators. If $\mu \in \mathbb{C}$, then

$$\alpha \|\mathbf{R}^{m+2}\|^{2} \leq \omega \left(\left(\mathbf{R}^{*m} \mathbf{R}^{m+3} \right) + \frac{2\beta}{\left(1 + |\mu|\alpha\right)^{2}} \|\mathbf{R}^{m+2} - \mu \mathbf{R}^{*} \mathbf{R}^{m+1}\|^{2} \right)$$

Proof. We give our proof depending on the following inequality inspired from [10],

$$\|\varphi_1\|\|\varphi_2\| \le |\langle \varphi_1 | \varphi_2 \rangle| + \frac{2\|\varphi_1\|\|\varphi_2\|\|\varphi_1 - \varphi_2\|^2}{(\|\varphi_1\| + \|\varphi_2\|)^2},$$

for $\varphi_1, \varphi_2 \in \mathcal{H} \setminus \{0\}$. Since **R** is an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators, it follows that

$$\alpha \|\mathbf{R}^{m+2}\psi\| \le \|\mathbf{R}^*\mathbf{R}^{m+1}\psi\| \le \beta \|R^{m+2}\psi\|, \quad \forall \ \psi \in \mathcal{H}.$$

By making the right choice with $\varphi_1 = \mathbf{R}^{m+2}\psi$ and $\varphi_2 = \mu \mathbf{R}^* \mathbf{R}^{m+1}\psi$ we infer

$$\begin{aligned} \|\mathbf{R}^{m+2}\psi\|\|\mu\mathbf{R}^{*}\mathbf{R}^{m+1}\psi\| &\leq |\langle \mathbf{R}^{m+2}\psi | \,\mu\mathbf{R}^{*}\mathbf{R}^{m+1}\psi\rangle| \\ &+ \frac{2\|\mathbf{R}^{m+2}\psi\|\|\mu\mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|\|\mathbf{R}^{m+2}\psi - \mu\mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|^{2}}{(\|\mathbf{R}^{m+2}\psi\| + \|\mu\mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|)^{2}} \end{aligned}$$

This gives

$$\alpha \|\mathbf{R}^{m+2}\psi\|^{2} \leq |\langle \mathbf{R}^{*(m+1)}\mathbf{R}^{m+3}\psi | \psi \rangle| + \frac{2\beta}{(1+|\lambda|\alpha)^{2}} \|\mathbf{R}^{m+2}\psi - \mu \mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|^{2}.$$

Applying the sup of both sides of the last inequality, the requirement is proven. \square

Theorem 3.3. Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ be an *m*-quasi- (α, β) -Class (\mathcal{Q}) operator. If $\mu \in \mathbb{C} \setminus \{0\}$, then

$$\left[\alpha^2 - \left(\frac{1}{|\mu|} + \beta\right)^2\right] \|\mathbf{R}^{m+2}\|^4 \le \omega \left(\mathbf{R}^{*(m+1)}\mathbf{R}^{m+3}\right)^2.$$

Proof. We give our proof depending on the following inequality inspired from [7],

$$\|\varphi_1\|^2 \|\varphi_2\|^2 \le |\langle \varphi_1 | \varphi_2 \rangle|^2 + \frac{1}{|\mu|^2} \|\varphi_1\|^2 \|\varphi_1 - \mu\varphi_2\|^2,$$

provided $\varphi_1, \varphi_2 \in \mathcal{H}$ and $\mu \in \mathbb{C} \setminus \{0\}$. By choosing $\varphi_1 = \mathbf{R}^{m+2}\psi, \varphi_2 = \mathbf{R}^*\mathbf{R}^{m+1}\psi$, we infer

$$\|\mathbf{R}^{m+2}\psi\|^{2}\|\mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|^{2} \leq |\langle \mathbf{R}^{m+2}\psi | \mathbf{R}^{*}\mathbf{R}^{m+1}\psi\rangle|^{2} + \frac{1}{|\mu|^{2}}\|\mathbf{R}^{m+2}\psi\|^{2}\|\mathbf{R}^{m+2}\psi - \mu\mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|^{2}$$

This gives

$$\alpha^{2} \|\mathbf{R}^{m+2}\psi\|^{4} - \frac{1}{|\mu|^{2}} \|\mathbf{R}^{m+2}\psi\|^{4} \left(1 + |\mu|\beta\right)^{2} \le |\left\langle \mathbf{R}^{*(m+1)}\mathbf{R}^{m+3}\psi \mid \psi\right\rangle|^{2}.$$

Applying the sup of both sides of the last inequality, the requirement is proven. $\|\psi\|=1$

Theorem 3.4. Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ be an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators. Then

$$2\omega \left(\mathbf{R}^{m+2}\right) \omega \left(\mathbf{R}^* \mathbf{R}^{m+1}\right) \le \beta \|\mathbf{R}^{m+2}\|^2 + \omega \left(R^{*(m+1)} R^{m+3}\right)$$

Proof. According to the following inequality mentioned in [4], we may write

$$2|\langle \varphi \mid \varphi_1 \rangle \langle \langle \varphi_1 \mid \varphi_2 \rangle| \le ||\varphi|| ||\varphi_2|| + |\langle \varphi \mid \varphi_2 \rangle|$$

where $\psi, \varphi_1, \varphi_2 \in \mathcal{H}$ and $\|\psi\| = 1$,

Choosing $\varphi_1 = \mathbf{R}^{m+2}\psi$ and $\varphi_2 = \mathbf{R}^*\mathbf{R}^{m+1}\psi$ with $\|\psi\| = 1$, it follows $2|\langle \mathbf{R}^{m+2}\psi_1 | \psi \rangle \langle \psi | \mathbf{R}^*\mathbf{R}^{m+1}\psi \rangle| \le \|\mathbf{R}^{m+2}\psi\|\|\mathbf{R}^*\mathbf{R}^{m+1}\psi\| + |\langle \mathbf{R}^{m+2}\psi | \mathbf{R}^*\mathbf{R}^{m+1}\psi \rangle|.$ Hence

$$2\left|\left\langle \mathbf{R}^{m+2}\psi \mid \psi\right\rangle \left\langle \mathbf{R}^{*(m+1)}\mathbf{R}\psi \mid \psi\right\rangle\right| \leq \beta \|\mathbf{R}^{m+2}\|^2 + \left|\left\langle \mathbf{R}^{*(m+1)}\mathbf{R}^{m+3}\psi \mid \psi\right\rangle\right|.$$

Applying the sup of both sides of the last inequality, the requirement is proven. $\hfill \square$

Theorem 3.5. Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ be an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators. If $p \geq 2$, then

$$(1+\alpha^{p}) \|\mathbf{R}^{m+2}\|^{p} \leq \frac{1}{2} \bigg(\|\mathbf{R}^{m+2} + \mathbf{R}^{*}\mathbf{R}^{m+1}\|^{p} + \|\mathbf{R}^{m+2} - \mathbf{R}^{*}\mathbf{R}^{m+1}\|^{p} \bigg).$$

Proof. We use the following inequality[9],

$$\|\varphi_1\|^p + \|\varphi_2\|^p \le \frac{1}{2} \left(\|\varphi_1 + \varphi_2\|^p + \|\varphi_1 - \varphi_2\|^p\right)$$

for any $\varphi_1, \psi \varphi_2 \in \mathcal{H}$ and $p \geq 2$.

Now, if we choose $\varphi_1 = \mathbf{R}^{m+1}\psi, \varphi_2 = \mathbf{R}^*\mathbf{R}^{m+1}\psi$, we may write

$$\|\mathbf{R}^{m+2}\psi\|^{p} + \|\mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|^{p} \le \frac{1}{2} \left(\mathbf{R}^{m+2}\psi + \mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|^{p} + \|\mathbf{R}^{m+2}\psi - \mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|^{p}\right).$$

According to the fact that ${\bf R}$ is an $m\mbox{-}{\rm quasi-}(\alpha,\beta)\mbox{-}{\rm class}~(Q)$ operators, we may write

$$(1+\alpha^{p}) \|\mathbf{R}^{m+2}\psi\|^{p} \leq \|\mathbf{R}^{m+2}\psi\|^{p} + \|\mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|^{p} \leq \frac{1}{2} \left(\|\mathbf{R}^{m+2}\psi + \mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|^{p}\right)$$
$$|^{p} + \|\mathbf{R}^{m+2}\psi - \mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|^{p}\right).$$

Taking the sup over all $\psi \in \mathcal{H}$ with $\|\psi\| = 1$ in the above inequality, we get

$$(1+\alpha^{p}) \|\mathbf{R}^{m+2}\|^{p} \leq \frac{1}{2} \bigg(\|\mathbf{R}^{m+2} + \mathbf{R}^{*}\mathbf{R}^{m+1}\|^{p} + \|\mathbf{R}^{m+2} - \mathbf{R}^{*}\mathbf{R}^{m+1}\|^{p} \bigg).$$

Theorem 3.6. Let $R \in \mathcal{B}_b[\mathcal{H}]$ be an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators and $p \geq 2$. Then the following identity holds.

$$\omega\left(\frac{\left(\mathbf{R}^*\right)^{m+2}\mathbf{R}^{m+2} + \left(R^*\right)^{m+1}\mathbf{R}\mathbf{R}^*R^{m+1}}{2}\right)^{\frac{p}{2}} \le \frac{1+\beta^p}{4(1+\alpha^p)} \left(\|\mathbf{R}^{m+2} + \mathbf{R}^*\mathbf{R}^{m+1}\|^p + \|\mathbf{R}^{m+2} - \mathbf{R}^*\mathbf{R}^{m+1}\|^p\right)$$

Proof. Using the following elementary inequality,

$$2^{1-q} \left(a+b\right)^q \le a^q + b^q$$

for $a, b \ge 0$ and $q \ge 1$.

For any $\psi \in \mathcal{H}$ with $\|\psi\| = 1$, take $a = \|\mathbf{R}^{m+2}\psi\|^2$, $b = \|\mathbf{R}^*\mathbf{R}^{m+1}\psi\|^2$ and $q = \frac{p}{2}$ in the above inequality we get

$$2^{1-\frac{p}{2}} \left(\|\mathbf{R}^{m+2}\psi\|^2 + \|\mathbf{R}^*\mathbf{R}^{m+1}\psi\|^2 \right)^{\frac{p}{2}} \le \left(\mathbf{R}^{m+2}\psi\|^2\right)^{\frac{p}{2}} + \left(\|\mathbf{R}^*\mathbf{R}^{m+1}\psi\|^2 \right)^{\frac{p}{2}}.$$

Therefore,

$$\left(\frac{\|\mathbf{R}^{m+2}\psi\|^2 + \|\mathbf{R}^*\mathbf{R}^{m+1}\psi\|^2}{2}\right)^{\frac{p}{2}} \le \frac{1}{2}\|\mathbf{R}^{m+2}\psi\|^p + \|\mathbf{R}^*\mathbf{R}^{m+1}\psi\|^p.$$

According to **R** is an *m*-quasi- (α, β) - class (\mathcal{Q})-operators, it follows that

 $\|\mathbf{R}^{m+2}\psi\|^{p} + \|\mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|^{p} \le (1+\beta^{p})\|\mathbf{R}^{m+2}\psi\|^{p}.$

By taking into account Theorem 3.5, we obtain

$$\left(\frac{\|\mathbf{R}^{m+2}\psi\|^2 + \|\mathbf{R}^*\mathbf{R}^{m+1}\psi\|^2}{2}\right)^{\frac{p}{2}} \le \frac{1+\beta^p}{4(1+\alpha^p)} \left(\|\mathbf{R}^{m+2} + \mathbf{R}^*\mathbf{R}^{m+1}\|^p + \|\mathbf{R}^{m+2} - \mathbf{R}^*\mathbf{R}^{m+1}\|^p\right)\|\psi\|.$$

On the other hand,

$$\left\langle \left(\frac{\left(\mathbf{R}^{*}\right)^{m+2}\mathbf{R}^{m+2} + \left(\mathbf{R}^{*}\right)^{m+1}\mathbf{R}\mathbf{R}^{*}\mathbf{R}^{m+1}\right)}{2}\psi \mid \psi \right\rangle \mid_{2}^{\frac{p}{2}} = \left(\frac{\|\mathbf{R}^{m+2}\psi\|^{2} + \|\mathbf{R}^{*}\mathbf{R}^{m+1}\psi\|^{2}}{2}\right)^{\frac{p}{2}}.$$

Therefore

$$\left| \left\langle \left(\frac{\left(\mathbf{R}^* \right)^{m+2} \mathbf{R}^{m+2} + \left(\mathbf{R}^* \right)^{m+1} \mathbf{R} \mathbf{R}^* \mathbf{R}^{m+1}}{2} \right) \psi \mid \psi \right\rangle \right|^{\frac{p}{2}}$$

$$\leq \frac{\left(1 + \beta^p \right) \|\psi\|}{4(1 + \alpha^p)} \left(\| \mathbf{R}^{m+2} + \mathbf{R}^* \mathbf{R}^{m+1} \|^p + \| \mathbf{R}^{m+2} - \mathbf{R}^* \mathbf{R}^{m+1} \|^p \right).$$

Applying the $\sup_{\|\psi\|=1}$ of both sides of the last inequality, the requirement is proven.

Theorem 3.7. Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ be an *m*-quasi- (α, β) -Class (Q) operators. If $p \in \mathbb{R}$ with $1 and <math>\lambda, \mu \in \mathbb{C}$ such that $|\lambda| - \beta|\mu| \ge 0$ or $\alpha|\mu| - |\lambda| \ge 0$, then the following inequality holds.

$$\left(\left| \left(\lambda \right| + \alpha |\mu| \right)^p \| \mathbf{R}^{m+2} \|^p + \left(\max \left(\left\{ |\lambda| - |\mu| \beta, \alpha |\mu| - |\lambda| \right\} \right) \right)^p \| \mathbf{R}^{m+2} \|^p$$

$$\leq \| \lambda \mathbf{R}^{m+2} + \mu \mathbf{R}^* \mathbf{R}^{m+1} \|^p + \| \lambda \mathbf{R}^{m+2} - \mu \mathbf{R}^* \mathbf{R}^{m+1} \|^p.$$

Proof. According to the following inequality mentioned in [9], we have

 $\left(\left\| \varphi_1 \right\| + \left\| \varphi_2 \right\| \right)^p + \left\| \left\| \varphi_1 \right\| - \left\| \varphi_2 \right\| \right\|^p \le \left\| \varphi_1 + \varphi_2 \right\|^p + \left\| \varphi_1 - \varphi_2 \right\|^p,$ for any $\varphi_1, \varphi_2 \in \mathcal{H}$ and $p \in \mathbb{R}$: 1

Put $\varphi_1 = \lambda \mathbf{R}^{m+2} \psi$ and $\varphi_2 = \mu \mathbf{R}^* \mathbf{R}^{m+1} \psi$ for $\psi \in \mathcal{H}$, to get

$$(\|\lambda \mathbf{R}^{m+2}\psi\| + \|\mu \mathbf{R}^* \mathbf{R}^{m+1}\psi\|)^p + \|\lambda \mathbf{R}^{m+2}\psi\| - \|\mu \mathbf{R}^* \mathbf{R}^{m+2}\psi\||^{r}$$

$$\leq \|\lambda \mathbf{R}^{m+2}\psi + \mathbf{R}^* \mathbf{R}^{m+1}\psi\|^p + \|\lambda \mathbf{R}^{m+2}\psi - \mu \mathbf{R}^* \mathbf{R}^{m+1}\psi\|^p.$$

As **R** is an *m*-quasi- (α, β) -Class (\mathcal{Q}) operators, it follows that

$$\left(\left|\lambda\right|+\alpha|\mu|\right)^{p}\|\mathbf{R}^{m+2}\psi\|^{p} \leq \left(\left\|\lambda\mathbf{R}^{m+2}\psi\right\|+\left\|\mu\mathbf{R}^{*}\mathbf{R}^{m+1}\psi\right\|\right)^{p}$$

and

 $(|\lambda| - |\mu|\beta) \|\mathbf{R}^{m+2}\psi\| \le \|\lambda \mathbf{R}^{m+2}\psi\| - \|\mu \mathbf{R}^* \mathbf{R}^{m+1}\psi\|^p \le (|\lambda| - \alpha|\mu|) \|\mathbf{R}^{m+2}\psi\|.$ Therefore

$$\left(\left(|\lambda| + \beta|\mu| \right)^p \| \mathbf{R}^{m+2} \psi \|^p + max \left\{ |\lambda| - |\mu|\beta, \alpha|\mu| - |\lambda| \right\} \right) \| \mathbf{R}^{m+2} \psi \|^p$$

$$\leq \left(\|\lambda \mathbf{R}^{m+2} \psi \| + \|\mu \mathbf{R}^* \mathbf{R}^{m+1} \psi \| \right)^p + \left\| \|\lambda \mathbf{R}^{m+2} \psi \| - \|\mu R^{m+1} u\|_A \right|^p$$

$$\leq \|\mu \mathbf{R}^{m+1} u + \mu \mathbf{R}^\sharp \mathbf{R}^m u\|_A^p + \|\lambda \mathbf{R}^{m+1} u - \mu \mathbf{R}^\sharp \mathbf{R}^m u\|_A^p.$$

Applying the sup of both sides of the last inequality, the requirement is proven. $\hfill \hfill \hfill \\ \|\psi\|=1$

Theorem 3.8. Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ be an *m*-quasi- (α, β) Class- (\mathcal{Q}) operators and $s \ge 0$. If

 $\|\lambda \mathbf{R}^* \mathbf{R}^{m+1} - \mathbf{R}^{m+2}\| \le s \le \inf \{ |\lambda| \| \mathbf{R}^* \mathbf{R}^{m+1} \psi\|, \ \psi \in \mathcal{H}, \ \|\psi\| = 1 \},$ then the following inequality holds.

$$\alpha^2 \|\mathbf{R}^{m+2}\|^4 \le \omega \left(\mathbf{R}^{*(m+1)}\mathbf{R}^{m+3}\right)^2 + \frac{s^2}{|\lambda|^2} \|\mathbf{R}^{m+2}\|^2.$$

Proof. We use the following inequality[5],

$$\|\varphi_1\|^2 \|\varphi_2\|^2 \le \left[Re \langle \varphi_1 \mid \varphi_2 \rangle \right]^2 + s^2 \|\varphi_2\|^2$$

for which $\|\varphi_1 - \varphi_2\| \le s \le \|\varphi_2\|$.

Put $\varphi_2 = \lambda \mathbf{R}^* \mathbf{R}^{m+1} \psi$ and $\varphi_1 = \mathbf{R}^{m+2} \psi$ for $\psi \in \mathcal{H}$ to get,

$$\|\mathbf{R}^{m+2}\psi\|^2 \|\lambda \mathbf{R}^* \mathbf{R}^m \psi\|^2 \le \left[\operatorname{Re}\left\langle \mathbf{R}^{m+2}\psi \mid \lambda \mathbf{R}^* \mathbf{R}^{m+1}\psi \right\rangle \right]^2 + s^2 \|\mathbf{R}^{m+2}\psi\|^2.$$

Therefore

$$|\lambda|^{2}\alpha^{2} \|\mathbf{R}^{m+2}\psi\|^{4} \leq |\lambda|^{2} \left[Re \left\langle \mathbf{R}^{*m+1}\mathbf{R}^{m+3}\psi \mid \psi \right\rangle \right]^{2} + s^{2} \|\mathbf{R}^{m+2}\|^{2}.$$

Applying the $\sup_{\|\psi\|=1}$ of both sides of the last inequality, the requirement is proven. \Box

Theorem 3.9. Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ be an *m*-quasi- (α, β) -Class (\mathcal{Q})- operator, $s \ge 0$. If $\|\lambda \mathbf{R}^* \mathbf{R}^{m+1} - \mathbf{R}^{m+2}\| \le s$ for $\lambda \in \mathbb{C}, \lambda \ne 0$, then the following holds.

$$\alpha \|\mathbf{R}^{m+2}\|^2 \le \omega \left[\left(\mathbf{R}^*\right)^{m+1} \mathbf{R}^{m+3} \right] + \frac{s^2}{2|\lambda|}.$$

Proof. Using the following inequality mentioned in [6],

$$\|\varphi_1\|\| \varphi_2\| \le [Re\langle \varphi_1 | \varphi_2\rangle] + \frac{s^2}{2},$$

for which $\|\varphi_1 - \varphi_2\| \leq s$.

By considering $\varphi_2 = \lambda \mathbf{R}^* \mathbf{R}^{m+1} \psi$ and $\varphi_1 = \mathbf{R}^{m+2} \psi$ for $\psi \in \mathcal{H}$ to get

$$\|\mathbf{R}^{m+2}\psi\|\|\lambda\mathbf{R}^*\mathbf{R}^m\psi\| \le \left[Re\left\langle\mathbf{R}^{m+2}\psi\mid\lambda\mathbf{R}^*\mathbf{R}^{m+1}\psi\right\rangle\right] + \frac{s^2}{2}$$

From this we obtain

$$|\lambda|\alpha \|\mathbf{R}^{m+2}\psi\|^2 \le |\lambda| |Re\left\langle \mathbf{R}^{*(m+1)}\mathbf{R}^{m+3}\psi \mid \psi\right\rangle | + \frac{s^2}{2}$$

Applying the sup of both sides of the last inequality, the requirement is proven. $\hfill \square$

Remark 1. Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$, then we have

(1) if **R** is normal, then $r(\mathbf{R}) = \|\mathbf{R}\|$.

(2) if **R** is hyponormal, then $r(\mathbf{R}) = \|\mathbf{R}\|$.

The following theorem presents a generalization of these results to (α, β) - Class (\mathcal{Q}) -operator. Our inspiration cames from [13, Theorem 2.5].

Theorem 3.10. Let $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ be an (α, β) - Class (\mathcal{Q}) operators such that \mathbf{R}^{2^n} is (α, β) -Class (\mathcal{Q}) operators for every $n \in \mathbb{N}$,too. Then,

$$\frac{1}{\beta} \left\| \mathbf{R} \right\| \le r(\mathbf{R}) \le \left\| \mathbf{R} \right\|.$$

Proof. It is well known that if $\mathbf{R} \in \mathcal{B}[\mathcal{H}]$ then

$$\|\mathbf{R}^*\mathbf{R}\| = \|\mathbf{R}\mathbf{R}^*\| = \|\mathbf{R}\|^2$$

and moreover if \mathbf{R} is selfadjoint then

$$\left\|\mathbf{R}^{2}\right\| = \left\|\mathbf{R}\right\|^{2}.$$

Since **R** is (α, β) -Class (\mathcal{Q}) operators, it follows that

$$\alpha^2 (\mathbf{R}^*)^2 \mathbf{R}^2 \le (\mathbf{R}^* \mathbf{R})^2 \le \beta^2 (\mathbf{R}^*)^2 \mathbf{R}^2$$

and so

$$\frac{1}{\beta^2} \sup_{\|\psi\|=1} \left\langle \left(\mathbf{R}^* \mathbf{R} \right)^2 \psi \mid \psi \right\rangle \le \sup_{\|\psi\|=1} \left\langle \left(\mathbf{R}^* \right)^2 \mathbf{R}^2 \psi \mid \psi \right\rangle.$$

Therefore

$$\frac{1}{\beta^2} \left\| \mathbf{R} \right\|^4 = \frac{1}{\beta^2} \left\| \left(\mathbf{R}^* \mathbf{R} \right)^2 \right\|^2 \le \left\| \left(\mathbf{R}^* \right)^2 \mathbf{R}^2 \right\|^2.$$

According to a mathematical induction principal, we can prove that for every positive integer number n,

$$\frac{1}{\beta^{2^{n+1}-2}} \left\| \mathbf{R} \right\|^{2^{n+1}} \le \left\| \left(\mathbf{R}^* \right)^{2^n} \mathbf{R}^{2^n} \right\|.$$

We have

$$\begin{aligned} r(\mathbf{R})^2 &= r(\mathbf{R}^*)r(\mathbf{R}) &= \lim_{n \to \infty} \sup_{n \to \infty} \left\| \left(\mathbf{R}^* \right)^{2^n} \right\|^{\frac{1}{2^n}} \lim_{n \to \infty} \sup_{n \to \infty} \left\| \mathbf{R}^{2^n} \right\|^{\frac{1}{2^n}} \\ &\geq \lim_{n \to \infty} \left(\left\| \left(\mathbf{R}^* \right)^{2^n} \mathbf{R}^{2^n} \right\| \right)^{\frac{1}{2^n}} \\ &\geq \lim_{n \to \infty} \left(\left\| \left(\mathbf{R}^{\sharp} \right)^{2^n} \mathbf{R}^{2^n} \right\| \right)^{\frac{1}{2^n}} \\ &\geq \frac{1}{\beta^2} \|\mathbf{R}\|^2. \end{aligned}$$

Therefore, we get

$$\frac{1}{\beta} \left\| \mathbf{R} \right\| \le r(\mathbf{R}) \le \left\| \mathbf{R} \right\|.$$

This completes the proof.

Acknowledgments. The authors gratefully thank to the referee for the constructive comments and recommendations which definitely help to improve the readability and quality of the paper.

References

- [1] P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Publishers (2004), Dordrecht, Boston, London.
- [2] A. M. Ayed AL-Ahmadi, N. M. Saqer Alruwaili and O.A. Mahmoud Sid Ahmed, Class of operators related to (α, β)-Class (Q)-operators. Bulletin of Mathematical Analysis and Applications Volume 15 Issue 4(2023), Pages 12-20. https://doi.org/10.54671/BMAA-2023-4-2
- [3] A. Benali1 and O. A. Mahmoud Sid Ahmed, (α, β)-A-Normal operators in semi-Hilbertian spaces, Afrika Matematika (2019) pp. 1012-9405, (2019)
- [4] M. L. Buzano, Generalizzatione della disiguaglianza di Cauchy-Schwaz, Rend. Sem. Mat. Univ. E Politech. Torino 31 (1974), 405–409.
- [5] S. S. Dragomir, Reverse of Schwarz, triangle and Bessel inequalities in inner product spaces, J. Inequal. Pure and Appl. Math. 5 Article 76(2004).
- [6] S. S. Dragomir, Advances in inequalities of the Schwarz, Gruss and Bessel Type in Inner Product Spaces, Nova Science Publishers (2005), Newyork.
- [7] S. S. Dragomir, A potpourri of Schwarz related inequalities in inner product spaces (II), J. Ineq. Pure Appl. Math. 7 (2006), Art 14.
- [8] S. S. Dragomir and M.S. Moslehian, Some Inequalities for (α, β) -normal Operators in Hilbert Spaces, Ser. Math. Inform. **23** (2008),39–47.
- [9] S. S. Dragomir and J. Sandor, Some inequalities in pre-Hilertian spaces, Studia Univ. Babes-Bolyai-Mathematic, 32 (1987), 71–78.
- [10] C. F. Dunkl and K.S. Williams, A simple norm inequality, Amer. Math. Monthly **71** (1964), 43–44 .
- [11] R. Eskandari, F. Mirzapour, A. Morassaei, More on (α, β) -normal operators in Hilbert spaces. Abstr. Appl. Anal. 2012, Article ID 204031 (2012).
- [12] A. Goldstein, J.V. Ryff and L.E. Clarke, Problem 5473, Amer. Math. Monthly 75 (1968), 309.
- [13] A. Gupta and P. Sharma, (α, β)-Normal Composition Operators, Thai Journal of Mathematics Volume 14 (2016) Number 1 : 83–92.
- [14] V.R. Hamiti, On k-quasi class Q operators. Bulletin of Mathematical Analysis and Applications, 6:31-37, (2014)
- [15] Sh. Lohaj and V. R. Hamiti. A note on class Q(N) operators, Missouri Journal of Math. Sci., 2:185196, 2018.
- [16] A. A. Jibril, On Operators for which $T^{*2}T^2 = (T^*T)^2$, International Mathematical Forum. 5 (46): 2255–2262.
- [17] J.K. Han, H.Y. Lee and W.Y. Lee, Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 No.1,(1999), 119-123.
- [18] K.B. Laursen and M. M. Neumann, An introduction to local spectral theory, Oxford University Press, 2000
- [19] S. Lohaj, Structural and Spectral Properties of k-Quasi Class Q(N) and k-Quasi Class $Q^*(N)$ Operators, European Journal of pure and applied mathematics.
- [20] O. A. Mahmoud Sid Ahmed and S. Hamidou Jah, Inequalities Involving A-Numerical Radius and Operator A-Norm for a Class of Operators Related to (α, β)-A-Normal Operators, Volume 2022, Article ID 1506330, 15 pages.
- [21] M. S. Moslehian, $On(\alpha,\beta)$ -normal operators in Hilbert spaces, Image, vol. 39, 2007.

- [22] R. Pradeep, P. Maheswari and O. A. Mahmoud Sid Ahmed, On m-Quasi-totaly-(α, β)-Normal operators, Operators and Matrices Volume 15, Number 3 (2021), 1055–1072.
- [23] M. A. Rosenblum, On the operator equation BX XA = Q, Duke Math. J. 23(1956) 263–269.
- [24] J. L. Shen, F. Zuo and C. S. Yang, On Operators Satisfying $T^*|T^2|T \ge T^*|T^*|^2T$, Acta Mathematica Sinica, English Series Nov., 2010, Vol. 26, No. 11, pp. 2109-2116.
- [25] W.Victor1, and A. M. Nyongesa1, On (α, β)-Class (Q) Operators, Int. J. Math. And Appl., 9(2)(2021), 111–113.
- [26] W. Victor1, and B. A. Obiero, On Almost Class (Q) and Class (M, n) Operators, Int. J. Math. And Appl., 9(2)(2021), 115–118.
- [27] W. Victor and B. A. Obiero, On class (n, mBQ) Operators, World Journal of Advanced Research and Reviews, 2021, 11(02), 053-057.

Eshraga Mubark Ahmed Ali Salih

Department of Mathematics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia *E-mail address*: E.SALIH@qu.edu.sa

SID AHMED OULD AHMED MAHMOUD

MATHEMATICS DEPARTMENT, COLLEGE OF SCIENCE, JOUF UNIVERSITY, SAKAKA P.O.BOX 2014. SAUDI ARABIA. *E-mail address:* sidahmedn@ju.edu.sa