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GENERALIZED FOURIER TRANSFORM: ILLUSTRATIVE

EXAMPLES AND APPLICATIONS TO DIFFERENTIAL

EQUATIONS

ENES ATA AND İ. ONUR KIYMAZ

Abstract. In this paper, we define generalized Fourier and inverse Fourier

transforms containing the h-exponential function in their kernels and give the
fundamental properties of these transforms. We also compute the transforms of

both the classical and the generalized Riemann-Liouville and Caputo fractional
operators. In addition, we compute the transforms of some elementary and

generalized special functions as well. Finally, as applications, we obtain the

solutions of two differential equations with ordinary and fractional derivatives
using the transforms we have defined.

1. Introduction

The Fourier transform is named after the famous French mathematician Jean-
Baptiste Joseph Fourier. In the 19th century, Jean-Baptiste Joseph Fourier found
that any function can be written as the sum of the sine and cosine functions. He
later discovered that it was possible to determine the amplitude of sine and cosine
waves by means of the integral and thus obtained the Fourier transform, which is
of great importance in the world of science. For the famous work of Jean-Baptiste
Joseph Fourier, see [10].

The Fourier transform is one of the most important mathematical tools used in
a wide variety of fields such as physics, chemistry, biology, medicine, astronomy,
engineering and mathematics, and is expressed as the transformation of a signal in
a time or space domain into the frequency domain. Also, various integral equations
and differential equations, which are difficult to calculate, can be easily calculated
via the Fourier transform to obtain simple algebraic structures. Therefore, the
Fourier transform is a popular formula of great importance used in the applications
of various scientific fields.

The Fourier transform has been of great interest to scientists and has found ap-
plications in many fields. For examples; the Fourier transform are used by circuit
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designers, in their work on circuits; systems and sound engineers, in their work on
audio and video processing and coding; statisticians and probabilists, in their work
on characterizing probability distributions; error control code designers, in their
work on error correction and detection; radio astronomers and antenna designers,
in their work on image formation from antenna data; spectroscopists, in their work
on high-resolution spectra; crystallographers, in their work on X-ray; lens designers,
in their work on camera performance; psychologists, in their work on studying per-
ception; biomedical engineers, in their work on medical imaging; mathematicians,
in their work on various integral and differential equations.

For more detailed information on the Fourier transform, see [9, 11, 12, 14, 22, 29].
Also for various scientific research papers on the Fourier transform, see [13, 18, 20,
21, 26].

Our motivation in this paper is to define a new generalization of the Fourier
transform by adding the h-exponential function to the Fourier transform, making it
possible and easy to compute the transformation of the generalized special functions
and the generalized fractional derivatives, which involving the exponential functions
in their kernels. Thus, the application area of the Fourier transform will also
expand.

We organize the rest of the paper as follows: In Section 2, we provide the basic
materials needed throughout the paper. In Section 3, we describe new generalized
Fourier and inverse Fourier transforms and present some fundamental properties.
In Section 4, we take the generalized Fourier transform of some elementary func-
tions, the generalized special functions and the generalized fractional derivatives.
In Section 5, we obtain the solutions of the ordinary RL electric circuit and the frac-
tional motion differential equations via the generalized Fourier and inverse Fourier
transforms. In Section 6, we give conclusion and recommendations.

2. Preliminaries

In this section, we give the basic materials needed throughout the paper, such
as the Schwartz and Lizorkin space, the classical Fourier and inverse Fourier trans-
forms, the Fourier convolution, the Dirac delta function, the classical gamma and
beta functions, the generalized gamma and beta functions, the Riemann-Liouville
fractional integral and derivative, the Caputo fractional derivative, the generalized
Riemann-Liouville and Caputo fractional derivatives.

Definition 2.1 ([29]). The Schwartz space is defined by

S(R) =
{
f ∈ C∞ : sup

∣∣∣∆mf (n)(∆)
∣∣∣ <∞, for ∀m,n ∈ N0

}
.

Definition 2.2 ([27]). The V (R) set be as follows

V (R) =
{
f ∈ S(R) : f (n)(0) = 0, for n ∈ N0

}
.

Then the Lizorkin space is given by

φ(R) =
{
f ∈ S(R) : F

[
f
]
∈ V (R)

}
.



16 E. ATA AND İ. O. KIYMAZ

Definition 2.3 ([17]). The Fourier and inverse Fourier transforms respectively are
defined by

F
[
f(∆)

]
(ω) =

+∞∫
−∞

exp(iω∆)f(∆)d∆, (2.1)

F−1
[
F
[
f(∆)

]
(ω)
]
(∆) =

1

2π

+∞∫
−∞

exp(−iω∆)F
[
f(∆)

]
(ω)dω. (2.2)

Definition 2.4 ([5]). The Fourier convolution of functions f and g is defined by

f(∆) ∗ g(∆) =

+∞∫
−∞

f(∆− y)g(y)dy, for ∆ ∈ R. (2.3)

Definition 2.5 ([8]). The Dirac delta function is given by

δ(∆) =

0 , for ∆ 6= 0,

∞ , for ∆ = 0.

Also the following equation in [8] holds true

+∞∫
−∞

f(∆)δ(∆)d∆ = f(0). (2.4)

Theorem 2.1 ([8]). Let c be an arbitrary constant. Then,

+∞∫
−∞

exp (iω∆) c d∆ = 2cπδ(ω). (2.5)

Definition 2.6 ([3]). The gamma and beta functions respectively are defined by

Γ(ξ) =

∞∫
0

uξ−1 exp (−u) du,

B(ξ, η) =

1∫
0

uξ−1(1− u)η−1du,

where <(ξ) > 0, <(η) > 0.

Definition 2.7. Let <(ξ) > 0, <(η) > 0, <(λ) > 0, <(κ) > 0, <(µ) > 0, <(α) > 0,
<(β) > 0, <(∆) > 0. Then,

(1) The generalized gamma function defined by Chaudhry and Zubair [6] is as

Γ∆(ξ) =

∞∫
0

uξ−1 exp

(
−u− ∆

u

)
du. (2.6)
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(2) The generalized gamma function defined by Parmar [25] is as

Γ
(α,β;λ)
∆ (ξ) =

∞∫
0

uξ−1
1F1

(
α;β;−u− ∆

uλ

)
du. (2.7)

(3) The generalized beta function defined by Chaudhry et al. [7] is as

B(ξ, η; ∆) =

1∫
0

uξ−1(1− u)η−1 exp

(
− ∆

u(1− u)

)
du. (2.8)

(4) The generalized beta function defined by Lee et al. [19] is as

B(ξ, η; ∆;λ) =

1∫
0

uξ−1(1− u)η−1 exp

(
− ∆

uλ(1− u)λ

)
du. (2.9)

(5) The generalized beta function defined by Srivastava et al. [28] is as

B
(α,β;κ,µ)
∆ (ξ, η) =

1∫
0

uξ−1(1− u)η−1
1F1

(
α;β;− ∆

uκ(1− u)µ

)
du. (2.10)

Definition 2.8 ([17]). The Riemann-Liouville fractional integral (RLFI), Riemann-
Liouville fractional derivative (RLFD) and Caputo fractional derivative (CFD) of
order ε respectively are defined by

−∞I
ε
∆f(∆) =

1

Γ(ε)

∆∫
−∞

(∆− y)ε−1f(y)dy,

−∞D
ε
∆f(∆) =

1

Γ(r − ε)
dr

d∆r

∆∫
−∞

(∆− y)r−ε−1f(y)dy,

−∞
cDε

∆f(∆) =
1

Γ(r − ε)

∆∫
−∞

(∆− y)r−ε−1f (r)(y)dy,

where ∆ ∈ R, r ∈ N, r − 1 < <(ε) < r, <(ε) > 0.

Definition 2.9. Let <(∆) > 0, <(λ) > 0, <(κ) > 0, <(µ) > 0, <(ε) > 0 and
r − 1 < <(ε) < r, r ∈ N. Then,

(1) The generalized fractional derivative defined by Agarwal et al. [1] is as

Dε,∆;κ,µ
v f(v) =

1

Γ(r − ε)
dr

dvr

v∫
0

(v − ρ)r−ε−1
1F1

(
α;β;− ∆vκ+µ

ρκ(v − ρ)µ

)
f(ρ)dρ. (2.11)

(2) The generalized fractional derivative defined by Parmar [24] is as

Dε,∆;λ
v {f(v)} =

1

Γ(r − ε)
dr

dvr

v∫
0

(v − ρ)r−ε−1 exp

(
− ∆v2λ

ρλ(v − ρ)λ

)
f(ρ)dρ. (2.12)
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(3) The generalized fractional derivative defined by Agarwal et al. [2] is as

Dε,∆;λ
v f(v) =

1

Γ(r − ε)

v∫
0

(v − ρ)r−ε−1 exp

(
− ∆v2λ

ρλ(v − ρ)λ

)
f (r)(ρ)dρ. (2.13)

(4) The generalized fractional derivative defined by Özarslan and Özergin [23]
is as

Dε,∆
v {f(v)} =

1

Γ(r − ε)
dr

dvr

v∫
0

(v − ρ)r−ε−1 exp

(
− ∆v2

ρ(v − ρ)

)
f(ρ)dρ. (2.14)

(5) The generalized fractional derivative defined by Kıymaz et al. [16] is as

Dε,∆
v f(v) =

1

Γ(r − ε)

v∫
0

(v − ρ)r−ε−1 exp

(
− ∆v2

ρ(v − ρ)

)
f (r)(ρ)dρ. (2.15)

3. New generalized Fourier and inverse Fourier transforms and
fundamental properties

In this section, we describe new generalized Fourier and inverse Fourier trans-
forms with h-exponential functions in their kernels. Then, we present basic prop-
erties such as linearity, differentiation, convolution theorems. We also apply the
generalized Fourier transform to the Riemann-Liouville fractional integral and de-
rivative and the Caputo fractional derivative.

Definition 3.1. Let h : [a, b] → R be a continuous function and f ∈ φ(R). Then,
the generalized Fourier and inverse Fourier transforms, respectively, are defined as

F̂
[
f(∆)

]
(ω, ρ) :=

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))
f(∆)d∆, (3.1)

F̂−1
[
F̂
[
f(∆)

]
(ω, ρ)

]
(∆, ρ) :=

1

2π

+∞∫
−∞

exp
(
−∆

(
iω + h(ρ)

))
F̂
[
f(∆)

]
(ω, ρ)dω, (3.2)

where F̂ is the generalized Fourier transform operator and F̂−1 is the generalized
inverse Fourier transform operator and the function exp

(
∆h(ρ)

)
is kernel func-

tion. For the sake of shortness, we call the generalized Fourier transform and the

generalized inverse Fourier transform as the F̂ transform and the F̂−1 transform,
respectively.

Remark. If we take h(ρ) = 0 in Eqs. (3.1) and (3.2), we get Eqs. (2.1) and (2.2)
respectively.

Theorem 3.1. Let the function f be a function belonging to the Lizorkin space.
The product of the function f and the kernel function also belongs to the Lizorkin
space.

Proof. Let h : [a, b]→ R be a continuous function and f ∈ C∞. Then, considering
the Maclourin series of the exponential function and for ∀n ∈ N0, we have∣∣∣f (n)(∆) exp

(
∆h(ρ)

)∣∣∣ =

∣∣∣∣∣
∞∑
k=0

(
∆h(ρ)

)k
k!

f (n)(∆)

∣∣∣∣∣ ≤
∞∑
k=0

∣∣∣∣∣
(
h(ρ)

)k
k!

∣∣∣∣∣ ∣∣∣∆kf (n)(∆)
∣∣∣ .
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Hence, using the definition of Lizorkin space and taking the supremum of each side
for ∆ ∈ R, we get

sup
∆∈R

∣∣∣f (n)(∆) exp
(
∆h(ρ)

)∣∣∣ ≤ ∞∑
k=0

∣∣∣∣∣
(
h(ρ)

)k
k!

∣∣∣∣∣ sup
∆∈R

∣∣∣∆kf (n)(∆)
∣∣∣ <∞,

which completes the proof. �

Theorem 3.2. Let h : [a, b]→ R be a continuous function and f, g ∈ φ(R). Then,

F̂
[
λ1 f(∆) + λ2 g(∆)

]
(ω, ρ) = λ1 F̂

[
f(∆)

]
(ω, ρ) + λ2 F̂

[
g(∆)

]
(ω, ρ),

where λ1, λ2 ∈ R.

Proof. Using the F̂ transform, we have

F̂
[
λ1 f(∆) + λ2 g(∆)

]
(ω, ρ) =

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))(
λ1 f(∆) + λ2 g(∆)

)
d∆

= λ1

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))
f(∆)d∆

+ λ2

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))
g(∆)d∆

= λ1 F̂
[
f(∆)

]
(ω, ρ) + λ2 F̂

[
g(∆)

]
(ω, ρ),

which completes the proof. �

Theorem 3.3. Let h : [a, b]→ R be a continuous function and f ∈ φ(R). Then,

F̂
[
f (n)(∆)

]
(ω, ρ) = (−1)n

(
iω + h(ρ)

)n
F̂
[
f(∆)

]
(ω, ρ), (3.3)

where n ∈ N.

Proof. Let us prove the result by contradiction. For n = 1, we have

F̂
[
f ′(∆)

]
(ω, ρ) =

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))
f ′(∆)d∆

= lim
A→∞

[
exp

(
∆
(
iω + h(ρ)

))
f(∆)

]A
−A

−
(
iω + h(ρ)

) +∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))
f(∆)d∆

= −
(
iω + h(ρ)

)
F̂
[
f(∆)

]
(ω, ρ),

where lim
A→∞

[
exp

(
∆
(
iω + h(ρ)

))
f(∆)

]A
−A

= 0 since f ∈ φ(R).

For n = k, let the equation be true:

F̂
[
f (k)(∆)

]
(ω, ρ) = (−1)k

(
iω + h(ρ)

)k
F̂
[
f(∆)

]
(ω, ρ).
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For n = k + 1, considering the above equation, we obtain

F̂
[
f (k+1)(∆)

]
(ω, ρ) = F̂

[
d

d∆
f (k)(∆)

]
(ω, ρ)

= (−1)k
(
iω + h(ρ)

)k
F̂
[
f ′(∆)

]
(ω, ρ)

= (−1)k+1
(
iω + h(ρ)

)k+1
F̂
[
f(∆)

]
(ω, ρ).

Noted that since f, f ′, f ′′, . . . , f (n−1) ∈ φ(R) for n ∈ N, the first terms from partial
integration become zero when |∆| → ∞. �

Theorem 3.4. Let h : [a, b]→ R be a continuous function and f, g ∈ φ(R). Then,

F̂
[
f(∆) ∗ g(∆)

]
(ω, ρ) = F̂

[
f(∆)

]
(ω, ρ) F̂

[
g(∆)

]
(ω, ρ).

Proof. Using the F̂ transform and Eq. (2.3), we have

F̂
[
f(∆) ∗ g(∆)

]
(ω, ρ) =

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))(
f(∆) ∗ g(∆)

)
d∆

=

+∞∫
−∞

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))
f(∆− y)g(y)dyd∆.

Taking x := ∆− y, we get

F̂
[
f(∆) ∗ g(∆)

]
(ω, ρ) =

+∞∫
−∞

+∞∫
−∞

exp
(

(x+ y)
(
iω + h(ρ)

))
f(x)g(y)dxdy

=

+∞∫
−∞

exp
(
x
(
iω + h(ρ)

))
f(x)dx

+∞∫
−∞

exp
(
y
(
iω + h(ρ)

))
g(y)dy

= F̂
[
f(∆)

]
(ω, ρ) F̂

[
g(∆)

]
(ω, ρ),

which completes the proof. �

We now apply the F̂ transform to the RLFI, RLFD and CFD.

Theorem 3.5. Let h : [a, b]→ R be a continuous function and f ∈ φ(R). Then,

F̂
[ (
Iε+f

)
(∆)

]
(ω, ρ) =

(
− iω − h(ρ)

)−ε
F̂
[
f(∆)

]
(ω, ρ),

where <(ε) > 0.

Proof. The relationship between the RLFI and Eq. (2.3) is as follows(
Iε+f

)
(∆) = f(∆) ∗ g+(∆), (3.4)

where function g+(∆) is

g+(∆) =

{
∆ε−1

Γ(ε) , for ∆ > 0,

0 , for ∆ ≤ 0.
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By applying the F̂ transform to Eq. (3.4), we have

F̂
[ (
Iε+f

)
(∆)

]
(ω, ρ) = F̂

[
f(∆) ∗ g+(∆)

]
(ω, ρ)

= F̂
[
f(∆)

]
(ω, ρ) F̂

[
g+(∆)

]
(ω, ρ). (3.5)

Calculating the second F̂ transform to the right of Eq. (3.5), we get

F̂
[
g+(∆)

]
(ω, ρ) =

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))
g+(∆)d∆

=
1

Γ(ε)

∞∫
0

exp
(

∆
(
iω + h(ρ)

))
∆ε−1d∆, for ∆ > 0. (3.6)

Finally, calculating Eq. (3.6) and substituting it into Eq. (3.5), we obtain

F̂
[ (
Iε+f

)
(∆)

]
(ω, ρ) =

(
− iω − h(ρ)

)−ε
F̂
[
f(∆)

]
(ω, ρ),

which completes the proof. �

Theorem 3.6. Let h : [a, b]→ R be a continuous function and f ∈ φ(R). Then,

F̂
[ (
Dε

+f
)

(∆)
]
(ω, ρ) =

(
− iω − h(ρ)

)ε
F̂
[
f(∆)

]
(ω, ρ),

where r ∈ N, r − 1 < <(ε) < r, <(ε) > 0.

Proof. The relationship between the RLFI and RLFD is as follows(
Dε

+f
)

(∆) =
dr

d∆r

(
Ir−ε+ f

)
(∆),

where

g(∆) :=
(
Ir−ε+ f

)
(∆). (3.7)

Then, (
Dε

+f
)

(∆) = g(r)(∆). (3.8)

By applying the F̂ transform to Eqs. (3.7) and (3.8) respectively, we have

F̂
[
g(∆)

]
(ω, ρ) = F̂

[ (
Ir−ε+ f

)
(∆)

]
(ω, ρ)

=
(
− iω − h(ρ)

)−(r−ε)
F̂
[
f(∆)

]
(ω, ρ) (3.9)

and

F̂
[ (
Dε

+f
)

(∆)
]
(ω, ρ) = F̂

[
g(r)(∆)

]
(ω, ρ)

= (−1)r
(
iω + h(ρ)

)r
F̂
[
g(∆)

]
(ω, ρ). (3.10)

Finally, using Eq. (3.9) in Eq. (3.10), we obtain

F̂
[ (
Dε

+f
)

(∆)
]
(ω, ρ) =

(
− iω − h(ρ)

)ε
F̂
[
f(∆)

]
(ω, ρ),

which completes the proof. �
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Theorem 3.7. Let h : [a, b]→ R be a continuous function and f ∈ φ(R). Then,

F̂
[ (

cDε
+f
)

(∆)
]
(ω, ρ) =

(
− iω − h(ρ)

)ε
F̂
[
f(∆)

]
(ω, ρ), (3.11)

where r ∈ N, r − 1 < <(ε) < r, <(ε) > 0.

Proof. The relationship between the RLFI and CFD is as follows

(
cDε

+f
)

(∆) =
1

Γ(r − ε)

∆∫
−∞

(∆− y)r−ε−1g(y)dy =
(
Ir−ε+ g

)
(∆), (3.12)

where

g(∆) := f (r)(∆). (3.13)

By applying the F̂ transform to Eqs. (3.12) and (3.13) respectively, we have

F̂
[ (

cDε
+f
)

(∆)
]
(ω, ρ) = F̂

[ (
Ir−ε+ g

)
(∆)

]
(ω, ρ)

=
(
− iω − h(ρ)

)−(r−ε)
F̂
[
g(∆)

]
(ω, ρ) (3.14)

and

F̂
[
g(∆)

]
(ω, ρ) = F̂

[
f (r)(∆)

]
(ω, ρ)

= (−1)r
(
iω + h(ρ)

)r
F̂
[
f(∆)

]
(ω, ρ). (3.15)

Finally, using Eq. (3.15) in Eq. (3.14), we have

F̂
[ (

cDε
+f
)

(∆)
]
(ω, ρ) =

(
− iω − h(ρ)

)ε
F̂
[
f(∆)

]
(ω, ρ),

which completes the proof. �

Corollary 3.8. The F̂ transform of the RLFD and CFD overlap.

4. Illustrative Examples

In this section, we give the F̂ transform of various elementary functions. We also

present the F̂ transform of the generalized special functions and the generalized
fractional derivatives by means of suitably chosen kernel functions.

Example 4.1. The F̂ transform of the Dirac delta function is obtained as

F̂
[
δ(∆)

]
(ω, ρ) = 1. (4.1)

Proof. Using the F̂ transform and considering Eq. (2.4), we have

F̂
[
δ(∆)

]
(ω, ρ) =

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))
δ(∆)d∆ = 1. �

Example 4.2. The F̂ transform of function exp(iλ∆) is obtained as

F̂
[

exp(iλ∆)
]
(ω, ρ) = 2π exp

(
−h(ρ)

(
h(ρ)

i
+ ω + λ

))
δ

(
h(ρ)

i
+ ω + λ

)
. (4.2)



GENERALIZED FOURIER TRANSFORM 23

Proof. By applying the F̂−1 transform to Eq. (4.1), we get

δ(∆) =
1

2π

+∞∫
−∞

exp
(
−∆

(
iω + h(ρ)

))
dω.

Taking ∆ := ω, we have

δ(ω) =
1

2π

+∞∫
−∞

exp
(
− ω

(
i∆ + h(ρ)

))
d∆.

By replacing ω with
(
−h(ρ)

i − ω − λ
)

, we get

δ

(
−h(ρ)

i
− ω − λ

)
=

1

2π

+∞∫
−∞

exp

(
−
(
−h(ρ)

i
− ω − λ

)(
i∆ + h(ρ)

))
d∆.

Taking into account that the Dirac delta function is an even function and making
the necessary arrangements, we have

F̂
[

exp(iλ∆)
]
(ω, ρ) = 2π exp

(
−h(ρ)

(
h(ρ)

i
+ ω + λ

))
δ

(
h(ρ)

i
+ ω + λ

)
. �

Corollary 4.3. In Eq. (4.2), substituting −λ for λ, we get

F̂
[

exp(−iλ∆)
]
(ω, ρ) = 2π exp

(
−h(ρ)

(
h(ρ)

i
+ ω − λ

))
δ

(
h(ρ)

i
+ ω − λ

)
. (4.3)

Example 4.4. The F̂ transform of function exp
(
−λ∆2

)
is obtained as

F̂
[

exp
(
−λ∆2

) ]
(ω, ρ) =

√
π

λ
exp

((
iω + h(ρ)

)2
4λ

)
, for λ > 0.

Proof. Using the F̂ transform, we have

F̂
[

exp
(
−λ∆2

) ]
(ω, ρ) =

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))
exp

(
−λ∆2

)
d∆

= exp

((
iω + h(ρ)

)2
4λ

) +∞∫
−∞

exp

−λ(∆−
(
iω + h(ρ)

)
2λ

)2
 d∆.

Taking x := ∆−
(
iω+h(ρ)

)
2λ , we get

F̂
[

exp
(
−λ∆2

) ]
(ω, ρ) = exp

((
iω + h(ρ)

)2
4λ

) +∞∫
−∞

exp
(
−λx2

)
dx.

Using the formula
+∞∫
−∞

exp
(
−λx2

)
dx =

√
π
λ , we have

F̂
[

exp
(
−λ∆2

) ]
(ω, ρ) =

√
π

λ
exp

((
iω + h(ρ)

)2
4λ

)
. �
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Example 4.5. The F̂ transform of function exp (−λ|∆|) is obtained as

F̂
[

exp (−λ|∆|)
]
(ω, ρ) =

−2λ(
iω + h(ρ)

)2 − λ2
, for λ > 0.

Proof. Using the F̂ transform, we get

F̂
[

exp (−λ|∆|)
]
(ω, ρ) =

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))
exp (−λ|∆|) d∆

=

0∫
−∞

exp
(

∆
(
iω + h(ρ) + λ

))
d∆

+

+∞∫
0

exp
(

∆
(
iω + h(ρ)− λ

))
d∆.

Then,

F̂
[

exp (−λ|∆|)
]
(ω, ρ) = lim

A→−∞

exp
(

∆
(
iω + h(ρ) + λ

))
iω + h(ρ) + λ

0

A

+ lim
A→+∞

exp
(

∆
(
iω + h(ρ)− λ

))
iω + h(ρ)− λ

A
0

=
1

iω + h(ρ) + λ
− 1

iω + h(ρ)− λ
.

Finally, by making the necessary calculations, we get

F̂
[

exp (−λ|∆|)
]
(ω, ρ) =

−2λ(
iω + h(ρ)

)2 − λ2
. �

Example 4.6. The F̂ transform of function sin(λ∆) is obtained as

F̂
[

sin(λ∆)
]
(ω, ρ) = iπ exp

(
−h(ρ)

(
h(ρ)

i
+ ω

))
·
[
exp

(
λh(ρ)

)
δ

(
h(ρ)

i
+ ω − λ

)
− exp

(
− λh(ρ)

)
δ

(
h(ρ)

i
+ ω + λ

)]
.

Proof. Using the F̂ transform, we have

F̂
[

sin(λ∆)
]
(ω, ρ) =

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))
sin(λ∆)d∆.
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Using the formula sin(λ∆) = exp(iλ∆)−exp(−iλ∆)
2i , we get

F̂
[

sin(λ∆)
]
(ω, ρ) =

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))(exp(iλ∆)− exp(−iλ∆)

2i

)
d∆

=
1

2i

[ +∞∫
−∞

exp
(

∆
(
iω + h(ρ) + iλ

))
d∆

−
+∞∫
−∞

exp
(

∆
(
iω + h(ρ)− iλ

))
d∆

]

=
1

2i

(
F̂
[

exp(iλ∆)
]
(ω, ρ)− F̂

[
exp(−iλ∆)

]
(ω, ρ)

)
.

Finally, using Eqs. (4.2) and (4.3), we have

F̂
[

sin(λ∆)
]
(ω, ρ) = iπ exp

(
−h(ρ)

(
h(ρ)

i
+ ω

))
·
[
exp

(
λh(ρ)

)
δ

(
h(ρ)

i
+ ω − λ

)
− exp

(
− λh(ρ)

)
δ

(
h(ρ)

i
+ ω + λ

)]
. �

Example 4.7. The F̂ transform of function cos(λ∆) is obtained as

F̂
[

cos(λ∆)
]
(ω, ρ) = π exp

(
−h(ρ)

(
h(ρ)

i
+ ω

))
·
[
exp

(
− λh(ρ)

)
δ

(
h(ρ)

i
+ ω + λ

)
+ exp

(
λh(ρ)

)
δ

(
h(ρ)

i
+ ω − λ

)]
.

Proof. Using the F̂ transform, we get

F̂
[

cos(λ∆)
]
(ω, ρ) =

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))
cos(λ∆)d∆.

Using the formula cos(λ∆) = exp(iλ∆)+exp(−iλ∆)
2 , we have

F̂
[

cos(λ∆)
]
(ω, ρ) =

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)

))(exp(iλ∆) + exp(−iλ∆)

2

)
d∆

=
1

2

[ +∞∫
−∞

exp
(

∆
(
iω + h(ρ) + iλ

))
d∆

+

+∞∫
−∞

exp
(

∆
(
iω + h(ρ)− iλ

))
d∆

]

=
1

2

(
F̂
[

exp(iλ∆)
]
(ω, ρ) + F̂

[
exp(−iλ∆)

]
(ω, ρ)

)
.
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Finally, using Eqs. (4.2) and (4.3), we get

F̂
[

cos(λ∆)
]
(ω, ρ) = π exp

(
−h(ρ)

(
h(ρ)

i
+ ω

))
·
[
exp

(
− λh(ρ)

)
δ

(
h(ρ)

i
+ ω + λ

)
+ exp

(
λh(ρ)

)
δ

(
h(ρ)

i
+ ω − λ

)]
.�

We give the F̂ transform of the generalized special functions and the generalized
fractional derivatives by means of suitably chosen kernel functions.

Example 4.8. The F̂ transform of the generalized gamma function is obtained as

F̂
[
Γ

(α,α;λ)
∆ (ξ)

]
(ω, ρ) = 2πδ(ω)Γ(ξ), for <(ξ) > 0.

Proof. Let the kernel function of the F̂ transform be chosen as follows

exp
(
∆h(ρ)

)
:= exp

(
∆

ρλ

)
. (4.4)

By applying the F̂ transform with kernel function (4.4) to Eq. (2.7) for α = β, we
have

F̂
[
Γ

(α,α;λ)
∆ (ξ)

]
(ω, ρ) =

+∞∫
−∞

∞∫
0

exp (iω∆) exp

(
∆

ρλ

)
ρξ−1 exp

(
−ρ− ∆

ρλ

)
dρd∆

=

+∞∫
−∞

exp (iω∆) d∆

∞∫
0

ρξ−1 exp (−ρ) dρ. (4.5)

Using Eq. (2.5) for c = 1 in Eq. (4.5), we get

F̂
[
Γ

(α,α;λ)
∆ (ξ)

]
(ω, ρ) = 2πδ(ω)Γ(ξ). �

Example 4.9. The F̂ transform of the generalized gamma function is obtained as

F̂
[
Γ∆(ξ)

]
(ω, ρ) = 2πδ(ω)Γ(ξ), for <(ξ) > 0.

Proof. For λ = 1 in the kernel function (4.4), we have

exp
(
∆h(ρ)

)
:= exp

(
∆

ρ

)
. (4.6)

By applying the F̂ transform with kernel function (4.6) to Eq. (2.6), we get

F̂
[
Γ∆(ξ)

]
(ω, ρ) = 2πδ(ω)Γ(ξ). �

Example 4.10. The F̂ transform of the generalized beta function is obtained as

F̂
[
B

(α,α;κ,µ)
∆ (ξ, η)

]
(ω, ρ) = 2πδ(ω)B(ξ, η),

where <(ξ) > 0, <(η) > 0.
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Proof. Let the kernel function of the F̂ transform be chosen as follows

exp
(
∆h(ρ)

)
:= exp

(
∆

ρκ(1− ρ)µ

)
. (4.7)

By applying the F̂ transform with kernel function (4.7) to Eq. (2.10) for α = β, we
have

F̂
[
B

(α,α;κ,µ)
∆ (ξ, η)

]
(ω, ρ) =

+∞∫
−∞

1∫
0

exp (iω∆) exp

(
∆

ρκ(1− ρ)µ

)

· ρξ−1(1− ρ)η−1 exp

(
− ∆

ρκ(1− ρ)µ

)
dρd∆

=

+∞∫
−∞

exp (iω∆) d∆

1∫
0

ρξ−1(1− ρ)η−1dρ. (4.8)

Using Eq. (2.5) for c = 1 in Eq. (4.8), we get

F̂
[
B

(α,α;κ,µ)
∆ (ξ, η)

]
(ω, ρ) = 2πδ(ω)B(ξ, η). �

Example 4.11. The F̂ transform of the generalized beta function is obtained as

F̂
[
B(ξ, η; ∆;λ)

]
(ω, ρ) = 2πδ(ω)B(ξ, η),

where <(ξ) > 0, <(η) > 0.

Proof. For κ = µ = λ in the kernel function (4.7), we have

exp
(
∆h(ρ)

)
:= exp

(
∆

ρλ(1− ρ)λ

)
. (4.9)

By applying the F̂ transform with kernel function (4.9) to Eq. (2.9), we get

F̂
[
B(ξ, η; ∆;λ)

]
(ω, ρ) = 2πδ(ω)B(ξ, η). �

Example 4.12. The F̂ transform of the generalized beta function is obtained as

F̂
[
B(ξ, η; ∆)

]
(ω, ρ) = 2πδ(ω)B(ξ, η),

where <(ξ) > 0, <(η) > 0.

Proof. For λ = 1 in the kernel function (4.9), we have

exp
(
∆h(ρ)

)
:= exp

(
∆

ρ(1− ρ)

)
. (4.10)

By applying the F̂ transform with kernel function (4.10) to Eq. (2.8) , we get

F̂
[
B(ξ, η; ∆)

]
(ω, ρ) = 2πδ(ω)B(ξ, η). �

Example 4.13. The F̂ transform of the generalized fractional derivative is obtained
as

F̂
[
Dε,∆;κ,µ
v f(v)

]
(ω, ρ) = 2πδ(ω)

(
Dε

0+f
)

(v), for <(ε) > 0.
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Proof. Let the kernel function of the F̂ transform be chosen as follows

exp
(
∆h(ρ)

)
:= exp

(
∆vκ+µ

ρκ(v − ρ)µ

)
. (4.11)

By applying the F̂ transform with kernel function (4.11) to Eq. (2.11) for α = β,
we have

F̂
[
Dε,∆;κ,µ
v f(v)

]
(ω, ρ) =

1

Γ(r − ε)

+∞∫
−∞

exp (iω∆)
dr

dvr

v∫
0

(v − ρ)r−ε−1f(ρ)

· exp

(
∆vκ+µ

ρκ(1− ρ)µ

)
exp

(
− ∆vκ+µ

ρκ(1− ρ)µ

)
dρd∆.

Then,

F̂
[
Dε,∆;κ,µ
v f(v)

]
(ω, ρ) =

1

Γ(r − ε)
dr

dvr

v∫
0

(v − ρ)r−ε−1f(ρ)dρ

+∞∫
−∞

exp (iω∆) d∆. (4.12)

Using Eq. (2.5) for c = 1 in Eq. (4.12), we get

F̂
[
Dε,∆;κ,µ
v f(v)

]
(ω, ρ) = 2πδ(ω)

(
Dε

0+f
)

(v). �

Example 4.14. The F̂ transform of the generalized fractional derivatives are ob-
tained as

F̂
[
Dε,∆;λ
v {f(v)}

]
(ω, ρ) = 2πδ(ω)

(
Dε

0+f
)

(v), for <(ε) > 0

and

F̂
[
Dε,∆;λ
v f(v)

]
(ω, ρ) = 2πδ(ω)

(
cDε

0+f
)

(v), for <(ε) > 0.

Proof. For κ = µ = λ in the kernel function (4.11), we have

exp
(
∆h(ρ)

)
:= exp

(
∆v2λ

ρλ(v − ρ)λ

)
. (4.13)

By applying the F̂ transform with kernel function (4.13) to Eqs. (2.12) and (2.13)
respectively, we get

F̂
[
Dε,∆;λ
v {f(v)}

]
(ω, ρ) = 2πδ(ω)

(
Dε

0+f
)

(v)

and

F̂
[
Dε,∆;λ
v f(v)

]
(ω, ρ) = 2πδ(ω)

(
cDε

0+f
)

(v). �

Example 4.15. The F̂ transform of the generalized fractional derivatives are ob-
tained as

F̂
[
Dε,∆
v {f(v)}

]
(ω, ρ) = 2πδ(ω)

(
Dε

0+f
)

(v), for <(ε) > 0

and

F̂
[
Dε,∆
v f(v)

]
(ω, ρ) = 2πδ(ω)

(
cDε

0+f
)

(v), for <(ε) > 0.
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Proof. For λ = 1 in the kernel function (4.13), we have

exp
(
∆h(ρ)

)
:= exp

(
∆v2

ρ(v − ρ)

)
. (4.14)

By applying the F̂ transform with kernel function (4.14) to Eqs. (2.14) and (2.15)
respectively, we get

F̂
[
Dε,∆
v {f(v)}

]
(ω, ρ) = 2πδ(ω)

(
Dε

0+f
)

(v)

and

F̂
[
Dε,∆
v f(v)

]
(ω, ρ) = 2πδ(ω)

(
cDε

0+f
)

(v). �

5. Application to differential equations

In this section, we obtain the solutions of the ordinary RL electric current and

the fractional motion differential equations via the F̂ transform.

Application 5.1. We consider the ordinary RL electric current differential equa-
tion

L
dI(∆)

d∆
+RI(∆) = E(∆),

where L is inductance, I is current, R is resistance and E is applied electromagnetic
force. If we take E(∆) = δ(∆) in the ordinary RL electric current differential
equation, we get

L
dI(∆)

d∆
+RI(∆) = δ(∆). (5.1)

Proof. By applying the F̂ transform to Eq. (5.1), we get

L F̂
[
I ′(∆)

]
(ω, ρ) +R F̂

[
I(∆)

]
(ω, ρ) = F̂

[
δ(∆)

]
(ω, ρ). (5.2)

In Eq. (5.2), using Eq. (3.3) for n = 1 and considering Eq. (4.1), we obtain

−L
(
iω + h(ρ)

)
F̂
[
I(∆)

]
(ω, ρ) +R F̂

[
I(∆)

]
(ω, ρ) = 1.

Then,

F̂
[
I(∆)

]
(ω, ρ) =

1

iL
(
R−Lh(ρ)

iL − ω
) . (5.3)

By applying the F̂−1 transform to Eq. (5.3), we have

I(∆) = F̂−1

 1

iL
(
R−Lh(ρ)

iL − ω
)
 (∆, ρ)

=
1

2π

1

iL

+∞∫
−∞

exp
(
−∆

(
iω + h(ρ)

))(
R−Lh(ρ)

iL − ω
) dω,
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where ω = R−Lh(ρ)
iL for ∀ρ ∈ [a, b] is the pole point. Therefore, using the Cauchy

Residue Theorem [30], we get

I(∆) =
exp

(
−∆h(ρ)

)
2πiL

(
2πi Res

(
ω =

R− Lh(ρ)

iL

))

=
exp

(
−∆h(ρ)

)
L

lim
ω→R−Lh(ρ)

iL

exp (−iω∆)
(
R−Lh(ρ)

iL − ω
)

(
R−Lh(ρ)

iL − ω
)

=
exp

(
−∆h(ρ)

)
L

exp

(
−i∆

(
R− Lh(ρ)

iL

))
=

1

L
exp

(
−∆R

L

)
,

which is the solution of the ordinary RL electric current differential equation. Also,
this result coincides with the solution of the ordinary RL electric current differential
equation of via the classical Fourier transform, see [8]. �

Application 5.2. We consider the fractional motion differential equation

y′′(∆) + λ1

(
cDε

+y
)

(∆) + λ2y(∆) = f(∆), (5.4)

where λ1, λ2 ∈ R and 0 < <(ε) < 1.

Proof. By applying the F̂ transform to Eq. (5.4), we have

F̂
[
y′′(∆)

]
(ω, ρ) + λ1 F̂

[ (
cDε

+y
)

(∆)
]
(ω, ρ) + λ2 F̂

[
y(∆)

]
(ω, ρ) = F̂

[
f(∆)

]
(ω, ρ).

Using Eqs. (3.3) for n = 1 and (3.11) for r = 1, we get

F̂
[
f(∆)

]
(ω, ρ) =

(
− iω − h(ρ)

)2
F̂
[
y(∆)

]
(ω, ρ)

+ λ1

(
− iω − h(ρ)

)ε
F̂
[
y(∆)

]
(ω, ρ) + λ2 F̂

[
y(∆)

]
(ω, ρ).

That is,

F̂
[
y(∆)

]
(ω, ρ) =

F̂
[
f(∆)

]
(ω, ρ)(

− iω − h(ρ)
)2

+ λ1

(
− iω − h(ρ)

)ε
+ λ2

.

Let

C(ω) :=
(
− iω − h(ρ)

)2
+ λ1

(
− iω − h(ρ)

)ε
+ λ2.

Then,

F̂
[
y(∆)

]
(ω, ρ) =

F̂
[
f(∆)

]
(ω, ρ)

C(ω)
.

Let

F̂
[
g(∆)

]
(ω, ρ) :=

1

C(ω)
. (5.5)
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Then,

F̂
[
y(∆)

]
(ω, ρ) = F̂

[
f(∆)

]
(ω, ρ) F̂

[
g(∆)

]
(ω, ρ)

= F̂
[
f(∆) ∗ g(∆)

]
(ω, ρ). (5.6)

By applying the F̂−1 transform to Eqs. (5.5) and (5.6) respectively, we get

g(∆) =
1

2π

+∞∫
−∞

exp
(
−∆

(
iω + h(ρ)

))
C(ω)

dω (5.7)

and

y(∆) = f(∆) ∗ g(∆) =

+∞∫
−∞

f(∆− x)g(x)dx. (5.8)

Using Eq. (5.7) in Eq.(5.8), we have

y(∆) =
1

2π

+∞∫
−∞

+∞∫
−∞

exp
(
− x
(
iω + h(ρ)

))
f(∆− x)

C(ω)
dωdx. (5.9)

Substituting C(ω) in Eq. (5.9), we have

y(∆) =
1

2π

+∞∫
−∞

+∞∫
−∞

exp
(
− x
(
iω + h(ρ)

))
f(∆− x)(

− iω − h(ρ)
)2

+ λ1

(
− iω − h(ρ)

)ε
+ λ2

dωdx, (5.10)

which is the solution of fractional motion differential equation. �

Corollary 5.3. If we take h(ρ) = 0 in Eq. (5.10), we have

y(∆) =
1

2π

+∞∫
−∞

+∞∫
−∞

exp (−iωx) f(∆− x)

(−iω)2 + λ1(−iω)ε + λ2
dωdx,

which is the solution of fractional motion differential equation via classical Fourier
transform, see [4, 15].

6. Conclusion and Recommendations

In this paper, we introduced the generalized Fourier (F̂) and the generalized in-

verse Fourier (F̂−1) transforms with h-exponential functions in their kernels. Then,
we gave some basic properties and illustrative examples. Furthermore, we obtained
the solutions of the ordinary RL electric circuit and the fractional motion differen-

tial equations via the F̂ and F̂−1 transforms.

Our main goals in this paper was to make it possible to easily take the Fourier
transform of the generalized special functions and fractional derivatives, which in-
volving the exponential functions in their kernels and to extend the field of appli-
cation of the Fourier transform. As a conclusion, we have demonstrated these main

goals by means of the F̂ and F̂−1 transforms that we introduced in this paper.

As a result of our research, we concluded that the kernel function of the gener-
alized Fourier transform should be an exponential function, because we observed
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that this kernel function satisfies the fundamental properties and gives successful
results in applications.

For future work on the Fourier transform, we suggest that scientists focus on the
following problems.

(1) Is it possible that the kernel function of the Fourier transform can be special
functions such as the Mittag-Leffler, Wright, Fox-Wright, Horn, Gauss,
Kummer, Lauricella, Srivastava, and Appell functions?

(2) Can the Fourier transforms defined with these functions be applied to the
other generalized special functions and the generalized fractional derivatives
in the literature?

(3) Can a convolution theorem be given for the Fourier transforms defined by
these functions?

(4) Can the Fourier transforms defined by these functions be useful in solving
ordinary, partial or fractional differential equations?
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[23] M. A. Özarslan, E. Özergin, Some generating relations for extended hypergeometric functions

via generalized fractional derivative operator, Math. Comput. Model. 52 9-10 (2010) 1825–

1833.
[24] R. K. Parmar, Some generating relations for generalized extended hypergeometric functions

involving generalized fractional derivative operator, J. Concr. Appl. Math. 12 (2014) 217–228.

[25] R. K. Parmar, A new generalization of gamma, beta, hypergeometric and confluent hyperge-
ometric functions, Le Matematiche 68 (2013) 33–52.

[26] L. G. Romero, R. Cerutti, L. L. Luque, A new fractional Fourier transform and convolution

products, Inter. J. Pure Appl. Math. 66 4 (2011) 397–408.
[27] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and

applications, Gordon and Breach Science Publishers, New York, (1993).
[28] H. M. Srivastava, P. Agarwal, S. Jain, Generating functions for the generalized Gauss hyper-

geometric functions, Appl. Math. Comput. 247 (2014) 348–352.

[29] E. M. Stein, R. Shakarchi, Fourier analysis: an introduction, Princeton University Press,
Princeton, (2007).

[30] D. G. Zill, P. D. Shanahan, A first course in complex analysis with applications, Jones and

Bartlett Publishers, Toronto, (2003).

Enes Ata
Department of Mathematics, Faculty of Arts and Sciences, Kirsehir Ahi Evran Univer-

sity, 40100 Kirsehir, Turkey.

E-mail address: enesata.tr@gmail.com
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