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COMMUTING TUPLES OF (n,m)-POWER NORMAL

OPERATORS IN HILBERT SPACES

SID AHMED OULD AHMED MAHMOUD AND ASMA AL RWAILY

Abstract. The purpose of this study is to extend the notion of (n,m)-power
normal bounded operator of Hilbert space to a finite set of commuting such

operators. Similar studies for other classes of operators exist in the literature.
The purpose of this paper is to introduce and study the structure of certain

special types of several variable operators on a Hilbert space named joint

(n,m)-power normal multioperators. This is a generalization of the classes of
joint normal and joint n-normal multioperators. We consider a multivariable

generalization of these single variable n-normal and (n,m)-normal operators

and explore some of their basic properties.

1. Introduction

Let K be a complex Hilbert space, B[K] be the algebra of all bounded linear
operators defined in K. For every R ∈ B[K], denote by , ker(R) and R∗ the null
space and the adjoint of R, respectively.

The success of the theory of normal operators on Hilbert spaces led to several
attempts for generalization to a large classes of operators that include normal op-
erators.

For R,S ∈ B[K], we set
[
R, S

]
= RS−SR. An operator R ∈ B[K] is called normal

if
[
R, R∗

]
= 0 ([20, 25, 33]), n-power normal if

[
Rn, R∗

]
= 0 ([2, 18, 27, 28])

and (n,m)-power normal if
[
Rn,

(
Rm
)∗]

= 0 where n,m be two nonnegative
integers ([1, 3, 4, 19]). These concepts have been generalized into what is known
as polynomially normal and doubly polynomially normal as follows: An operator
R ∈ B[K] is called polynomially normal if there exists a nontrivial polynomial P =∑
0≤k≤n

ckz
k ∈ C([z]) such that P (R)R∗ −R∗P (R) =

∑
0≤k≤n

ck

(
RkR∗ −R∗Rk

)
= 0

([24, 30]) and it is called doubly polynomially normal if there exist two polynomials

P and Q where P (z) =
∑

0≤k≤n

akz
k ∈ C([z]) and Q(z) =

∑
0≤k≤m

bkz
k ∈ C([z]) such
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that P (R)Q(R∗)−Q(R∗)P (R) = 0, or equivalently∑
0 ≤ k ≤ m
0 ≤ j ≤ n

akbj

(
Rk
(
R∗
)j − (R∗)jRk) = 0,

(see [5]). Referring to the studies relating to the above-mentioned classes, it was
found that they have many interesting properties similar to those of normal oper-
ators.

Several variables operator theory is a relevant part of functional analysis. Due to
the importance of this field, the interest in studying tuples of operators has grown
considerably in the recent few years, see for instance [8, 9, 10, 17, 16, 15, 26, 36, 35]
and the references therein.

Over the past few years, various aspects of the problem of generalizing the class
of normal, hyponormal and n-normal operators to multivariables operator theory
have appeared in the literature.

Given an p-tuple R :=
(
R1, · · · , Rp

)
∈ B[K]p, we let [R∗,R] ∈ B[K ⊕ · · · ⊕ K]

denote the self-commutator of R, defined by

[R∗,R]k,l := [R∗l , Rk] ∀ (k, l) ∈ {1, · · · , p}2,

where R∗ := (R∗1, · · · , R∗p).

We shall say ([8, 21]) that R is jointly-hyponormal if

[R∗,R] =


[R∗1, R1] [R∗2, R1] · · · [R∗p, R1]
[R∗1, R2] [R∗2, R2] · · · [R∗p, R2]

...
...

...
...

[R∗1, Rp] [R∗2, Rp] · · · [R∗p, Rp]


is a positive operator on K⊕ · · · ⊕K, or equivalently∑

1 ≤i, k≤p

〈[
R∗i Rk

]
x | x

〉
≥ 0 ∀ x ∈ K.

R is said to be jointly normal if R ([11]) satisfies
[
Rk, Rl

]
= 0, k, l ∈ {1, · · · , p}[

R∗k, Rk
]

= 0, k = 1, · · · , p

Very recently, the author in [6] has introduced the concept of jointly n-normal tuple
as follows: R = (R1, · · · , Rp) ∈ B[K]p is said to be jointly n-normal multioperators
if R satisfies 

[
Rk, Rl

]
= 0, k, l ∈ {1, · · · , p}[

Rnk , R
∗
k

]
= 0, k = 1, · · · , p

,

for some positive integer n.

In the current paper, closely related to this problem of generalization, we introduce
a new class of operators, and we investigate numerous properties of this class.
Specifically, we introduce the class of jointly (n,m)-power normal for p-tuples of
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operators and extend some classical theorems on (n,m)-normal, jointly normal and
jointly n- normal operators [1, 2, 3, 7, 27].

This paper has been organized in two sections. In section two, we introduce
a new class of operators named joint (m,n)-power normal multioperators . Our
motivation for this study comes from the problem of finding a tuple of operators R =(
R1, · · · , Rp

)
that are jointly (n, m)-power-normal. Some of the basic properties of

this class with some examples are studied. Moreover, the product, tensor product
of finite numbers of these type are discussed.

2. Commuting Tuples of (n,m)-Power Normal Operators in Hilbert
Spaces

In this section we introduce and study the class of jointly (n,m)-power normal.

Deninition 2.1. Let R := (R1, · · · , Rp) ∈ B[K]p. We say that R is jointly (n,m)-
power normal tuple or jointly (n,m)-power normal if R satisfies the following con-
ditions 

[
Rk, Rl

]
= 0; ∀ (k, l) ∈ {1, · · · , p}2[

Rnk , R
∗m
k

]
= 0 ∀ k = 1, · · · , p

for some positive integers n and m.

We observe that when n = m = 1, R is jointly normal [11]and when m = 1, R
is jointly n-power normal [6].

The following example shows that there exists a multioperators R = (R1, · · · , Rp) ∈
B(K)p such that each Rk is (n,m)-power normal for k = 1, · · · , p, however R is
not jointly (n,m)-power normal. Which means that studying these concepts is not
trivial.

Example 2.2. Let R = (R1, R2) ∈ B[C4] where

R1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and R2 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .

It easy to check that
[
R1, R2

]
6= 0 and

[
Rnj , R

∗m
j

]
= 0 for j = 1, 2. This means that,

each Rj is (n,m)-power normal while that R is not jointly (n,m)-power normal.

Remark 1. (1) Let R ∈ B[K] be an (n,m)-power normal operator, then R =
(R, · · · , R) ∈ B[K]p is jointly (n,m)-power normal.

(2) Let R :=
(
R1, · · · , Rp

)
∈ B[K]p be commuting multioperators. If each Rk is

(n,m)-power normal single operator, then R is jointly (n,m)-power normal.

Proposition 2.3. Let R = (R1, · · · , Rp) ∈ B
[
K
]p

, the following statements hold.

(1) R is jointly (n,m)-power normal if and only if R∗ is jointly (m,n)-power nor-
mal.

(2) If each Rk for k = 1, · · · , p is invertible, then R−1 :=
(
R−11 , · · · , R−1p

)
is jointly

(n,m)-power normal if and only if R is jointly (n,m)-power normal.



4 SID AHMED OULD AHMED MAHMOUD AND ASMA AL RWAILY

(3) If M is a reducing subspace for each Rk for k = 1, · · · , p, then R
∣∣M =

(R1

∣∣M, · · · , Rp
∣∣M) is jointly (n,m)-power normal.

(4) If V is an unitary operator, then V ∗RV :=
(
V ∗R1V, · · · , V ∗RpV

)
is jointly

(n,m)-power normal.

Proof. (1) Obviously,
[
R∗k, R

∗
l

]
=
[
Rl, Rk

]∗
and therefore

[
R∗k, R

∗
l

]
= 0⇐⇒

[
Rl, Rk

]
=

0.

On the other hand, [
R∗mk , Rnk

]
= −

[
Rnk , R

∗m
k

]
, k = 1, · · · , p.

Thus, R is jointly (n,m)-power normal if and only if R∗ is jointly (m,n)-power
normal.

(2) Assume that R is jointly (n,m)-power normal. Then[
Rk, Rl

]
= RkRl −RlRk = 0 =⇒ RkRl = RlRk for all k, l = 1, · · · , p

=⇒ R−1l R−1k = R−1k R−1l for all k, l = 1, · · · , p
=⇒

[
R−1l , R−1k

]
= 0 for all k, l = 1, · · · , p.

However, if each Rk is invertible (n,m)-power normal, if follows from [19] that R−1k
is (n,m)-power normal. Hence, R−1 :=

(
R−11 , · · · , R−1p

)
is jointly (n,m)-power

normal. The converse follows immediately from the identity
(
R−1

)−1
= R.

(3) We have
[
Rk
∣∣M, Rl

∣∣M)] = 0 for all k, l = 1, · · · , p. On the other hand,[(
Rk
∣∣M)n, (Rk∣∣M)∗m] =

[
Rk

n
∣∣M, Rk

∗m∣∣M] = 0.

(4) We observe that,[
V ∗RkV, V

∗RlV
]

=
(
V ∗RkV

)(
V ∗RlV

)
−
(
V ∗RlV

)(
V ∗RkV

)
= V ∗RkRlV − V ∗RlRkV
= V ∗

[
Rk, Rl

]
V

= 0.

Moreover,[(
V ∗RkV

)n
,
(
V ∗RkV

)∗m]
= V ∗

(
Rk
)n
V V ∗R∗mk V − V ∗R∗mk V V ∗

(
Rk
)n
V

= V ∗
(
Rk
)n
R∗mk V − V ∗R∗mk

(
Rk
)n
V

= V ∗
[(
Rk
)n
, R∗mk

]
V

= 0.

Hence, V ∗RV is jointly (n,m)-power normal. �

In the the following theorem we collect some properties of jointly (n,m)-power
normal.

Theorem 2.4. Let R = (R1, · · · , Rp) ∈ B[K]p be jointly (n,m)-power normal,
then the following properties hold.

(1) R is jointly (rn, sm)-power normal for some positive integers r
and s.
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(2) Rq := (Rq11 , · · · , R
qp
p ) is jointly (n,m)-power normal for

q = (q1, · · · , qp) ∈ Np.

Proof. (1) Under the assumption that R is a jointly (n,m)-power normal, it follows
that

[
Rk, Rl

]
= 0 for k, l = 1, · · · , p. However[(

Rk
)rn

, R
∗(sm)
k

]
=

(
Rk
)rn

R
∗(sm)
k −R∗(sm)

k Rk
)rn

=
(
Rk
)n · · · (Rk)n︸ ︷︷ ︸
r−times

. R∗mk · · ·R∗mk︸ ︷︷ ︸
s−times

−R∗mk · · ·R∗mk︸ ︷︷ ︸
s−times

(
Rk
)n · · · (Rk)n︸ ︷︷ ︸
r−times

= R∗mk · · ·R∗mk︸ ︷︷ ︸
s−times

(
Rk
)n · · · (Rk)n︸ ︷︷ ︸
r−times

−R∗mk · · ·R∗mk︸ ︷︷ ︸
s−times

(
Rk
)n · · · (Rk)n︸ ︷︷ ︸
r−times

= 0.

(2) If qk = 1 for all k ∈ {1, · · · , q}, then
[
Rqkk , R

ql
l ] = 0.

If qk > 1 for all k ∈ {1, · · · , p}, by taking into account [36, Lemma 2.1] we have

[Rqkk , R
ql
l ] =

∑
α+α′=qk−1
β+β′=ql−1

RαkR
β
l [Rk, Rl]R

α′

l R
β′

k .

Now, under the assumption that R is jointly (n, m)-power normal, it follows that[
Rqkk , R

ql
l ] =

∑
α+α′=qk−1
β+β′=ql−1

RαkR
β
l [Rk, Rl]R

α′

l R
β′

k = 0, ∀ (k, l) ∈ {1, · · · , p}2.

Moreover, by looking that Rk is a (n,m)-power normal, then from [19, Proposition
2.10], we obtain that Rqkk is (n,m)-power normal for all k ∈ {1, · · · , q}. This means

that,
(
Rq11 , · · · , R

qp
p

)
is jointly (n,m)-power normal.

�

Proposition 2.5. Let R = (R1, · · · , Rp) ∈ B[K]p. The following statements are
true.

(1) If R is jointly (n, n)-power normal, then Rn :=

(
Rn1 , · · · , Rnp

)
is jointly normal.

(2) If
(
R
)n

is jointly normal and RkRl −RlRk = 0 for all k, l = 1, · · · , p,
then R is jointly (n, m)-power normal.

Proof. (1) If R is jointly (n, n)-power normal. Then we get[
Rk, Rl

]
= 0 =⇒

[
Rnk , R

n
l

]
= 0 ∀ k, l = 1, · · · , p.

However, [
Rnk , R

∗n
k

]
= 0, ∀ k ∈ 1, · · · , p.

Therefore Rn is joint normal.

(2) Since Rn is jointly normal, we have that[
Rnk , R

∗n
k

]
= 0, for each k = 1, · · · , p.

Moreover, it is well known that
[
Rnk , Rk

]
= 0 for each k = 1, · · · , p. By taking into

account the Fuglede-Putnam theorem ([37]) we get
[
Rnk , R

∗
k

]
= 0 and therefore
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Rnk , R

∗m
k

]
= 0 and moreover for each k = 1, · · · , p. Therefore R is jointly (n, m)-

power normal. �

Proposition 2.6. Let R = (R1, · · · , Rp) ∈ B[K]p. The following assertions hold.

(1) If R is joint (n,m)-power normal and jointly (n+ 1, m)-power normal tuple,
then R is jointly (n+ 2,m)-power normal.

(2) If R is jointly (n, m)-power normal and joint (n,m+ 1)-power normal
, then R is jointly (n, m+ 2)-power normal.

Proof. Since R is joint (n,m)-power normal and jointly (n+ 1, m)-power normal,
we have 

[
Rk, Rl

]
= 0 ∀ k, l = 1, · · · , p[(

Rk
)n
, R∗mk

]
= 0 k = 1, · · · , p[(

Rk
)n+1

, R∗mk
]

= 0, k = 1, · · · , p.
This implies that

[
Rk, Rl

]
= 0, ∀ k, l = 1, · · · , p(

Rk
)n[

RkR
∗m
k −R∗mk Rk

]
= 0, k = 1, · · · , p

,

and therefore, 
[
Rk, Rl

]
= 0 ∀ k, l = 1, · · · , p[(

Rk
)n+2

, R∗mk
]

= 0, k = 1, · · · , p.
So, R is jointly (n+ 2,m)-power normal tuple.

(2) The proof of the statement (2) follows by similar techniques as in the proof of
statement (1), so we omit it. �

Proposition 2.7. Let R = (R1, · · · , Rp) ∈ B[K]p, the following statements hold:

(1) If R is joint (n1, m)-power normal and jointly (n2,m)-power normal
, then R is jointly (n1 + n2, m)-power normal.

(2) If R is jointly (n, m1)-power normal and jointly (n, m2)-power normal
, then R is jointly (n, m1 +m2)-power normal.

(3) If R is jointly (n1, m)-power normal and jointly (n2, m)-power normal
, then R is jointly (rn1 + sn2, m)-power normal
for r, s ∈ N.

(4) If R is jointly (n, m1)-power normal and jointly (n, m2)-power normal
, then R is jointly (n, rm1 + sm2, )-power normal
for r, s ∈ N.

Proof. (1) We have
[
Rk, Rl

]
= 0 for k, l = 1, · · · , p and moreover for k = 1, · · · , p,[(

Rk
)n1+n2

, R∗mk
]

=
(
Rk
)n1+n2

R∗mk −R∗mk
(
Rk
)n1+n2

=
(
Rk
)n1
[(
Rk
)n2

, R∗mk
]

= 0.
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(2) We have
[
Rk, Rl

]
= 0 for k, l = 1, · · · , p and moreover for k = 1, · · · , p,[(

Rk
)n
, R
∗(m1+m2)
k

]
=

(
Rk
)n
R
∗(m1+m2)
k −R∗(m1+m2)

k

(
Rk
)n1+n2

=
[(
Rk
)n
, R∗m1

k

]
R∗m2

k

= 0.

Therefore, the required results are satisfied. �

Theorem 2.8. Let R = (R1, · · · , Rp) ∈ B[K]p such that

ker(R) :=
⋂

1≤k≤p

ker(Rk) = {0}.

If R is joint (n1,m)-power normal and jointly (n2, m)-power normal for some
positive integer n1, n2 and m, then, R is jointly (max{n1, n2} −min{n1, n2},m)-
power normal. In particular, if R is jointly (n, 1)-power normal and jointly (n +
1, 1)-power normal, then R is jointly normal.

Proof. We have,
[
Rk, Rl

]
= 0 for all (k, l) ∈ {1, · · · , p}2. Moreover for each

k = 1, · · · , p we have 
[(
Rk
)n1

R∗mk
]

= 0[(
Rk
)n2

, R∗mk
]

= 0

Considering the case where n1 ≥ n2, so we get[(
Rk
)n1

, R∗mk
]

= 0 =⇒
(
Rk
)n2
[(
Rk
))n1−n2

, R∗mk
]

= 0

=⇒
[(
Rk
)n1−n2

, R∗mk
]

= 0,

and hence R is jointly (n1 − n2, m)-power normal. �

Proposition 2.9. Let R = (R1, · · · , Rp) ∈ B[K]p be commuting tuple. For n,m ∈
N, set

R′ =
(
R′1, · · · , R′p

)
=
(
Rn1 +R∗m1 , · · · , Rnp +R∗mp

)
and

R′′ =
(
R′′1 , · · · , R′′p

)
=
((
R1

)n −R∗m1 , · · · ,
(
Rp
)n −R∗mp )

.

Then the following axioms hold.

(1) R is jointly n-power normal if and only if [R′k, R
′′
k ] = 0 for each

k = 1, · · · , p.

(2) If R is jointly (n, m)-power normal, then Z =
(
Rn1R

∗m
1 , · · · , RnpR∗mp

)
commutes with R′ and R′′.

(3) R is jointly (n,m)-power normal , if and only if
(
R
)n

commutes with R′.

(4) R is jointly (n,m)-power normal if and only if
(
R
)n

commutes with R′′.
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Proof. Obviously,
[
Rk, Rl

]
= 0 ∀ (k, l) ∈ {1, · · · , p}2. On the other hand,[

R′k, R
′′
k

]
= 0

⇐⇒ R′kR
′′
k −R′′kR′k = 0

⇐⇒
((
Rk
)n

+R∗mk
)((

Rk
)n −R∗mk )

−
((
Rk
)n −R∗mk )((

Rk
)n

+R∗mk
)

= 0

⇐⇒
(
Rk
)2n − (Rk)nR∗mk +R∗mk

(
Rk
)n −R∗2mk −

((
Rk
)2n

+
(
Rk
)n
R∗mk −R∗mk

(
Rk
)n −R∗2mk

)
= 0

⇐⇒
(
Rk
)n
R∗mk −R∗mk

(
Rk
)n

= 0, ∀ k ∈ {1, · · · , p}.

This completes the proof. �

Theorem 2.10. Let R = (R1, · · · , Rp) ∈ B[K]p be jointly (n,m)-power normal
for n ≥ m. If each Rmk is a partial isometry for k = 1, · · · , p, then R is jointly
(n+m, m)-power normal.

Proof. Suppose R is jointly (n,m)-power normal for n ≥ m. It is easy to see that
each Rk is (n,m)-power normal for 1 ≤ k ≤ p. Under the hypothesis, Rmk is a
partial isometry, it follows from [32, Theorem 2.4] that Rk is (n + m, m)-power
normal operator for k = 1, · · · , p. Consequently, R is jointly (n + m, m)-power
normal. �

Proposition 2.11. Let R = (R1, · · · , Rp) ∈ B[K]p and S = (S1, · · · , Sp) ∈ B[K]p

be two jointly (n,m)-power normal. The following statements hold.

(1) If [Ri, Sj ] = 0, ∀i, j ∈ {1, · · · , p} and RkSk = RkS
∗
k = 0 for all k ∈ {1, · · · , p},

then
R + S = (R1 + S1, · · · , Rp + Sp) is jointly (n,m)-power normal.

(2) If [Rk, Sl] = 0, ∀ k, l ∈ {1, · · · , p}2 and [Rk, S
∗
k ] = 0 for all k ∈ {1, · · · , p}, then

RS =
(
R1S1, · · · , RpSp) and SR = (S1R1, · · · , SpRp) are jointly (n,m)-power

normal.

Proof. (1) For all (i, j) ∈ {1, · · · , p}2, we have[
Rk + Sk, Rl + Sl

]
=

(
Rk + Sk

)(
Rl + Sl

)
−
(
Rl + Sl)(Rk + Sk

)
=

[
Rk, Rl

]
+
[
Sk, Sl] + [Rk, Sl] + [Sk, Rl] = 0.

Besides, for k ∈ {1, 2, · · · , p}, we get(
Rk + Sk

)∗m((
Rk + Sk

))n
=

(
Rk + Sk

)∗m(
Rk + Sk

)n
=

( m∑
j=0

(
m

j

)
R∗jk S

∗m−j
k

)( n∑
j=0

(
n

j

)(
Rk
)j(

Sk
)n−j)

=
(
R∗mk + S∗mk

)((
Rk
)n

+
(
Sk
)n)

=
(
R∗mk

(
Rk
)n

+R∗mk
(
Sk
)n

+ S∗mk
(
Rk
)n

+ S∗mk
(
Sk
)n

=
(
Rk
)n
R∗mk +

(
Sk
)n
S∗mk

=
((
Rk
)n

+
(
Sk
)n)(

Rk + Sk
)∗m

=

( n∑
j=0

(
n

j

)(
Rk
)j(

Sk
)n−j)(

Rk + Sk
)∗m

=
(
Rk + Sk

)n(
Rk + Sk

)∗m
.



COMMUTING TUPLES OF (n,m)-POWER NORMAL OPERATORS 9

So, R + S is jointly (n, m)-power normal. (2) We have for all k, l ∈ {1, · · · , q},

[RkSk , RlSl] = RkSkRlSl −RlSlRkSk
= RkRlSkSl −RlRkSlSk
= RkRlSkSl −RkRlSlSk
= RkRl(SkSl − SlSk)

= RkRl[Sk, Sl] = 0.

However, let k ∈ {1, · · · , p}, we have

(RkSk)∗
(
RkSk

)n
= S∗kR

∗
k

(
Rk
)n(

Sk
)n

= S∗k
(
Rk
)n
R∗k
(
Sk
)n

= S∗k
(
Rk
)n
SnkR

∗
k

=
(
Rk
)n(

Sk
)n
S∗kR

∗
k

=
(
RkSk

)n(
RkSk

)∗
.

This implies that RS is jointly (n,m)-power normal tuple. In same way, we show
that SR is jointly (n.m)-power normal tuple. �

The following proposition shows that the class of jointly (n, m)-power normal
is closed subset of B[K]p equipped with the norm,

‖R‖ = ‖
(
R1, · · · , Rp

)
‖ = sup

1≤j≤p
‖Rj‖.

Proposition 2.12. The class of jointly (n, m)-power normal is a closed subset of
B[K]p.

Proof. Suppose that
(
Rk =

(
R1(k), · · · , Rp(k)

))
k
∈ B[K]p be a sequence of jointly

(n,m)-power normal for which

‖Rk −R‖ = sup
1≤j≤p

(
‖Rj(k)−Rj‖

)
−→ 0, as k −→∞,

where R =
(
R1, · · · , Rp) ∈ Bd[K]p. Obviously, for each j ∈ {1, · · · , p} we have

lim
k→+∞

‖Rj(k)−Rj‖ = 0. (2.1)

Since
(
Rj(k)

)n
Rj(k)∗m = Rj(k)∗m

(
Rj(k)

)
. for each j = 1, · · · , p, it follows from

[32, Theorem 2.4] that(
Rj
)n
R∗mj = R∗mj

(
Rj
)n
, ∀ j ∈ {1, · · · , p}.

Moreover, for all i, j ∈ {1, · · · , p} and k ∈ N, we can see that

‖Ri(k)Rj(k)−RiRj‖ = ‖Ri(k)
(
Rj(k)−Rj

)
+
(
Ri(k)−Ri)Rj‖

≤ ‖Ri(k)‖‖Rj(k)−Rj‖+ ‖Ri(k)−Ri‖‖Rj‖
≤

(
‖Ri(k)−Ri‖+ ‖Ri‖

)
‖Rj(k)−Rj‖+ ‖Ri(k)−Ri‖‖Rj‖.

Hence, in view of (2.1), we obtain

‖Ri(k)Rj(k)−RiRj‖ −→ 0, as k → +∞, ∀(i, j) ∈ {1, · · · , q}2.

On the other hand, since {Rk}k = {
(
R1(k), · · · , Rp(k))}k is a sequence of jointly

(n,m)-power normal tuple, then

[Ri(k), Rj(k)] = 0 ∀ (i, j) ∈ {1, · · · , p}2 ; and k ∈ N.
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Therefore, we immediately get

[Ri, Rj ] = 0 ∀ (i, j) ∈ {1, 2, · · · , p}2.

Therefore, R is jointly (n, m)-power normal. �

3. Tensor Product and Tensor Sum of Jointly (n,m)-Normal
Operators

Given non-zero R,S ∈ B(K), let R ⊗ S ∈ B(K⊗K) denote the tensor product
on the Hilbert space K⊗K. We recall that the tensor product (R⊗ S)∗(R⊗ S) =
R∗R⊗ S∗S,

R⊗ S = (R⊗ I)(I ⊗ S) = (I ⊗ S)(R⊗ I).

(R⊗S)k = Rk⊗Sk. The operation of taking tensor products R⊗S preserves many
properties of R and S, but by no means all of them. Thus, it was proved in [38,
Theorem 2.4] that R⊗S is normal if and only if R and S are normal. Similar result
was proved in [7] for n-normal operators. However, it was proved in [32] that If
R,S ∈ B[K] such that R and S are (n,m)-power normal operators, then R ⊗ S is
(n, m)-power normal.

In this section,we study the tensor product and tensor sum of two jointly (n, m)-
power normal. Let R = (R1, · · · , Rp) ∈ B[K]p and S = (S1, · · · , Sp) ∈ B[K]p. We
denote by

R⊗ S =
(
R1 ⊗ S1, · · · , Rp ⊗ Sp)

and

R� S = R⊗ I + I⊗ S =
(
R1 ⊗ I + I ⊗ S1, · · · , Rp ⊗ I + I ⊗ Sp

)
.

Theorem 3.1. Let R = (R1, · · · , Rp) ∈ B[K]p and S = (S1, · · · , Sp) ∈ B[K]p are
two jointly (n, m)-power normal, then R⊗ S is jointly (n, m)-power normal.

Proof. Since R =
(
R1, · · · , Rp

)
and S =

(
S1, · · · , Sp

)
are joint (n,m)-power normal

tuples, we have all (k, l) ∈ {1, · · · , p}2[
(Rk ⊗ Sk), (Rl ⊗ Sl)

]
=

[
(Rk ⊗ Sk)(Rl ⊗ Sl)− (Rl ⊗ Sl)(Rk ⊗ Sk)

]
= RkRl ⊗ SkSl −RlRk ⊗ SlSk
= RlRk ⊗ SlSk −RlRk ⊗ SlSk
= 0.

Moreover, for all k ∈ {1, · · · , p}, we have((
Rk ⊗ Sk

))n(
Rk ⊗ Sk

)∗m
=

(
Rk
)n
R∗mk ⊗

(
Sk
)n
S∗mk

= R∗mk
(
Rk
)n ⊗ S∗mk (

Sk
)n

=
(
Rk ⊗ Sk

)∗m((
Rk ⊗ Sk

))n
.

So, R⊗ S is joint (n, m)-power normal tuple. �

The following example shows that the converse of the above theorem need not
hold in general.



COMMUTING TUPLES OF (n,m)-POWER NORMAL OPERATORS 11

Example 3.2. Let R1 =

 −1 0 0
0 1 0
0 0 1

 ∈ B[C3] and R2 =

 0 0 1
0 1 0
1 0 0

 ∈
B[C3]. A direct calculation shows that

R1 ⊗R1 =



1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


and

R2 ⊗R2 =



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0


.

Consider, R =
(
R1, R2

)
and R⊗R =

(
R1 ⊗R1, R2 ⊗R2)

)
. We observe that R is

not jointly (2, 3)-power normal since R1R2 6= R2R1. However

(
Rk ⊗Rk

)∗3((
Rk ⊗Rk

))2
=
((
Rk ⊗Rk

))2(
Rk ⊗Rk

)∗3
, k ∈ {1, 2}.

Hence, R⊗R is jointly (2, 3)-power normal pairs.

In the following theorem we give the conditions under which the converse of Theo-
rem 3.1 is true.

Theorem 3.3. Let R = (R1, · · · , Rp) ∈ B[K]p and S = (S1, · · · , Sp) ∈ B[K]p are
commuting multioperators. Then, if R ⊗ S is jointly (n, n)-power normal tuple if
and only if R and S are jointly (n, n)-power normal.

Proof. Assume that T ⊗ S is jointly (n, n)-power normal. By taking into account
the statement (1) of Proposition 2.5 it follows that((

R⊗ S
))n

=

(((
R1 ⊗ S1

))n
, · · · ,

((
Rp ⊗ Sp

))n)
=

(
Rn1 ⊗ Sn1 , · · ·Rnp ⊗ Snp

)
is jointly normal tuple. From which we deduce that(

Rk ⊗ Sk
)n

=
(
Rnk ⊗ Snk

)
,

is normal for each k = 1, · · · , p. By [38, Theorem 2.4] it is well known that

Rnk ⊗ Snk is normal if and only if Rnk and Snk are normal operators.
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However, According to [27, Propositon 2.1] it is well known that Rnk is normal if
and only if that Rk is n-power normal and similarly, Snk is normal if and only if
that Sk is n-power normal. Therefore R and S are jointly (n, n)-power normal.

The converse follows from Theorem 3.1. �

Corollary 3.4. Let R = (R1, · · · , Rp) and S = (S1, · · · , Sp) be jointly (n,m)-power
normal. Then Rα⊗Sβ is jointly (n,m)-power normal for all α = (α1, · · · , αp) ∈ Np

and β = (β1, · · · , βp) ∈ Np where Rα =
(
Rα1

1 . · · · , Rαp
p

)
and Sβ =

(
Sβ1

1 . · · · , Sβp
p

)
.

Proof. The proof can be easily derived from the statement (2) of Theorem 2.4 and
Theorem 3.1. �
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