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THE STABILITY ANALYSIS OF THE SYSTEM OF

INTEGRODIFFERENTIAL EQUATIONS

SEBAHEDDIN SEVGIN, JARGEES ABDULWAHID ABDULLAH, SADEQ TAHA
ABDULAZEEZ

Abstract. In this study, we use the fixed-point theorem of Margolis and Diaz
to investigate the Ulam-Hyers-Rassias stability of a linear system of Volterra

integrodifferential equations. We also extended this finding to a n-th order

linear Volterra integrodifferential problem. In addition, we present examples
to highlight the relevance of our findings. The discovered conclusions are theo-

retically significant and have possible applications in a variety of mathematical

and scientific domains.

1. Introduction

In 1940, Stanislaw Marcin Ulam addressed the question, ”Under what conditions
is there a linear transformation near an approximation linear transformation?” in
his comprehensive lecture at the University of Wisconsin, where he explored key
previously unsolved topics (see [1]). Hyers published the first response to Ulam’s
challenge in 1941, demonstrating that the aggregate Cauchy functional equation for
any pair of Banach spaces is stable [2]. Rassias proved the generalization of Hyers’
theorem in 1978 by bringing the Cauchy difference to infinity. The Ulam-Hyers-
Rassias stability is the name given to this event. The proofs were made by Hyers
and Rassias by creating an additive function from a direct function. This is known
as the direct technique, and it is a useful tool for studying the stability of numerous
functional equations. There are numerous more viable approaches for investigating
Ulam-Hyers stability. The fixed point approach is one of them. Baker was the
first to adopt this strategy, according to Baker [3]. Radu then established the
stability of the additive Cauchy functional equation using Diaz and Margolis’ fixed
point theorem [9], [4] Cadariu and Radu ([5], [6]) achieved some conclusions for the
generalized Ulam-Hyers stability of the Cauchy and Jensen functional equations in
the same way.
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The Ulam-Hyers stability of Volterra equation was first proven by Jung using
the method built by Cadariu and Radu [5] on Margolis and Diaz’s alternative fixed-
point theorem in [7]. Later, some researchers used the same method to demonstrate
the stability of different versions of Volterra integral equations (see [10], [11], [12],
[13]).

Integro-differential equations are an important theoretical topic with many ap-
plications. Many studies have examined the Ulam-Hyers stability of Volterra inte-
grodifferential equations in recent years. In Şevgin and Şevli [15], the Ulam-Hyers
stability and Ulam-Hyers-Rassias stability of a nonlinear Volterra integrodifferen-
tial equation with an initial condition were investigated using Diaz and Margolis’
fixed-point approach. More studies can be found at [8], [16], [17], [18], [19], [20].

Let Ω be any interval and γ ∈ Ω. Now, we consider linear system of Volterra
integrodifferential equation the form

x′(ξ) = P(ξ)x(ξ) + q(ξ) +

∫ ξ

γ

K(ξ, η)x(η)dη, ξ ∈ Ω (1.1)

where q ∈ Rn is a vector of continuous functions on Ω, P is an n × n matrix of
continuous functions on Ω, K is an n×n matrix of continuous functions on Ω×Ω.
We introduce the following notations that we will use in this section:

‖w(ξ)‖ = max
1≤i≤n

|wi(ξ)| , w ∈ Rn,

‖A(ξ, η)‖ = max
1≤i≤n

n∑
j=1

|aij(ξ, η)| , A ∈ Rn×n.

Definition 1.1. The system (1.1) is said to be Ulam-Hyers-Rassias stable if for
each continuously differentiable function x(ξ) satisfying∥∥∥∥∥x′(ξ)−P(ξ)x(ξ)− q(ξ)−

∫ ξ

γ

K(ξ, η)x(η)dη

∥∥∥∥∥ ≤ ϕ(ξ), ξ ∈ Ω

where ϕ(ξ) ≥ 0 for all ξ, there exists a solution x0(ξ) of system (1.1) and a constant
C > 0 such that

‖x(ξ)− x0(ξ)‖ ≤ Cϕ(ξ),

for all ξ, where C is independent of x(ξ) and x0(ξ).

The focus of this paper is on the Ulam-Hyers-Rassias stability of the system of
linear first-order Volterra integrodifferential equation (1.1), which is discussed using
the fixed point method of Diaz and Margolis. These results are then applied to a
linear Volterra integrodifferential equation of n-th order defined on three different
sets: the set of real numbers, a left-closed right-open interval of the set of real
numbers, and a left-open right-closed interval of a set of real numbers.

2. Basic Information

This section defines a generalized metric and offers a generalization of fixed point
theory, both of which are necessary for proving our main conclusion.

Definition 2.1. Let Y be a nonempty set. A function ρ : Y × Y → [0,∞] is
called a generalized metric on Y if and only if ρ satisfies (i) ρ(y, z) = 0 if and only
if y = z; (ii) ρ(y, z) = ρ(z, y) for all y, z ∈ Y ; (iii) ρ(y, w) ≤ ρ(y, z) + ρ(z, w) for all
y, z, w ∈ Y.
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Theorem 2.1. [Diaz-Margolis] [9] Let (Y, ρ) be a generalized complete metric space.
Assume that A : Y → Y a strictly contractive operator with the Lipschitz constant
L < 1. If there exists a nonnegative integer k such that ρ(Ak+1y,Aky) < ∞ for
some y ∈ Y , then the followings are true:

(a) The sequence {Any} is convergent, and its limit y∗ is a fixed point of A;
(b) y∗ is the unique fixed point of A in

Y ∗ =
{
y ∈ Y

∣∣ ρ(Aky, z) <∞
}

;

(c) If z ∈ Y ∗, then

ρ(z, y∗) ≤ 1

1− L
ρ(Az, z).

3. The Stability of a Linear Volterra Integrodifferential Equation
System

The fixed-point method was used by Alqifiary [14] to demonstrate the generalized
Ulam-Hyers stability of a system of first order linear differential equations. A
second-order linear differential equation was then treated with the results that
had been obtained. We will use the same method to demonstrate a system of
linear Volterra integrodifferential equations’ Ulam-Hyers-Rassias stability. This
conclusion will also be applied to a linear Volterra integrodifferential equation of
nth order.

Firstly, we show that equation (1.1) have the Ulam-Hyers-Rassias stability on
Ω = [α, β), where −∞ < α < β ≤ ∞.

Theorem 3.1. Let P : Ω → Rn×n, q : Ω → Rn and K : Ω × Ω → Rn×n be a
continuous function and let M be a constant such that ‖P(ξ)‖ ≥ M for all t ∈ Ω.
Let L and N be positive constants with 0 < L + N < 1. Suppose that ϕ is an
integrable positive valued function on Ω such that∫ ξ

γ

‖P(ξ)‖ϕ(τ)dτ ≤ Lϕ(ξ), ∀ξ ∈ Ω (3.1)

and ∫ ξ

γ

∫ η

γ

‖K(η, τ)‖ϕ(τ)dτdη ≤ Nϕ(ξ), ∀(ξ, η) ∈ Ω× Ω. (3.2)

If a continuously differentiable function x : Ω→ Rn satisfies∥∥∥∥∥x′(ξ)−P(ξ)x(ξ)− q(ξ)−
∫ ξ

γ

K(ξ, η)x(η)dη

∥∥∥∥∥ ≤ ϕ(ξ) (3.3)

for all ξ ∈ Ω, then there exists a unique solution x0 : Ω→ Rn of the equation (1.1)
such that

‖x(ξ)− x0(ξ)‖ ≤ L

M −M(L+N)
ϕ(ξ) (3.4)

for all ξ ∈ Ω and x0(γ) = x(γ).

Proof. Let us consider the set

Y = {f : Ω→ Rn | f is continuous and f(γ) = x(γ)}
and the the generalized metric ρ(f ,g) defined on Y as

ρ(f ,g) = inf {C ∈ [0,∞] | ‖f(ξ)− g(ξ)‖ ≤ Cϕ(ξ), ∀ξ ∈ Ω} . (3.5)
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Then (Y, ρ) is a generalized complete metric space (see [7]). We define the operator
A : Y → Y ,

(Af)(ξ) = x(γ)−
∫ ξ

γ

(P(τ)f(τ) + q(τ)) dτ−
∫ ξ

γ

∫ η

γ

K(η, τ)f(τ)dτdη, ∀ξ ∈ Ω (3.6)

for all f ∈ Y . Indeed Af is a continuously differentiable function on Ω, since P, q
and K(ξ, η) are continuous function and Af(γ) = x(γ). Now let f ,g ∈ Y . Then we
have

‖Af(ξ)−Ag(ξ)‖ ≤

∥∥∥∥∥
∫ ξ

γ

P(τ) (f(τ)− g(τ)) dτ +

∫ ξ

γ

∫ η

γ

K(η, τ) (f(τ)− g(τ)) dτdη

∥∥∥∥∥
≤ ρ(f ,g)

∫ ξ

γ

‖P(τ)‖ϕ(τ)dτ + ρ(f ,g)

∫ ξ

γ

∫ η

γ

‖K(η, τ)‖ϕ(τ)dτdη

≤ ρ(f ,g)Lϕ(ξ) + ρ(f ,g)Nϕ(ξ)

= (L+N)ρ(f ,g)ϕ(ξ)

for all ξ ∈ Ω. Therefore

ρ(Af ,Ag) ≤ (L+N)ρ(f ,g).

Given that 0 < L+N < 1, the operator A is a contraction of the constant L+N .
So, by integrating both sides of the relation (3.3) on [γ, ξ], we get∥∥∥∥∥x(ξ)− x(γ)−

∫ ξ

γ

(P(τ)x(τ) + q(τ)) dτ −
∫ ξ

γ

∫ η

γ

K(η, τ)x(τ)dτdη

∥∥∥∥∥ ≤ L

M
ϕ(ξ),

for each ξ ∈ Ω, it means that ρ(x,Ax) ≤ L/M < ∞. According to Theorem
2.1, there exists continuously differentiable function x0 : Ω → Rn such that
x0 = lim

n→∞
Anx. In this case, x0 is unique fixed-point of A over

Y ∗ = {f ∈ Y : ρ(An0x, f) <∞} .
It may be proved that

Y ∗ = {f ∈ Y | ρ(x, f) <∞} .
As a result, the set Y is unaffected by n0. To show that the function x0 is a

solution to the equation (1.1), we differentiate both sides of the relation with regard
to ξ.

x0(ξ) = Ax0(ξ), ξ ∈ Ω.

Thus

x′0(ξ) = P(ξ)x0(ξ) + q(ξ) +

∫ ξ

γ

K(ξ, η)x0(η)dη

the function x0 is a solution to the equation (1.1) and supports the relation for
all ξ ∈ Ω, which means that the relationship is supported by:

x0(γ) = x(γ).
Applying again Theorem 2.1, we obtain

ρ(f ,x0) ≤ 1

1− (L+N)
ρ(f ,Af),

for all f ∈ Y ∗. Since x ∈ Y ∗, we have

ρ(x,x0) ≤ 1

1− (L+N)
ρ(x,Ax) ≤ L

M −M(L+N)
.
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Hence

|x(ξ)− x0(ξ)| ≤ L

M −M(L+N)
ϕ(ξ)

for all ξ ∈ Ω. This inequality proves the relation (3.4). �

Similarly, we show that equation (1.1) have the Ulam-Hyers-Rassias stability on
the interval Ω = (α, β], where −∞ ≤ α < β <∞.

Theorem 3.2. Let P : Ω → Rn×n, q : Ω → Rn and K : Ω × Ω → Rn×n be
continuous function and suppose that M be a constant such that ‖P(ξ)‖ ≥ M for
each ξ ∈ Ω. Let L and N be positive constants with 0 < L + N < 1 and γ ∈ Ω.
Suppose that ϕ is an integrable positive valued function on Ω such that∫ ξ

γ

‖P(ξ)‖ϕ(τ)dτ ≤ Lϕ(ξ), ∀ξ ∈ Ω

and ∫ ξ

γ

∫ η

γ

‖K(η, τ)‖ϕ(τ)dτdη ≤ Nϕ(ξ), ∀(ξ, η) ∈ Ω× Ω.

If a continuously differentiable function x : Ω→ Rn satisfies∥∥∥∥∥x′(ξ)−P(ξ)x(ξ)− q(ξ)−
∫ ξ

γ

K(ξ, η)x(η)dη

∥∥∥∥∥ ≤ ϕ(ξ)

for all ξ ∈ Ω, then there exists a unique solution x0(ξ) : Ω → Rn of the equation
(1.1) such that

‖x(ξ)− x0(ξ)‖ ≤ L

M −M(L+N)
ϕ(ξ) (3.7)

for all ξ ∈ Ω and x0(γ) = x(γ).

Proof. It can be proved by following the way used in Theorem 3.1 on the interval
Ω. �

Using Theorem 3.1 and Theorem 3.2, we will show that the equation (1.1) has
the Ulam-Hyers-Rassias stability on R as follows.

Corollary 3.3. Let P : R → Rn×n, q : R → Rn and K : R × R → Rn×n be
continuous functions and let M be a positive constant such that ‖P(ξ)‖ ≥ M for
all ξ ∈ R. Let L and N be positive constants with 0 < L+N < 1. Suppose that ϕ
is an integrable positive valued function on R such that∫ ξ

0

‖P(ξ)‖ϕ(τ)dτ ≤ Lϕ(ξ), ∀ξ ∈ R (3.8)

and ∫ ξ

0

∫ η

0

‖K(s, τ)‖ϕ(τ)dτds ≤ Nϕ(ξ), ∀(ξ, η) ∈ R× R.

If a continuously differentiable function x : R→ Rn satisfies∥∥∥∥∥x′(ξ)−P(ξ)x(ξ)− q(ξ)−
∫ ξ

0

K(ξ, η)x(η)dη

∥∥∥∥∥ ≤ ϕ(ξ)
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for all ξ ∈ R, then there exists a unique solution x0(ξ) : R → Rn of the equation
(1.1) such that

‖x(ξ)− x0(ξ)‖ ≤ L

M −M(L+N)
ϕ(ξ) (3.9)

for all ξ ∈ R and x0(0) = x(0).

Proof. By the relation (3.8) we have∫ ξ

0

‖P(τ)‖ϕ(τ)dτ ≤ Lϕ(ξ), (3.10)

for all ξ ≥ 0. Applying Theorem 3.1, there exists a solution of equation (1.1),
x1 : [0,∞)→ Rn which satisfies the inequality (3.4) and x1(0) = x(0).

From (3.8) we also obtain∫ 0

ξ

‖P(τ)‖ϕ(τ)dτ ≤ Lϕ(ξ), (3.11)

for all ξ < 0. Applying Theorem 3.2, there exists a solution of equation (1.1),
x2 : (−∞, 0] → Rn which satisfies the inequality (3.7) and x2(0) = x(0). The
function

x0(ξ) =

{
x1(ξ), ξ ≥ 0
x2(ξ), ξ < 0,

is a continuously differentiable function on R. It can be easily checked that it is a
solution of equation (1.1) on R and it satisfies inequality (3.9). �

4. Stability of a n-th Order Integrodifferential Equation

In this section we will prove the Ulam-Hyers-Rassias stability for the following
n-th order linear Volterra integrodifferential equation

y(n)(ξ) =

n−1∑
k=0

ak(ξ)y(k)(ξ) + f(ξ) +

∫ ξ

γ

K(ξ, η)y(η)dη, (4.1)

where a0, a1, · · · , an−1 and f are continuous functions on Ω, and K is continuous
functions on Ω× Ω.

Firstly, we show that equation (4.1) have the Ulam-Hyers-Rassias stability on
the interval Ω = [α, β), where −∞ < α < β ≤ ∞.

Theorem 4.1. Let a0, a1, · · · , an−1 : Ω → R, f : Ω → R and K : Ω × Ω → R be
continuous functions and let M be a positive constant such that |p∗(ξ)| ≥M for all
ξ ∈ Ω. Let L and N be positive constants with 0 < L+N < 1 and γ ∈ Ω. Suppose
that ϕ is an integrable positive valued function on Ω such that∫ ξ

γ

|p∗(τ)|ϕ(τ)dτ ≤ Lϕ(ξ), ∀ξ ∈ Ω (4.2)

and ∫ ξ

γ

∫ η

γ

|K(η, τ)|ϕ(τ)dτdη ≤ Nϕ(ξ), ∀(ξ, η) ∈ Ω× Ω (4.3)
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where p∗(ξ) = max
{

1,
∑n−1
k=0 ak(ξ)

}
. If a n-times continuously differentiable func-

tion y : Ω→ R such that∣∣∣∣∣y(n)(ξ)−
n−1∑
k=0

ak(ξ)y(k)(ξ)− f(ξ)−
∫ ξ

γ

K(ξ, η)y(η)dη

∣∣∣∣∣ ≤ ϕ(ξ) (4.4)

for all ξ ∈ Ω, then there exista a unique n-times continuously differentiable solution
y0(ξ) : Ω→ R of the equation (4.1) such that

|y(ξ)− y0(ξ)| ≤ L

M −M(L+N)
ϕ(ξ) (4.5)

for all ξ ∈ Ω and y0(γ) = y(γ), y′0(γ) = y′(γ), ..., y
(n−1)
0 (γ) = y(n−1)(γ).

Proof. The equation (4.1) can be converted into a system of Volterra integrodiffer-
ential equations. For this, let us make the following substitutions

x1(ξ) = y(ξ), x2(ξ) = y′(ξ), · · · , xn−1(ξ) = y(n−2)(ξ), xn(ξ) = y(n−1)(ξ).

From these substitutions, we get the following system of equations:

x′1(ξ) = y′(ξ) = x2(ξ)

x′2(ξ) = y′′(ξ) = x3(ξ)

...

x′n−1(ξ) = y(n−1)(ξ) = xn(ξ)

x′n(ξ) = y(n)(ξ) =

n−1∑
k=0

ak(ξ)y(k)(ξ) + f(ξ) +

∫ ξ

γ

K(ξ, η)x1(η)dη.

Then the above system can be written in the vector-matrix form as follow, which
is also a system of Volterra integrodifferential equations:

x′(ξ) = P(ξ)x(ξ) + q(ξ) +

∫ ξ

γ

K(ξ, η)x(η)dη, (4.6)

where

x(ξ) =


x1(ξ)
x2(ξ)

...
xn(ξ)

 , P(ξ) =



0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
a0(ξ) a1(ξ) a2(ξ) · · · an−1(ξ)


,

q(ξ) =


0
0
...
0

f(ξ)

 , K(ξ, η) =


0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

K(ξ, η) 0 · · · 0

 .
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By hypotheses, since p∗(ξ) = max
{

1,
∑n−1
k=0 ak(ξ)

}
, then ‖P(ξ)‖ = max

{
1,
∑n−1
k=0 ak(ξ)

}
and by relation (4.2) we obtain∫ ξ

γ

‖P(ξ)‖ϕ(τ)dτ ≤ Lϕ(ξ).

Now, let a function y satisfy the relation (4.4). Since

x(ξ) =


x1(ξ)
x2(ξ)

...
xn(ξ)

 =


y(ξ)
y′(ξ)

...
y(n−1)(ξ)


and

x′(ξ)−P(ξ)x(ξ)− q(ξ)−
∫ ξ

γ

K(ξ, η)x(η)dη =


y′(ξ)
y′′(ξ)

...
y(n)(ξ)



−



0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
a0(ξ) a1(ξ) a2(ξ) · · · an−1(ξ)




y(ξ)
y′(ξ)

...
y(n−1)(ξ)



−


0
0
...
0

f(ξ)

−
∫ ξ

γ


0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

K(ξ, η) 0 · · · 0




y(η)
y′(η)

...
y(n−1)(η)

 dη

=


y′(ξ)− y′(ξ)
y′′(ξ)− y′′(ξ)

...

y(n)(ξ)−
∑n−1
k=0 ak(ξ)y(k)(ξ)− f(ξ)−

∫ ξ
γ
K(ξ, η)y(η)dη

 ,
we get ∣∣∣∣∣y(n)(ξ)−

n−1∑
k=0

ak(ξ)y(k)(ξ)− f(ξ)−
∫ ξ

γ

K(ξ, η)y(η)dη

∣∣∣∣∣ ≤ ϕ(ξ)

for all ξ ∈ Ω. Hence, by Theorem 3.1, there exists a solution

x0(ξ) =


x
(0)
1 (ξ)

x
(0)
2 (ξ)

...

x
(0)
n (ξ)
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of equation (4.6) and x0(γ) = x(γ) such that

‖x(ξ)− x0(ξ)‖ ≤ L

M −M(L+N)
ϕ(ξ)

for all ξ ∈ Ω. Therefore, there exists y0(ξ) satisfying equation (4.1) and y0(γ) =

y(γ), y′0(γ) = y′(γ), ..., y
(n−1)
0 (γ) = y(n−1)(γ) such that

|y(ξ)− y0(ξ)| ≤ L

M −M(L+N)
ϕ(ξ)

for all ξ ∈ Ω. �

Similarly, we show that equation (4.1) have the Ulam-Hyers-Rassias stability on
the interval Ω = (α, β], where −∞ ≤ α < β <∞.

Theorem 4.2. Let a0, a1, · · · , an−1 : Ω → R, f : Ω → R and K : Ω × Ω → R be
continuous functions and let M be a positive constant such that |p∗(ξ)| ≥M for all
t ∈ Ω. Let L and N be positive constants with 0 < L+N < 1 and γ ∈ Ω. Suppose
that ϕ is an integrable positive valued function on Ω such that∫ ξ

γ

|p∗(τ)|ϕ(τ)dτ ≤ Lϕ(ξ), ∀ξ ∈ Ω

and ∫ ξ

γ

∫ η

γ

|K(η, τ)|ϕ(τ)dτdη ≤ Nϕ(ξ), ∀(ξ, η) ∈ Ω× Ω

where p∗(ξ) = max
{

1,
∑n−1
k=0 ak(ξ)

}
. If a n-times continuously differentiable func-

tion y : Ω→ R satisfies the inequality∣∣∣∣∣y(n)(ξ)−
n−1∑
k=0

ak(ξ)y(k)(ξ)− f(ξ)−
∫ ξ

γ

K(ξ, η)y(η)dη

∣∣∣∣∣ ≤ ϕ(ξ)

for all ξ ∈ Ω, then there exista a unique n-times continuously differentiable solution
y0(ξ) : Ω→ R of the equation (4.1) such that

|y(ξ)− y0(ξ)| ≤ L

M −M(L+N)
ϕ(ξ)

for all ξ ∈ Ω and y0(γ) = y(γ), y′0(γ) = y′(γ), ..., y
(n−1)
0 (γ) = y(n−1)(γ).

Proof. It can be proved by following the way used in Theorem 3.1 on the interval
Ω. �

Using Theorem 4.1 and Theorem 4.2, we will show that the equation (4.1) has
the Ulam-Hyers-Rassias stability on R as follows.

Corollary 4.3. Let a0, a1, · · · , an−1 : R→ R, f : R→ R and K : R× R→ R be
continuous functions and let M be a constant such that |p∗(ξ)| ≥ M for all t ∈ R.
suppose L and N are constants with 0 < L+N < 1. Suppose that ϕ is an integrable
positive valued function on R such that∫ ξ

0

|p∗(τ)|ϕ(τ)dτ ≤ Lϕ(ξ), ∀ξ ∈ R
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and ∫ ξ

0

∫ η

0

|K(η, τ)|ϕ(τ)dτdη ≤ Nϕ(ξ), ∀(ξ, η) ∈ R× R

here, p∗(ξ) = max
{

1,
∑n−1
k=0 ak(ξ)

}
. If a function y : R → R is continuously

differentiable n−times and satisfies the given inequality, then∣∣∣∣∣y(n)(ξ)−
n−1∑
k=0

ak(ξ)y(k)(ξ)− f(ξ)−
∫ ξ

0

K(ξ, η)y(η)dη

∣∣∣∣∣ ≤ ϕ(ξ)

for all ξ ∈ R, then there exista a unique n-times continuously differentiable solution
y0(ξ) : R→ R of the Eq. (4.1) such that

|y(ξ)− y0(ξ)| ≤ L

M −M(L+N)
ϕ(ξ)

for all ξ ∈ R and y0(0) = y(0), y′0(0) = y′(0), ..., y
(n−1)
0 (0) = y(n−1)(0).

4.1. Example. Consider the following Volterra integrodifferential equation of sec-
ond order with initial conditions:

y′′(ξ) = y′(ξ) + y(ξ) + 2ξ + 1 + 4

∫ ξ

0

(ξ − η)y(η)dη (4.7)

y(0) = 1, y′(0) = 2.

Equation (4.7) can be transformed into an equivalent system of the following form:

x′1(ξ) = x2(ξ)

x′2(ξ) = x1(ξ) + x2(ξ) + 2ξ + 1 + 4

∫ ξ

0

(ξ − η)x1(η)dη

Using the vector-matrix notation, we get following system of Volterra integrodiffer-
ential equations

x′(ξ) = p(ξ)x(ξ) + q(ξ) +

∫ ξ

0

K(ξ, η)x(η)dη,

where

x(ξ) =

[
x1(ξ)
x2(ξ)

]
, P(ξ) =

[
0 1
1 1

]
, q(ξ) =

[
0

2ξ + 1

]
, K(ξ, η) =

[
0 0

ξ − η 0

]
.

By hypotheses, p∗(ξ) = max {1, 2} = 2. If we define the integrable function ϕ :
R→ [0,∞) with ϕ(ξ) = e5ξ, then we obtain L = 2/5 with∫ ξ

0

2e5sds =
2

5
e5ξ − 2

5
≤ 2

5
e5ξ, ξ ∈ [0, 1],

and N = 1/125 with∫ ξ

0

∫ η

0

(η − r)e5rdrdη ≤ 1

125
e5ξ, ξ ∈ [0, 1].
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From here we see that L+N = 2
5 + 1

125 = 51
125 ∈ (0, 1). If we choose y(ξ) = 10

9 e
2ξ,

it follows∣∣∣∣∣y′′(ξ)− y′(ξ)− y(ξ)− 2ξ − 1− 4

∫ ξ

0

(ξ − η)y(η)dη

∣∣∣∣∣ =
1

9
e2ξ ≤ ϕ(ξ) := e5ξ, ξ ∈ [0, 1].

Therefore, according to Theorem 4.1, we can conclude that the second order Volterra
integrodifferential equation (4.7) exhibits Ulam-Hyers-Rassias stability.

The exact solution of equation (4.7) is y0(ξ) = e2ξ. If we take M = 2, we also
see the fact that

|y(ξ)− y0(ξ)| =
∣∣∣∣10

9
e2ξ − e2ξ

∣∣∣∣ =
1

9
e2ξ ≤ 25

74
e5ξ =

L

M −M(L+N)
ϕ(ξ), ξ ∈ [0, 1].

5. Conclusions

Our study offered a fresh perspective on the stability of Volterra integrodifferen-
tial equations. We proved the Ulam-Hyers-Rassias stability of a system of Volterra
integrodifferential equations, under particular conditions on bounded or unbounded
intervals, using a fixed-point theorem in a generalized complete metric space. In
particular, in cases where the function is continuously differentiable, Ulam-Hyers-
Rassias stability is crucial because it enables the identification of an exact solution
to the equation that is near to an approximation solution to the integrodifferential
equation. In other words, the difference between the perturbed solution and the ex-
act solution, or the distance between the set of all solutions of the integrodifferential
equation and the approximation solution, is insignificant. The Hyer-Ulam-Rassias
stability notions also serve as a reminder that we don’t necessarily need to find
exact solutions in an Ulam-Hyers-Rassias stable system; rather, we simply need to
find a function that satisfies the essential approximation inequality. In other words,
Ulam-Hyers-Rassias stability guarantees the existence of a closed precise solution.
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