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ON A STUDY OF SUBNORMAL COMPLETION PROBLEM VIA

REAL CUBIC MOMENT PROBLEM

ABDALLAH TAIA, ABDELAZIZ EL BOUKILI, AMAR RHAZI, BOUAZZA EL WAHBI

Abstract. In this article, we study the bivariate subnormal completion prob-

lem for a collection of bivariate weight cubic data. We provide some techniques

for solving this problem. The results obtained have been constantly illustrated
by examples.

1. Introduction

The problem of moments has developed significantly since Stieltjes’study [1],
with numerous application in a wide range of domains. In particular, the K- trun-
cated moment problem, where K ⊆ R2

+, plays an important role in subnormal
completion for weighted bivariate shifts by studying their subnormal and hyponor-
mal properties, in the way that a solution to the first produces a solution to the
second (see for example [5, 6, 7, 11, 18]).

Given a finite collection C of pairs of positive numbers called weights, the bi-
variate subnormal completion problem consists in finding necessary and sufficient
conditions for the existence of a bivariate subnormal weighted shift whose initial
weights are given by C.

Let us now recall some notions of bounded operators and some properties of
weighted shifts to weights which will be useful for solving the problems of subnormal
completions, especially with two variables. For more details on subnormality and
hypnormality, one can consult [2, 3, 4, 9, 10, 12, 16, 17, 19, 20, 21] for instance.

Let H be a complex separable Hilbert space of infinite dimension, and let B(H)
denotes the algebra of bounded linear operators on H. Recall that an operator
T ∈ B(H) is normal if it commutes with its adjoint T ∗, i.e. T ∗T = TT ∗,
subnormal if it has a normal extension and T is said to be hyponormal if [T ∗, T ] :=
T ∗T − TT ∗ ≥ 0 .
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In [4], the author stated a criterion of subnormality (Halmos’ criterion [4, II.1.9]),
as follows

T is subnormal ⇐⇒
k∑

i,j=0

〈
T ixj , T

jxi
〉
≥ 0.

for all k ≥ and any finite collection x0, x1, · · · , xk of elements of H. Or equivalently,
I T ∗ · · · T ∗k

T T ∗T · · · T ∗kT
...

...
. . .

...
T k T ∗T k · · · T ∗kT k

 � 0. (1.1)

Clearly, hyponormality is a necessary condition for subnormality.
Given an n-tuples T = (T1, . . . , Tn) of operators on H with n ≥ 2, we denote by
[T∗,T] the self-commutator of T, defined by [T∗,T]ij :=

[
T ∗j , Ti

]
1≤i,j≤n.

For example, if n = 2,

[T∗,T] =

(
[T ∗1 , T1] [T ∗2 , T1]
[T ∗1 , T2] [T ∗2 , T2]

)
.

We say that T = (T1, . . . , Tn) is normal if T is commuting and every Ti is normal,
and T is subnormal if T is the restriction of a normal n-tuples to a common invariant
subspace.
T = (T1, . . . , Tn) is called jointly hyponormal if [T∗,T] ≥ 0, i.e. 〈[T∗,T]x, x〉 ≥ 0
for all x ∈ Hn.
And an operator T ∈ H is called l-hyponormal (l ≥ 1) if

(
1, T, T 2, · · · , T l

)
is jointly

hyponormal, that is Ml(T ) ≡
([
T ∗j , T i

])l
i,j=1

≥ 0.

By Definition 2.2 in [9], a commuting pair T = (T1, T2) of operators on H is
called l-hyponormal, if

T(l) :=
(
T1, T2, T

2
1 , T2T1, T

2
2 , · · · , T l1, T2T l−11 , T 2

2 T
l−2
1 , · · · , T l2

)
is hyponormal, or equivalently

0 ≤ [T(l)∗,T(l)] =
([

(T q2 T
p
1 )
∗
, Tm2 T

n
1 ]
)

0≤n+m≤l
0≤p+q≤l

.

`2(Z2
+) denotes the Hilbert space of square summable complex sequences indexed

by Z2
+. Let {ek}k∈Z2

+
be the canonical orthonormal basis of `2(Z2

+).

For a pair of positive real number sequences, called weights (αk, βk) ∈ `∞(Z2
+),

k ≡ (k1, k2) ∈ Z2
+, we define the bivarite weighted shift T ≡ (T1, T2) associated

with (αk, βk) by

T1ek := αkek+ε1 and T2ek := βkek+ε2 ,

where ε1 := (1, 0) and ε2 := (0, 1).
One can simply check that

T1T2 = T2T1 ⇔ βk+ε1αk = αk+ε2βk
(

for all k ∈ Z2
+

)
. (1.2)

The relation (1.2) translates the commutativity condition of T.
By Lemma 1.1 in [5], an operator T is hyponormal if and only if, for all k ∈ Z2

+,
the following three conditions are satisfied.

(i) αk+ε1 > αk,
(ii) βk+ε2 > βk,

(iii)
(
(αk+ε1)2 − (αk)2

) (
(βk+ε2)2 − (βk)2

)
> (αk+ε2βk+ε1 − αkβk)

2
.
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For k ≡ (k1, k2) ∈ Z2
+, we define the moment of order k of (αk, βk) by

γk ≡ γ(k1,k2) :=


1 if (k1, k2) = (0, 0)

α2
(0,0) · · ·α

2
(k1−1,0) if k1 ≥ 1 and k2 = 0

β2
(0,0) · · ·β

2
(0,k2−1) if k1 = 0 and k2 ≥ 1

α2
(0,0) · · ·α

2
(k1−1,0) · β

2
(k1,0)

· · ·β2
(k1,k2−1) otherwise.

(1.3)

By virtue of to the commutativity condition (1.2), γk can be calculated using any
non-decreasing path from (0, 0) to (k1, k2).

According to Berger’s theorem, [19, Theorem 3], a bivariate weighted shifts
T ≡ (T1, T2) is subnormal if and only if, there exists a probability measure µ
defined on the rectangle R = [0, ‖ T1 ‖2]× [0, ‖ T2 ‖2] such that

γk =

∫
R

tk11 t
k2
2 dµ(t1, t2), for all k ≡ (k1, k2) ∈ Z2

+.

In [9, Theorem 2.4], the l-hyponormality for bivariate weighted shifts is charac-
terized as follows. T = (T1, T2) is subnormal if and only if

0 ≤Mk(l) :=
(
γk+(m,n)+(p,q)

)
0≤m+n≤l
0≤p+q≤l

for all k ∈ Z2
+. (1.4)

Clearly, the matrix Mk(l) is a truncation of the moment matrix associated with
the Berger measure of T.

The general statement of the problem of subnormal completion can be formulated
as follows. Given a finite collection Cm := {(αk, βk)}|k|=k1+k26m of pairs of positive

numbers satisfying (1.2) with |k + εi| 6 m (i = 1, 2), find necessary and sufficient
conditions for the existence of a bivariate subnormal weighted shift whose initial
weights are the elements of Cm.

In this paper, we investigate the case m = 2. In Section 2, we recall some tools
that will be needed for solving the problem of subnormal completion. Section 3
is devoted to the statement of our main results related to the bivariate subnormal
completion problem with cubic data, i.e. m = 2. Somme numerical examples, per-
formed by Mathematica software, are also provided to illustrate some statements
pointed out through this paper.

2. Needed Tools

Let m ∈ Z+ and a collection of pairs of positive numbers Cm := {(αk, βk)} where
|k| ≤ m and |k| = k1+k2. By Definition 3.1 in [11], we say that a weighted bivariate

shift T ≡ (T1, T2) with weight sequences {α̃k}k∈Z2
+

and {β̃k}k∈Z2
+

is a subnormal

completion of Cm if,

(i) T is subnormal;

(ii)
(
α̃k, β̃k

)
= (αk, βk) for |k| ≤ m.

We denote this subnormal completion by C∞ ≡
{

(α̃k, β̃k)
}
k∈Z2

+

.

Definition 3.3 in [11] states that C̃m+1 ≡
{(
α̃k, β̃k

)}
|k|≤m+1

is an extension of Cm

if
(
α̃k, β̃k

)
= (αk, βk) when |k| ≤ m.
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If m = 2l where l ∈ Z∗+, the data of the sequence γ ≡ γ(m+1) = {γij}0≤i+j≤m+1

associated to Cm by the relation (1.3) will be in the form of matricesM(l) ≡ M0(l) ≡
M(Cm) and B(l + 1) as follows

M(l) =


M [0, 0] M [0, 1] . . . M [0, l]
M [1, 0] M [1, 1] . . . M [1, l]

...
...

. . .
...

M [l, 0] M [l, 1] . . . M [l, l]

 and B(l+1) =


M [0, l + 1]
M [1, l + 1]

...
M [l, l + 1]

 .

(2.1)
WhereM(l) = (M [i, j])0≤i,j≤l is a symmetric matrix of blocks and that each block

M [i, j] =


γi+j,0 γi+j−1,1 . . . γi,j
γi+j−1,1 γi+j−2,2 . . . γi−1,j+1

...
...

. . .
...

γj,i γj−1,i+1 · · · γ0,i+j

 , 0 ≤ i, j ≤ l,

has Hankel’s property.
For instance, for m = 2, the two matrices M(1) and B(2) are as given by

M(1) =


γ00 | γ10 γ01
−− − −− −−
γ10 | γ20 γ11
γ01 | γ11 γ02

 and B(2) =


γ20 γ11 γ02
−− −− −−
γ30 γ21 γ12
γ21 γ12 γ03

 . (2.2)

A necessary condition for the existence of a representing measure for γ is that
M(1) is positive semidefinite (M(1) � 0). In this case, we seek to construct a
matrix M(2), an extension of M(1) which should also be positive semidefinite of
the form

M(2) =

(
M(1) B(2)
B(2)T C(2)

)
,

where C(2) is a (3×3)-Hankel matrix containing quartic moments (of order 4) that
we need to determine. We set,

C(2) =

 γ40 γ31 γ22
γ31 γ22 γ13
γ22 γ13 γ04

 . (2.3)

With labeling the columns and rows ofM(2) considering the lexicographic order
of the monomials in degree, 1, X, Y , X2, XY , Y 2, the matrix M(2) is written as
follows

M(2) =

1 X Y X2 XY Y 2



1 γ00 | γ10 γ01 | γ20 γ11 γ02
−− − −− −− − −− −− −−

X γ10 | γ20 γ11 | γ30 γ21 γ12
Y γ01 | γ11 γ02 | γ21 γ12 γ03

−− − −− −− − −− −− −−
X2 γ20 | γ30 γ21 | γ40 γ31 γ22
XY γ11 | γ21 γ12 | γ31 γ22 γ13
Y 2 γ02 | γ12 γ03 | γ22 γ13 γ04

.
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If rankM(2) = rankM(1), we say that M(2) is a flat extension of M(1). To test
the semidefinite positivity of M(2) as well as its flatness, we need the following
Smul’jan’s lemma [22].

Lemma 2.1. Let A be a symmetric matrix. If the block matrix Ã :=

(
A B
BT C

)
is an extension of A, then

Ã � 0⇐⇒

 (i) A � 0.
(ii) B = AW for some matrix W.
(iii) C �WTAW.

Moreover, Ã is a flat extension of A, if only if C = WTAW .

According to Douglas’s factorization lemma [13], the condition (ii) in Lemma
2.1 is equivalent to RanB ⊆ RanA. Moreover, if (ii) is satisfied and since A is
symmetric, WTAW is also symmetric and does not depend on W .
So, if M(1) � 0 and RanB(2) ⊆ RanM(1), then WTM(1)W takes the following
form

WTM(1)W =

 x u v
u y w
v w z

 (2.4)

where u, v, w, x, y and z are real numbers.
The relation between y and v allows us to determine C(2), as in (2.3), such that
C(2)−WTM(1)W � 0. So, M(2) the extension of M(1) is positive semidefinite.

The following theorem [14, Theorem 2.3] states a necessary and sufficient con-
dition for the existence of a finite atomic measure representing a finite sequence
γ = γ(2l) where l ∈ Z∗+.

Theorem 2.2. The truncated sequence of moments γ(2l) admits a finite represent-
ing measure rankM(l)-atomic, if and only if M(l) � 0 and admits a flat extension
M(l + 1).

The bivariate subnormal completion, is closely related to the K-truncated mo-
ment problem with K ⊆ [0,∞)2, i.e. when the Berger measure µ exists, it must
verify suppµ ⊆ K.

In [8], the K-complex truncated moment problem is studied using localization
matrices. Its equivalent version for two real variables reads as follows.

Theorem 2.3. ([11, Theorem 4.1]) Let P ≡ {p1, . . . , pN} ⊆ R[x, y] such that
deg pi = 2ki or deg pi = 2ki − 1 (1 ≤ i ≤ N).
There is a representing measure rankM(n)-atomic for γ = γ(2n) supported in
KP :=

{
(x, y) ∈ R2 : pi(x, y) ≥ 0, 1 ≤ i ≤ N

}
if and only if M(n) � 0 and there

exists a certain flat extensionM(n+1) for which the localization matricesMpi(n+
ki) � 0 (1 ≤ i ≤ N). In this case, the representing measure is rankM(n)-
atomic, supported in KP , and with precisely rankM(n)− rankMpi(n+ ki) atoms
in Z(pi) :=

{
(x, y) ∈ R2 : pi(x, y) = 0

}
.

Let us put p1 := x and p2 := y then k1 = k2 = 1, KP = R2
+, Mp1(n + k1) =

Mx(n + 1) and Mp2(n + k1) = My(n + 1). By Theorem 2.3 and for an even m,
we deduce from [11, Theorem 4.3] the following useful result.
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Theorem 2.4. For a collection Cm with m = 2l, and let M(l) and B(l + 1) be as
in (2.1). The following statements are equivalent

(i) Cm has a subnormal completion C∞.
(ii) There is a representating measure rankM(l)-atomic µ for β supported in

R2
+.

(iii) M(l) =M(Cm) � 0 and Cm admits an extension C̃m+2 verifying the com-

mutativity condition (1.4) such that the matrix of moments M(C̃m+2) =
M(l + 1) is a flat extension of M(l), Mx(l + 1) � 0 and My(l + 1) � 0.

Moreover, Berger measure µ of C∞ has rankM(l) − rankMx(l + 1) atoms in
{0} × R+ (resp. rankM(l)− rankMy(l + 1) atoms in R+ × {0}).

With the notation used in (1.4), we denote the localizing matrices by

Mx(l + 1) =M(1,0)(l + 1) and My(l + 1) =M(0,1)(l + 1).

3. Bivariate subnormal completion with cubic data

In this section, we give a solution to bivariate subnormal completion problem
with cubic data, formulated as follows.
(PR): Let C2 be as defined previously and let γ = {γij}0≤i+j≤3 be the associated
sequence given by (1.3). Is there a subnormal completion of C2?

Let us consider the finite collection of pairs of positive real numbers C2, by setting

α2
(0,0) = a, β2

(0,0) = b, α2
(1,0) = c, β2

(1,0) = d

α2
(0,1) = e, β2

(0,1) = f, α2
(2,0) = g, β2

(2,0) = h

α2
(1,1) = p, β2

(1,1) = q, α2
(0,2) = r, β2

(0,2) = s,

and employing the commutativity condition (1.2), we get

ad = be, ch = dp and eq = fr.

According to (1.3), the elements of the sequence γ ≡ {γij}0≤i+j≤3 are given by

γ00 = 1,
γ10 = a, γ01 = b,
γ20 = ac, γ11 = ad, γ02 = bf,
γ30 = acg, γ21 = bep, γ12 = beq, γ03 = bfs.

The two matrices associated to the sequence γ are

M(1) =

1 X Y( )
1 a b
a ac be
b be bf

and B(2) =

 ac be bf
acg bep beq
bep beq bfs

 . (3.1)

The condition ofM(1) being positive semidefinite is a necessary for the existence
of a representing measure µ of γ. In this case, we have

c ≥ a, f ≥ b and cf − de ≥ 0. (3.2)

If M(2) is a flat extension of M(1) then, the localization matrices M(1,0)(2) and
M(0,1)(2) are the restrictions of M(2) to the first three rows and columns indexed
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by the monomials X,X2 and XY and Y,XY and Y 2, respectively. We have

M(1,0)(2) =

X X2 XY( )
a ac be
ac acg bep
be bep beq

and M(0,1)(2) =

Y XY Y 2( )
b be bf
be bep beq
bf beq bfs

.

(3.3)

Theorem 3.1. Let M(1) and B(2) be as defined in (3.1). If M(1) � 0 with
rankM(1) = 1 and RanB(2) ⊆ RanM(1), then M(1) admits a flat extension
M(2), M(1,0)(2) � 0 and M(0,1)(2) � 0. Consequently, C2 admits a subnormal
completion C∞.

Proof. Since M(1) � 0, rankM(1) = 1 and RanB(2) ⊆ RanM(1) then,

a = c = e = g = p and b = f = q = s.

Moreover, by applying Theorem 3.5 in [15], γ admits a finite unique representing
measure rankM(1)-atomic µ = γ00δ(γ10,γ01) = δ(a,b).
Therefore, M(1) admits a flat extension M(2) given by

M(2) =


1 a b a2 ab b2

a a2 ab a3 a2b ab2

b ab b2 a2b ab2 b3

a2 a3 a2b a4 a3b a2b2

ab a2b ab2 a3b a2b2 ab3

b2 ab2 b3 a2b2 ab3 b4

 .

Since suppµ ⊆ R2
+, then according to Theorem 2.4, C2 admits an extension C̃4.

Based on the quartic moments (the entries of the C(2) matrix) and taking into
account the commutativity condition (1.2), we can

α̃2
(3,0) = α̃2

(0,3) = α̃2
(2,1) = α̃2

(1,2) = a and β̃2
(3,0) = β̃2

(0,3) = β̃2
(2,1) = β̃2

(1,2) = b.

Calculations show that M(1,0)(2) � 0, M(0,1)(2) � 0, rankM(1,0)(2) = 1 and
rankM(0,1)(2) = 1.
So, using Theorem 2.4 again, C2 admits a subnormal completion C∞ and Berger’s
measure is rankM(1)-atomic given by µ = δ(a,b). �

Theorem 3.2. Let M(1) and B(2) be as defined in (3.1). If M(1) � 0 with
rankM(1) = 2 and RanB(2) ⊆ RanM(1) then, M(1) admits a flat extension
M(2). In addition, if M(1,0)(2) � 0 and M(0,1)(2) � 0, C2 has a subnormal
completion C∞.

Proof. LetM(1) be as defined in (3.1), and rankM(1) = 2. The linear dependency
relations between these columns must be as follows

X = a.1 with f > b > 0.
or

Y = b(c−e)
c−a .1 + b(e−a)

a(c−a) .X with c > a > 0 and f = ba(c−2e)+be2
a(c−a) ≥ b.

• Case 1: X = a.1 and f > b > 0.
Since M(1) � 0, RanB(2) ⊆ RanM(1) and rankM(1), we must have

a = c = g = e = p and q = s = f with f > b.
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Thus, by applying Theorem 3.5 in [15], γ admits a finite unique representing mea-

sure rankM(1)-atomic µ =
(

1− b
f

)
δ(a,0) + b

f δ(a,f).

Consequently, M(1) admits a flat extension M(2),

M(2) =


1 a b a2 ab bf
a a2 ab a3 a2b abf
b ab bf a2b abf bf2

a2 a3 a2b a4 a3b a2bf
ab a2b abf a3b a2bf abf2

bf abf bf2 a2bf abf2 bf3

 .

With the same arguments used in the proof of Theorem 3.1, C2 admits an ex-
tension C̃4 with the choices

α̃2
(3,0) = α̃2

(0,3) = α̃2
(2,1) = α̃2

(1,2) = a, β̃2
(3,0) = b and β̃2

(1,2) = β̃2
(2,1) = β̃2

(0,3) = f.

Some calculations show thatM(1,0)(2) � 0,M(0,1)(2) � 0, rankM(0,1)(2) = 1 and
rankM(1,0)(2) = 0 if a = 0 and rankM(1,0)(2) = 2 if a > 0.
Hence, according to Theorem 2.4, C2 admits a subnormal completion C∞ and

Berger’s measure is µ =
(

1− b
f

)
δ(a,0) + b

f δ(a,f), with one atom in R+×{0} (a ≥ 0)

and two atoms in {0} × R+ if a = 0 and no atoms otherwise.

• Case 2: Y = b(c−e)
c−a .1 + b(e−a)

a(c−a) .X with c > a > 0 and f = ba(c−2e)+be2
a(c−a) ≥ b.

For this case there are three sub-cases to consider e = a or e = c or (e 6= a and e 6= c).
Subcase 2.1: If e = a then Y = b.1 with c > a > 0 and f = b.

The conditions M(1) � 0 and RanB(2) ⊆ RanM(1) require that c = g = p and
q = s = b.

For the same reasons as in Case 1, γ admits a finite representing measure
rankM(1)-atomic µ =

(
1− a

c

)
δ(0,b) + a

c δ(c,b).
Consequently, M(1) admits a flat extension M(2) with

M(2) =


1 a b ac ab b2

a ac ab ac2 abc ab2

b ab b2 abc ab2 b3

ac ac2 abc ac3 abc2 ab2c
ab abc ab2 abc2 ab2c ab3

b2 ab2 b3 ab2c ab3 b4

 .

Once again with the choices

α̃2
(3,0) = α̃2

(2,1) = α̃2
(1,2) = c, β̃2

(3,0) = β̃2
(2,1) = β̃2

(1,2) = β̃2
(0,3) = b and α̃2

(0,3) = a,

C2 admits an extension C̃4.
By calculations, we get M(1,0)(2) � 0, M(0,1)(2) � 0, rankM(1,0)(2) = 1 and

rankM(0,1)(2) = 0 if b = 0 and rankM(0,1)(2) = 2 otherwise.
Hence, according to Theorem 2.4, C2 admits a subnormal completion C∞ and
Berger’s measure is given by µ =

(
1− a

c

)
δ(0,b) + a

c δ(c,b) with a single atom in
{0} × R+ and two atoms in R+ × {0} if b ≥ 0 and none otherwise.

Subcase 2.2: If c = e, then Y = b
a .X with c > a > 0 and f = bc

a .
The conditions M(1) � 0 and RanB(2) ⊆ RanM(1) require that c = g = e = p
and q = s = bc

a .
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For the same reasons as in case 1, γ admits a unique representing measure
rankM(1)-atomic µ =

(
1− a

c

)
δ(0,0) + a

c δ(c, bca ) and thenM(1) admits a flat exten-

sion M(2), such that

M(2) =



1 a b ac bc b2c
a

a ac bc ac2 bc2 b2c2

a

b bc b2c
a bc2 b2c2

a
b3c2

a2

ac ac2 bc2 ac3 bc3 b2c3

a

bc bc2 b2c2

a bc3 b2c3

a
b3c3

a2

b2c
a

b2c2

a
b3c2

a2
b2c3

a
b3c3

a2
b4c3

a3


.

Moreover, with quartic moments (the entries of the matrix C(2)) and taking into

account the commutativity (1.2), C2 admits an extension C̃4 with the choices

α̃2
(3,0) = α̃2

(2,1) = α̃2
(1,2) = α̃2

(0,3) = c and β̃2
(3,0) = β̃2

(2,1) = β̃2
(1,2) = β̃2

(0,3) =
bc

a
.

Some calculations show that M(1,0)(2) � 0, M(0,1)(2) � 0, rankM(1,0)(2) = 1
(b ≥ 0) and rankM(0,1)(2) = 1 if b > 0 and rankM(0,1)(2) = 0 otherwise.
Hence, according to Theorem 2.4, C2 admits a subnormal completion C∞ and
Berger’s measure is given by µ =

(
1− a

c

)
δ(0,0) + a

c δ(c, bca ) with one two atoms

belonging to R+ ×{0} if b = 0 and only one atom belonging to both {0}×R+ and
R+ × {0} if b > 0.

Subcase 2.3: If c 6= e and a 6= e then, Y = b(c−e)
c−a .1+ b(e−a)

a(c−a) .X with c > a > 0 and

f = ba(c−2e)+be2
a(c−a) ≥ b > 0. The conditions M(1) � 0 and RanB(2) ⊆ RanM(1)

imply that c = g = p, q = be
a and s =

b2(a2(c2−3ce+3e2)−2ae3+ce3)
a(c−a)(ab(c−2e)+e2) with 2e < c.

For the same reasons as in case 1, γ admits a finite representing measure rankM(1)-
atomic µ =

(
1− a

c

)
δ
(0,

b(c−e)
c−a )

+ a
c δ(c, bea ) and therefore M(1) has a flat extension

M(2) defined as follows

M(2) =



1 a b ac be λ1

a ac be ac2 bce b2e2

a

b be λ2 bce b2e2

a λ3

ac ac2 bce ac3 bc2e b2ce2

a

be bce b2e2

a bc2e b2ce2

a
b3e3

a2

λ4
b2e2

a λ5
b2ce2

a
b3e3

a2 λ6


,

where

λ1 =

(
ba(c− 2e) + be2

a(c− a)

)
, λ2 = b

(
ba(c− 2e) + be2

a(c− a)

)
, λ3 =

b3
(
e3

a2 + (c−e)3
(c−a)2

)
c

,

λ4 = b

(
ba(c− 2e) + be2

a(c− a)

)
, λ5 =

b3
(
e3

a2 + (c−e)3
(c−a)2

)
c

and λ6 =
b4
(
e4

a3 + (c−e)4
(c−a)3

)
c

.
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With the choices α̃2
(3,0) = α̃2

(2,1) = α̃2
(1,2) = c, β̃2

(3,0) = β̃2
(1,2) = β̃2

(2,1) = be
a ,

α̃2
(3,0) = ce3

a2
(

e3

a2 +
(c−e)3

(a−c)2

) and β̃2
03 = (b(3a2e4−3ace4+c2e4+a3(c−2e)(c2−2ce+2e2)))

(a(−a+c)(−2ae3+ce3+a2(c2−3ce+3e2))) , we also

show that C2 admits an extension C̃4.
By some calculations, M(1,0)(2) � 0, M(0,1)(2) � 0, rankM(1,0)(2) = 1 and

rankM(0,1)(2) = 2.
Thus, by Theorem 2.4, C2 admits a subnormal completion C∞ and Berger’s measure
is given by µ =

(
1− a

c

)
δ
(0,

b(c−e)
c−a )

+ a
c δ(c, bea ) with a single atom in {0} × R+.

Whence, the proof is ended. �

Remark. In all previous cases, when constructingM(2), we set C(2) = WTM(1)W .
Indeed, in relation (2.4) we always find v = y.

The following theorem deals with the case whereM(1) is positive definite (M(1) > 0)
and v = y.

Theorem 3.3. LetM(1) and B(2) be as defined in (3.1), y and v be as in (2.4). If
M(1) > 0, RanB(2) ⊆ RanM(1) and v = y, M(1) admits a flat extension M(2).
In addition, ifM(1,0)(2) � 0 andM(0,1)(2) � 0, C2 admits a subnormal completion
C∞ and the Berger measure is 3-atomic.

Proof. Since M(1) > 0, RanB(2) ⊆ RanM(1) and v = y then according to
[15, Theorem 3. 3], M(1) admits a flat extension M(2). Hence, γ admits a
unique representing measure µ, rankM(1)-atomic (rankM(1) = 3) in R2 and since
M(1,0)(2) � 0 andM(0,1)(2) � 0 then by Theorem 2.4, the support of µ is included

in R2
+.

Thus, C2 admits a subnormal completion C∞ and µ is its Berger measure. �

The following example illustrates this last theorem.

Example 3.4. Let C2 be a collection of pairs of positive numbers defined by

α(0,0) =
√
7
2 , β(0,0) = 3

2 , α(1,0) =
√

19
7 , β(1,0) =

√
2

α(0,1) =
√
14
3 , β(0,1) =

√
7
3 , α(2,0) =

√
55
19 , β(2,0) =

√
2

α(1,1) =
√

19
7 , β(1,1) =

√
2, α(0,2) = 2

√
3

3 , β(0,2) =
√

17
7 .

The sequence of moments γ = {γij}0≤i+j≤3 defined by (1.3) is

γ00 = 1,

γ10 = 7
4 , γ01 = 9

4 ,

γ20 = 19
4 , γ11 = 7

2 , γ02 = 21
4 ,

γ30 = 55
4 , γ21 = 19

2 , γ12 = 7, γ03 = 51
4 .
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The two matrices associated to γ are defined as follows

M(1) =


1 7

4
9
4

7
4

19
4

7
2

9
4

7
2

21
4

 and B(2) =


19
4

7
2

21
4

55
4

19
2 7

19
2 7 51

4

 .

Straightforward calculations show thatM(1) > 0, rankM(1) = 3 and RanB(2) ⊆ RanM(1),

with W =


−9 0 −6

4 2 0

3 0 5

 and WTM(1)W =


163
4

55
2 19

55
2 19 14

19 14 129
4

 .

Noticing that v = y = 19, M(1) admits a flat extension M(2) given by

M(2) =



1 7
4

9
4

19
4

7
2

21
4

7
4

19
4

7
2

55
4

19
2 7

9
4

7
2

21
4

19
2 7 51

4

19
4

55
4

19
2

163
4

55
2 19

7
2

19
2 7 55

2 19 14

21
4 7 51

4 19 14 129
4



.

With commutativity condition (1.2) and taking α̃2
(3,0) = 163

55 , α̃2
(0,3) = 56

51 , α̃2
(2,1) = 55

19 ,

α̃2
(1,2) = 19

7 , β̃2
(3,0) = β̃2

(2,1) = β̃2
(1,2) = 2, and β̃2

(0,3) = 43
17 , C2 admits an extension

C̃4.
The localizing matrices are

M(1,0)(2) =


7
4

19
4

7
2

19
4

55
4

19
2

7
2

19
2 7

 and M(0,1)(2) =


9
4

7
2

21
4

7
2

19
2 7

21
4 7 51

4

 .

Calculations show that M(1,0)(2) � 0, M(0,1)(2) � 0, rankM(1,0)(2) = 2 and
rankM(0,1)(2) = 3. The linear dependencies between the columns of M(2) are

X2 = −9 + 4X + 3Y, XY = 2X and Y 2 = −6 + 5Y.

The variety cone of M(2) is V(M(2)) = Z(P ) ∩ Z(Q) ∩ Z(R) where

P (x, y) = x2 − 4x− 3y + 9, Q(x, y) = xy − 2x and R(x, y) = y2 − 5y + 6.

So, V(M(2)) = {(0, 3); (1, 2); (3, 2)}.
The densities ρ1, ρ2 and ρ3 related to the atoms (0, 3), (1, 2) and (3, 2) are solutions
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of the system 
ρ1 + ρ2 + ρ3 = 1

ρ2 + 3ρ3 = 7
4

3ρ1 + ρ2 + 3ρ3 = 9
4

.

Hence, Berger measure is given by

µ =
1

2
δ(0,3) +

1

2
δ(1,2) +

1

4
δ(3,2).

Finally, by Theorem 2.4, C2 admits a subnormal completion C∞.
Note that there is only one atom (0, 3) ∈ {0}R2

+ since rankM(1)−rankM(1,0)(2) = 1.

However, there is no atom in R2
+ ∈ {0} since rankM(1)− rankM(0,1)(2) = 0.

Remark. For a collection C2 of pairs of positive numbers and the sequence of
moments γ = {γij}0≤i+j≤3 given by (1.3) satisfy the conditions of Theorem 3.3
except v 6= y, then nothing can be concluded about the existence of a subnormal
completion. The following two examples clarify this statement.

Example 3.5. Let C2 be the collection of the following pairs of positive numbers
of the following data

α(0,0) =
√

2, β(0,0) = 2, α(1,0) =
√

3, β(1,0) = 2,

α(0,1) =
√

2, β(0,1) =
√

5, α(2,0) = 2, β(2,0) = 2,

α(1,1) =
√

3, β(1,1) =
√

5, α(0,2) =
√

2, β(0,2) = 2
√

5.

The sequence of moments γ = {γij}0≤i+j≤3 defined by (1.3) is

γ00 = 1,
γ10 = 2, γ01 = 4,
γ20 = 6, γ11 = 8, γ02 = 20,
γ30 = 24, γ21 = 24, γ12 = 40, γ03 = 400.

The matrices associated to γ are

M(1) =

 1 2 4
2 6 8
4 8 20

 and B(2) =

 6 8 20
24 24 40
24 40 400

 .

With some calculations, we get M(1) > 0 and RanB(2) ⊆ RanM(1) with

WTM(1)W =

 108 96 120
96 112 800
120 800 26000

 .

We have y = 112 6= 120 = v. So, according to Theorem 2.4, γ admits at least one
representing measure 4-atomic.
Indeed, for the choice of quartic moments γ40 = 108, γ31 = 96, γ22 = 120, γ13 = 800
and γ04 = 26000, M(1) admits a positive semidefinite extension M(2) given by

M(2) =


1 2 4 6 8 20
2 6 8 24 24 40
4 8 20 24 40 400
6 24 24 108 96 120
8 24 40 96 120 800
20 40 400 120 800 26000

 .
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By the techniques used in [15], we construct the extension M(3) of M(2). We get,

M(3) =



1 2 4 6 8 20 24 24 40 400
2 6 8 24 24 40 108 96 120 800
4 8 20 24 40 400 96 120 800 26000
6 24 24 108 96 120 504 432 480 2400
8 24 40 96 120 800 432 480 2400 52000
20 40 400 120 800 26000 480 2400 52000 1960000
24 108 96 504 432 480 2376 2016 2160 9600
24 96 120 432 480 2400 2016 2160 9600 156000
40 120 800 480 2400 52000 2160 9600 156000 3920000
400 800 26000 2400 52000 1960000 9600 156000 3920000 149000000


,

Calculations, show that M(3) is flat. Hence, γ admits a representing measure µ of
4 atoms.

The localizing matrices associated to M(3) are

M(1,0)(3) =


2 6 8 24 24 40
6 24 24 108 96 120
8 24 40 96 120 800
24 108 96 504 432 480
24 96 120 432 480 2400
40 120 800 480 2400 52000

 ,

and

M(0,1)(3) =


4 8 20 24 40 400
8 24 40 96 120 800
20 40 400 120 800 26000
24 96 120 432 480 2400
40 120 800 480 2400 52000
400 800 26000 2400 52000 1960000

 .

With some computations, we obtain M(1,0)(3) � 0, M(0,1)(3) � 0 and the linear
dependency relations between the columns of M(2) are

X2 = 6X − 6 and Y 2 = 80Y − 300.

Thus, the atoms of the measure µ are

(x1, y1) = (3−
√

3; 40− 10
√

13), (x2, y2) = (3−
√

3; 40 + 10
√

13),

(x3, y3) = (3 +
√

3; 40− 10
√

13), (x4, y4) = (3 +
√

3; 40 + 10
√

13),

which belong to R2
+ and the respective weights are

ρ1 = 1
780

(
65
√

3 + 54
√

13 + 18
√

39 + 195
)
, ρ2 = 1

780

(
65
√

3− 54
√

13− 18
√

39 + 195
)
,

ρ3 = 1
780

(
−65
√

3 + 54
√

13− 18
√

39 + 195
)
, ρ4 = 1

780

(
−65
√

3− 54
√

13 + 18
√

39 + 195
)
.

So Berger’s measure is µ =
∑k=4
k=1 ρkδ(xk,yk) with suppµ ⊆ R2

+. Then, C2 admits a
subnormal completion C∞.

Example 3.6. Let C2 be the collection of the following pairs of positive data num-
bers

α(0,0) =
√
3
3 , β(0,0) =

√
3
3 , α(1,0) =

√
5, β(1,0) =

√
3,

α(0,1) =
√

3, β(0,1) = 3, α(2,0) = 3
√
5

5 , β(2,0) =
√

3
5 ,

α(1,1) = 1, β(1,1) =
√
3
3 , α(0,2) =

√
3
9 , β(0,2) =

√
10.
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The sequence of moments γ = {γij}0≤i+j≤3 defined by (1.3) is

γ00 = 1,

γ10 = 1
3 , γ01 = 1

3 ,

γ20 = 5
3 , γ11 = 1, γ02 = 3,

γ30 = 3, γ21 = 1, γ12 = 1
3 , γ03 = 30.

The matrices associated with γ are

M(1) =

 1 1
3

1
3

1
3

5
3 1

1
3 1 3

 and B(2) =


5
3 1 3

3 1 1
3

1 1
3 30

 .

Calculations lead to M(1) > 0 and RanB(2) ⊆ RanM(1) with

W =


6
5

22
25

69
50

9
5

13
25 − 187

25

− 2
5 − 4

25
617
50

 and WTM(1)W =

 7 43
15 − 39

5
43
15

101
75 − 149

75

− 39
5 − 149

75
55777
150

.

We have y = 101
75 6= −

39
5 = v. Taking C(2) =

 8 43
15

101
75

43
15

101
75 − 149

75
101
75 − 149

75
5124467
11250

, we

construct the extension M(2) of M(1) as follows

M(2) =



1 1
3

1
3

5
3 1 3

1
3

5
3 1 3 1 1

3
1
3 1 3 1 1

3 30
5
3 3 1 8 43

15
101
75

1 1 1
3

43
15

101
75 − 149

75

3 1
3 30 101

75 − 149
75

5124467
11250


.

Note that γ13 = − 149
75 < 0, which makes impossible the construction of a subnormal

completion C̃4 of C2. According to the relation (1.3), γ13 = α2
(0,0)β

2
(1,0)β

2
(1,1)β̃

2
(1,2).

Whence β̃2
(1,2) < 0, which is impossible.

Therefore, C2 does not admit a subnormal completion C∞.
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