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SOME FIXED POINT THEOREMS FOR MULTIVALUED

KRASNOSEL’SKII-TYPE EQUATIONS UNDER WEAK

TOPOLOGY

CESIM TEMEL AND MÜBERRA SELAH

Abstract. In this paper, using the approximation method and the technique

of weak noncompactness, we obtain some results regarding the existence of the

solution for the sum of a multivalued operator and a single-valued operator
in the weak topology. In addition, an application of integral inclusion is pre-

sented that explains our theory. This study extends some previously known

single-valued Krasnosel’skii-type theorems to multivalued versions under weak
topology.

1. Introduction

In nonlinear analysis, many integral equations and differential equations can be
expressed as the sum of operators. Therefore, recently authors have followed with
interest the existence of the solution for the sum of operators [5, 6, 13, 23, 24]. In
[20], Krasnosel’skii proved that the equation

Kx+ Lx = x, x ∈ C (1.1)

has a solution in C under the following conditions:
(i) K(x) + L(y) ∈ C for all x, y ∈ C,
(ii) K is a contraction with constant α < 1,

(iii) L is continuous on C and (L(C)) is compact set in X,
where C is a convex closed subset of a Banach space X. This result is also known

as a mixed fixed point theorem, which includes the Banach contraction principle and
Schauder fixed point theorem. Many variants of the Krasnosel’skii theorem have
been obtained by improving the above conditions [9, 11, 19, 25]. For instance in [4],
Barroso presented a version of Krasnosel’skii theorem for the linearity condition
in weak topology and in [30], Xiang et al established a new result for equation
(1.1), where K is an expansive mapping. In course of time, multivalued versions of
Krasnosel’skii type theorems have been obtained for solving the inclusion

x ∈ Kx+ Sx, x ∈ C (1.2)
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and some researchers have extended a number of multivalued analogues for the
weak topologys [10, 16, 26, 27].

Studies on Krasnosel’skii’s theorem have an important place in the literature due
to the wide application areas of equations in the form (1.1) and (1.2). In the first
studies, the researchers studied with the condition that the L operator has weak
compactness property. This thought stemmed from their focus only on Schauder’s
fixed point theorem. Then, in [30], by the method of measure of noncompactness,
the authors studied without the compactness property of the L operator in strong
topology. Over time, new multivalued variants of Krasnosel’skii theorem were ob-
tained by using the method of measure of weak noncompactness and the Schauder’s
fixed point theorem together [8, 18, 28].

Moreover, the multivalued Krasnosel’skii theorems are related to the notion of
selection that Cellina [12] has constructed. Multivalued operators admit an approx-
imate continuous selection established for compact and nonconvex multifunctions
under certain conditions [15, 17]. One of the important methods related to selec-
tions in the multivalued fixed point theory is the approximation method started by
J. Von Neumann [29]. This method works as follows: first, through a single-valued
map, an approximation is obtained on the graph of a given multivalued map. Then,
by applying a certain process to this single-valued approximation, it is investigated
to what extent the properties of the approximation are transferred to the original
map.

The scope of this study is as follows: Firstly, using the method of measure of
weak noncompactness, we give a new result in weak topology without needing the
compactness condition of S. Secondly, we establish a new variant of the Kras-
nosel’skii theorem offered by Taoudi [25, Theorem 2.1] and we model the proof of
obtained result with the help of an approximation selection sε satisfying the con-
dition of Lemma 4.1, also the invertible of (I − K) and the weakly sequentially
continuity of (I −K)−1sε play an essential role in the proof. Then based on this
result we prove a fixed point theorem for the sum of a multivalued weak compact
and a nonexpensive mapping. Finally, we present an application that embodies our
results for integral inclusion.

2. Preliminaries

In this section, we present the notations, definitions, and useful results that will
be needed for this article.

Let (X, ‖.‖) be a Banach space and sets P (X) = {Y ⊂ X : Y 6= ∅}, Pcl(X) =
{Y ⊂ X : Y 6= ∅, Y is closed}, Pbd(X) = {Y ⊂ X : Y 6= ∅, Y is bounded },
Pcv(X) = {Y ⊂ X : Y 6= ∅, Y is convex} and Pwcp(X) = {Y ⊂ X : Y 6= ∅, Y is
weakly compact}. Let S : X → Pcl(Y ) be a multivalued map, the range R(S) and
the graph Γ(S) of S is defined by

R(S) =
⋃
x∈X

S(x), Γ (S) = {(x, y) ∈ X ×X : x ∈ X, y ∈ S (x)} .

A single-valued map s : X → Y is called to be a selection of S if s(x) ∈ S(x)
for every x ∈ X. Also, s is called to be weakly sequentially continuous (w.s.c.) if
for each sequence (xn)n ⊂ X with xn ⇀ x ∈ X, there exists s(xn) ⇀ s(x). The
mapping S is called weakly upper semicontinuous (w.u.sc.) if

S−1(V ) = {x ∈ X : S(x) ∩ V 6= ∅}
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is closed for weak topology in X for a weakly closed set V ⊂ Y and S is called
to be weakly sequentially upper semicontinuous (w.s.u.sc.) if S−1(V ) is weakly
sequentially closed in X. S is called to be weakly compact if the set R(S) is
weakly relatively compact in Y. Let U ⊂ X is a weakly closed set and it is said to S
has a weakly sequentially closed graph (w.s.cg.) if for each (xn)n ⊂ U , xn ⇀ x in
U and for each (yn)n such that yn ∈ S(xn), ∀n ∈ N , yn ⇀ y in Y implies y ∈ S(x),
where ⇀ denotes weak convergence.

Let Ŵ (X) be a subset of Pbd(X) consisting of all weakly compact subsets of X,
and Br denote the closed ball centered at 0 with radius r.

Definition 2.1. [25] A function ω : Pbd(X)→ R+ is said to be a measure of weak
noncompactness (m.w.nc.) if it satisfies the following condition:

(1) ω(co(C)) = ω(C); co(C) is the closed convex hull of C ∈ Pbd(X),
(2) C1 ⊆ C2 ⇒ ω(C1) ≤ ω(C2), for C1, C2 ∈ Pbd(X),
(3) ω(λC1 + (1− λ)C2) ≤ λ ω(C1) + (1− λ) ω(C2) for λ ∈ [0, 1],
(4) If (Cn)n≥1 is a sequence of nonempty weakly closed subsets of X with C1

bounded and C1 ⊇ C2 ⊇ ...Cn ⊇ ... with limn→∞ ω(Cn) = 0, then C∞ :=
⋂∞
n=1 Cn

is nonempty.

It can be easily shown that the measure ω satisfies ω(C
w

) = ω(C) , where C
w

is the weak closure of C. The first significant instance of an m.w.nc. has been
introduced by De Blasi as:

Ω(C) = inf{r > 0 : there exists W ∈ Ŵ (X)with C ⊆W +Br} (2.1)

for each C ∈ Pbd(X). This m.w.nc. has other useful features such as the subaddi-
tivity

Ω(C1 + C2) ≤ Ω(C1) + Ω(C2),

and the homogeneity

Ω(λC) = |λ|Ω(C).

Also, an important feature of De Blasi m.w.nc. is

Ω(C) = 0 if and only if C is relatively weakly compact. (2.2)

Using the m.w.nc., we call that a multivalued mapping S : C → P (X) is Ω-
condensing if S is bounded and Ω(S(C)) < Ω(C) for all C ∈ Pbd(X) with Ω(C) 6= 0.

Definition 2.2. [25] Let X be a Banach space. A mapping K : X → X is called
nonexpansive if

‖Kx−Ky‖ ≤ ‖x− y‖
for every x, y ∈ X.

Definition 2.3. [14] Let S : X → P (Y ) be a multivalued map, M ⊂ X and ε > 0.
A single-valued map sε : M → Y is called to be an ε−approximation (on the graph)
of S if

Γ(sε) ⊂ Oε(Γ(S))

where Oε(.) is ε−neighborhood.

Some significant features related to the approximation of multivalued maps are
given in Lemma 4.1.
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3. measure of weak noncompactness for Krasnosel’skii type theorems

Let us start this section with the two results we will need.

Theorem 3.1. [7] Let C be a nonempty, convex, closed subset of X. Assume
S : C → Pcv(C) has w.s.cg and S(C) is weakly relatively compact. Then S has a
fixed point.

Theorem 3.2. [7] Let C be a nonempty, convex, closed subset of X and Ω an
m.w.nc. on X. Assume S : C → Pcv(C) has w.s.cg., is Ω-condensing and S(C) is
bounded. Then S has a fixed point.

Now using m.w.nc., we present our first result, where L(X) denotes the space of
continuous, linear operators on X.

Theorem 3.3. Let C be a nonempty, closed, convex and bounded subset of X.
Assume K ∈ L(X) is a w.s.c. mapping and S : C → Pcv(X) is a w.s.u.sc. mapping
satisfying:

(i) Kx+ Sy ⊂ C, for x, y ∈ C,
(ii) K is a contraction,
(iii) (K + S)(C) is a bounded set of C,
(iv) Ω(K(A) + S(A)) < Ω(A) for all A ⊂ C with Ω(A) 6= 0.
Then there exists x ∈ C with x ∈ Sx+Kx.

Proof. Let y ∈ C and Hy : C → Pcv(X) be the multivalued mapping defined by

Hy(x) = K(x) + S(y), x ∈ C.

Since S(y) ∈ Pcv(X) and S is w.s.u.sc., then Hy(x) ∈ Pcv(X). Using (i), obtain
that Hy(C) ⊂ C. We show that Hy has w.s.cg.. Let (αn, βn) ∈ Γ(Hy) be a sequence
with βn ∈ Hy(αn), αn ⇀ x and βn ⇀ y∗. So there exists δn ∈ S(y) with βn =
K(αn) + δn. Since K is w.s.c. then K(αn) ⇀ K(x). Consequently, we obtain
δn ⇀ y∗ − K(x) ∈ S(y). Thus Hy has w.s.cg.. Now let us show that Hy(C) is
relatively weakly compact. For this, we take βn as a subsequence. From (i), we
have δn ⇀ y∗ ∈ Kx+ Sy ⊂ C and βn ⇀ y∗ ∈ C. Thus Hy (C) is relatively weakly
compact. Hence, from Theorem 3.1 there exists x(y) ∈ K(x(y)) + S(y). By (ii), it
can be shown that I−K is invertible (see [30, Lemma 2.13]) and (I−K)−1 ∈ L(X).
We define F : C → Pcv(C) by

y → F (y) = (I −K)−1S(y).

Since S(.) ∈ Pcv(X) and (I −K)−1 ∈ L(X), then F (.) ∈ Pcv(X) and consequently
F (C) ⊂ C. Let ao ∈ A and we define the set

Ă = {A : ao ∈ A ⊂ C, A is a bounded convex closed set and F (A) ⊂ A} .

Ă is nonempty because of C ∈ Ă. In addition, for each A ∈ Ă, we have

F (A) = (I −K)−1S(A) (3.1)

⊂ K(I −K)−1S(A) + S(A) ⊂ K(A) + S(A). (3.2)

Using (iv), we can write Ω(F (A)) < Ω(K(A) + S(A)) < Ω(A) for all A ∈ Ă with
Ω(A) > 0.This implies that F is Ω-condensing, from (iii) and (3.1) F (C) is bounded.
Finally, for F to fulfill the conditions of Theorem 3.2, we must show that it has
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w.s.cg.. Let sequence (xn) ⊂ C with xn ⇀ x ∈ C and yn ∈ F (xn) with yn ⇀ y.
Using definition of F , we get that

(I −K)(yn) = S (xn) . (3.3)

Considering that (I −K) and S are w.s.c. we can write

(I −K)(yn) ⇀ (I −K)(y) and S (xn) ⇀ S(x). (3.4)

Combining of (3.2) and (3.3) we have (I−K)(y) = S(x) and so y ∈ (I−K)−1S(x) =
F (x) this means that F has w.s.cg.. By appling Theorem 3.2 to mapping F , we
obtain x ∈ (I −K)−1S(x) for x ∈ C, so the proof is complete. �

Corollary 3.4. Let C be a nonempty, closed, convex and bounded subset of X .
Assume K ∈ L(X) is a w.s.c. mapping and S : X → Pcv(X) is a w.s.u.sc. mapping
satisfies condition of Theorem 3.3, (i)-(ii) and

(iii) S is weakly compact.
Then S +K has at least one fixed point .

Proof. From proof of Theorem 3.3, we have F : C → Pcv(C) by

y → F (y) = (I −K)−1S(y).

By (iii) and the continuity of (I −K)−1, for the set A defined in Theorem 3.3, we
see that the set

M = co(((I −K)−1S(A)) ∪ {ao})
is weakly compact and mapping F : M → Pcv(M) is w.s.u.sc.. Thus from [1,
Theorem 2.1.], there exists y∗ ∈M with y∗ ∈ F (y∗). This completes the proof. �

4. approximation method for Krasnosel’skii type theorems

In this section, we use a recently introduced approximation technique for our
Krasnosel’skii type results. First, we give weakly version of the approximation
selection theorem [18, Theorem 4.1]. This important result forms the basis of this
part.

Lemma 4.1. Let (X, ‖.‖) be a normed space, (Y, ‖.‖) a Banach space, and S :
X → Pcv(Y ) be a w.u.sc. multivalued mapping. Then, for every ε > 0, there exists
a weakly continuous function sε : X → Y with

sε(X) ⊆ coS(X)

and
Γ(sε) ⊆ Γ(S) + εB∗,

where B∗ is the weak unit ball of X × Y.

More information about the weak unit ball can be found in Banakh [3].

Proof. Fix ε > 0, for ∀x ∈ X, there is δ(x) with for any x∗ ∈ B(x, δ(x)) and we
have

S(x∗) ⊂ cl
(
S(x) +

ε

2
B
)
.

Further, we can take δ(x) < ε
2 . Since X is a paracompact space, the family of

weak balls {B(x, δ(x)/4)}x∈X of X admits a partition of unity subordinated to
{B(x, δ(x)/4)} . Let us take a family {λi}i∈I of weakly continuous Lipschitzian
function such that {Supp λi}i∈I , where

Suppλi = cl {x ∈ X : λi 6= 0}
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is a locally finite refinement of {B(x, δ(x)/4)} , that is for every i ∈ I, there is

Wi ∈ {B(x, δ(x)/4)}

such that

Suppλi ⊂Wi.

Choose for each j an xj ∈Wi with yi ∈ S(xj) and define

sε(x) =
∑
i∈I

λi(x) yi, x ∈ X.

Given that for i ∈ I, λi is weak continuous, we get sε is a weakly continuous
Lipschitzian function and its range is in the convex hull of the S(X). For xj ∈Wi

and yi ∈ S(xj), we can have

yi ∈ S(xj) ⊂ cl
(
S(x) +

ε

2
B
)
.

Since set S(x) + ε
2B is convex, we conclude that

sε ∈ S(x) +
ε

2
B.

So, we have yj ∈ S(xj) with

‖sε(x)− yj‖ ≤
ε

2
.

Then

d((x, sε(x)), (xj , yj)) ≤ d(x, xj) + ‖sε(x)− yj‖ ≤ ε.
And so, we have (x, sε(x)) ∈ Gr(S) + εB. �

We now give a result whose proof we will model on the Lemma 4.1. This result
is the multivalued version of the Krasnosel’skii type theorem presented by Taoudi
[25, Theorem 2.1].

Theorem 4.2. Let C be a bounded, convex nonempty subset of X. Suppose that
S : C → Pcv(X) is a w.s.u.sc. mapping and K ∈ L(X) is a w.s.c. mapping
satisfying:

(i) S is weakly compact,
(ii) K is a contraction,
(iii) Sx+Ky ⊂ C, for x, y ∈ C,
(iv) S has w.s.cg.
Then S +K has at least one fixed point in C.

Proof. Let ε > 0 be given. Then, by Lemma 4.1 sε : C → X weakly continuous
function such that

Γ(sε) ⊆ Γ(S) + εB∗ (4.1)

and sε(C) ⊂ coS(C). By (iii) and the convexity of C, we obtain

K(C) + sε(C) ⊆ K(C) + coS(C)

⊆ co(K(C) + S(C))

⊂ co(C) = C. (4.2)

For fixed y ∈ C, we consider Hy(x) : C → C defined by Hy(x) = K(x) + sε(y)
and for each x ∈ C, Hy(x) defines a contraction. Thus, according to the Banach
fixed point principle, the equation xε(y) = K(xε(y)) + sε(y) has a unique solution
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xε(y) ∈ C. By (ii), it can be shown that I −K is invertible (see [30, Lemma 2.13])
and we can define the operator

Fε(x) = (I −K)−1sε(x).

By (iii),
Fε(C) ⊂ C (4.3)

Now M = co(Fε(C)) be the closed convex hull of Fε(C). Since C is a convex
closed subset of X, it follows from (4.3) that M ⊆ C and thus Fε(M) ⊆ Fε(C) ⊆
co(Fε(C)) = M . That is Fε maps M into itself. We argue that M is weakly
compact. If this is not so, then from (2.2), Ω(M) > 0. Using the

Fε = sε +KFε (4.4)

with Definition 2.1, (1) and (2) we get

Ω(M) = Ω(co(Fε(C)) = Ω(Fε(C)) ≤ Ω(sε(C) +KFε(C)). (4.5)

Consider that C is a finite set. Then

sε(C) ⊂ coS(C)⇒ sε(C) ⊂ coS(C).

Since S weakly compact, so is sε(C) and by (2.2), Ω(sε(C)) = 0.Thus using the
subadditivity of the De Blasi m.w.nc. we obtain

Ω(M) ≤ Ω(sε(C)) + Ω(KFε(C)) = Ω(KFε(C)). (4.6)

Then, using Ω(sεC) = 0 in (4.5), for α ∈ (0, 1], it results

Ω(KFε(C)) ≤ αΩ(Fε(C)). (4.7)

Now, combining (4.6) and (4.7) we obtained

Ω(M) ≤ αΩ(Fε(C)) = αΩ(co(Fε(C)) = αΩ(M) < Ω(M).

This is a contradiction. So M is weakly compact. Further sε is weakly continuous
and (I −K)−1 ∈ L(X) is w.s.c..Therefore, it is clear that Fε is w.s.c.. In this case,
Fε satisfies condition of Arino et. al. fixed point theorem [2, Theorem 1] and so
there exists xε ∈M with

xε = K(xε) + sε(xε).

Now let (εn)n∈N with εn ⇀ 0 and for each n ∈ N we choose xεn ∈ M so that
xεn = K(xεn) + sε(xεn). Since M is weakly compact, there exists a subsequence of
xεnweakly converging to some x ∈M , and so

sε(xεn) = (I −K)(xεn) ⇀ (I −K)(x).

Then, from (4.1), we have

d(xεn , sε(xεn)),Γ(S)) ≤ εn.
Since S has w.s.cg. in X ×X, (I −K)(x) ∈ S(x). Thus, x ∈ K(x) + S(x) and the
proof is complete. �

For Theorem 4.2, we can give the following result.

Corollary 4.3. Let C be a nonempty convex and weakly compact subset of X.
Suppose that S : C → Pwcp,cv(X) is a w.s.u.sc. mapping and K ∈ L(X) is a w.s.c.
mapping satisfying:

(i) K is a contraction,
(ii) Sx+Ky ⊂ C, for x, y ∈ C,
(iii) S has w.s.cg.
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Then S +K has at least one fixed point in C.

Using Theorem 4.2 we prove the following fixed point theorem.

Theorem 4.4. Let C be a nonempty convex, bounded, closed subset of X. Suppose
that S : C → Pcv(X) is a w.s.u.sc. mapping and K ∈ L(X) is a w.s.c. mapping
satisfying:

(i) S is weakly compact,
(ii) K is nonexpensive,
(iii) if there exists a sequence (xn)n ⊂ C with (I −K)xn ⇀ y; then {xn} has a

weakly convergent subsequence,
(iv) if λ ∈ (0, 1) and λKx+ Sy ⊂ C, for x, y ∈ C,
(iiv) S has w.s.cg.
Then there is x ∈ C such that x ∈ Sx+Kx.

Proof. For each λ ∈ (0, 1) the mappings S and K fulfill the assumptions of Theorem
4.2. Hence, we get x ∈ Sx+ λKx, for x ∈ C. Now, take a sequence (λn)n ⊂ (0, 1)
with λn → 1 and consider the sequence {xn} in (iii), then we can write

sεxn + λnKxn = xn, (4.8)

where sε is as defined in the proof of Theorem 4.2. Also, C is a bounded set and
sε(C) ⊂ coS(C)⇒ sε(C) ⊂ coS(C). Since S is weakly compact, so is sε(C). Using
the weakly compactness of sε(C), we may assume that sεxn ⇀ y ∈ C. Therefore,

(I − λnK)xn ⇀ y. (4.9)

Since (xn)n ⊂ C, then it is norm bounded and so is {Kxn}. Hence,

‖(xn −Kxn)− (xn − λnKxn)‖ = (1− λn) ‖Kxn‖ → 0. (4.10)

from (4.9) and (4.10),we have

xn −Kxn ⇀ y.

By (iii) we conclude that {xn} has a subsequence xnk
⇀ x ∈ C. Using the weak

sequentially continuity of sε and K in equation (4.8) we get sεx+Kx = x. Hence,
the proof is complete due to the proof of Theorem 4.2. �

Remark. Theorem 4.4 is a multivalued version of [25, Theorem 2.4] with linearity
condition.

Corollary 4.5. Let C be a nonempty bounded convex closed subset of a reflexive
Banach space X. Suppose that S : C → Pcv(X) is a w.s.u.sc. mapping and
K ∈ L(X) is a w.s.c. mapping satisfying:

(i) K is nonexpensive,
(ii) if λ ∈ (0, 1) and λKx+ Sy ⊂ C, for x, y ∈ C,
(iii) S has w.s.cg.
Then there is x ∈ C such that x ∈ Sx+Kx.

5. An Application

In this section, we will present an application under conditions similar to the
hypotheses in [8, Theorem 5.2].
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Let X is a reflexive Banach space and J = [0, R]. Consider the integral inclusion

x(r) ∈ K(x(r)) +

R∫
0

T (s, x(s))ds, r ∈ J, R > 0, (5.1)

where K : X → X, T : J ×X → Pcv(X). For all r ∈ J and x ∈ X,

‖T (r, x)‖ = sup {|w| , w ∈ T (r, x)} .

The integral in inclusion (5.1) is the Pettis integral. Now we suppose the following
hypotheses are satisfied:

(H1) The mapping K ∈ L(X) is w.s.c., K is a contraction and for fix E,
‖K(x(r))‖ ≤ E holds.

(H2) There exists a weakly continuous, Pettis integrable function y : J → X
with y(r) ∈ T (t, x(r)), where r ∈ J and x : J → X is a continuous function.

(H3) For any k > 0, ψk ∈ L1(J) with ‖T (r, v)‖ ≤ ψk(r) for r ∈ J and v ∈ X
such that |v| ≤ k. Further, assume that

R∫
0

ψr(r)ds < k.

(H4) T (t, .) has w.s.cg.

Theorem 5.1. Assume hypotheses (H1)-(H4) are satisfied. Then (5.1) has a so-
lution in C(J,X).

Proof. Define a subset M of X by

M = {x ∈ C(J,X) : ‖x‖ ≤ N} ,

it is obvious that M is a closed, convex and bounded set. X is a reflexive, so one
concludes that M is weakly compact. Now we introduce the nonlinear mappings K
and S :
K : C(J,X)→ C(J,X) and S : M → Pcv(C(J,X)),

Sx(r) =

w(r) =

r∫
0

y(s)ds, y(r) ∈ T (t, x(r)) and y is Pettis integrable

 .

We can formulate the inclusion (5.1) as follows:

x(r) ∈ Kx(r) + Sx(r). (5.2)

For the proof, we must show that all the conditions of Theorem 4.2 are satisfied.
Now, let us show S is w.s.u.sc. and weakly compact.

First, we first show S has a w.s.cg.. Let xn ∈ M, xn ⇀ x and zn ∈ Sxn such
that zn ⇀ z. Let us take a sequence (yn) : J → X with yn is Pettis integrable
mapping for ∀n ∈ N, xn(s) ⇀ x(s) and yn(s) ∈ T (s, xn(s)) for each s, r ∈ J there
is

zn(r) =

r∫
0

yn(s)ds.
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From (H4), there is y(s) ∈ T (s, x(s)) for every s ∈ J and

z(r) =

r∫
0

y(s)ds ∈ Sx(r).

Hence, S has w.s.cg.. For weakly compactness of S we show that S(x) is closed,
bounded and convex valued for each x ∈M. Let w1, w2 ∈ S(x) with

z(r) =

r∫
0

y(s)ds ∈ Sx(r).

From definition of mapping S; y1, y2 are Pettis integrable and y1, y2 ∈ F (s, x(s))
for ∀s ∈ J. For all α ∈ (0, 1),

y1(s) + (1− α)y2(s)) ds.

From T (r, x(r)) ∈ Pcv(X), we have

αw1 + (1− α)w2 ∈ S(x),

thus S(x) is convex and S has w.s.cg., so S is closed valued. From (H3), T (r, x(r))
is bounded and thus S(x) is bounded for all x ∈ M . We know that X is reflexive,
which proves that S(x) is weakly relatively compact. Thus, considering [9, Lemma
2.2] we obtain S is w.s.u.sc.

We prove that the condition K(x) + S(z) ⊂ M, for x, z ∈ M, is satisfied. Let
w(r) ∈ Sz(r) and suppose that the relation s(r) = K(x(r)) + w(r), for all r ∈ J.
Now,

‖s(r)‖ ≤ ‖K(x(r))‖

for every r ∈ J. If we take the supremum in the last inequality, we have ‖s‖ ≤ N
and so, s ∈M . Consequently,

K(x) + S(z) ⊂M, for x, z ∈M.

Hence, the requirements of Theorem 4.2 are fulfilled and so multivalued operator
equation (5.2) has a solution. �

6. Conclusions

Multivalued Krasnosel’skii-type theorems attract much attention because they
have a wide range of applications in integral (differantial) inclusions. Different
methods have been used in the literature to prove such theorems. In the third
part of this study, we prove a new multivalued version of the Krasnosell’ski-type
theorem using the measure of weak noncompactness technique under appropriate
conditions for weak topology in Banach spaces. In the next section, we introduce
the approximation method under weak topology properties and prove with this
method that (1.2) has a solution in Banach spaces. This method, especially based
on an ε−approximation, is very useful in solving equations involving multivalued
mappings with a single-valued selection. Finally, an application of integral inclusion
is presented that explains our theory.
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