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SOME ASPECTS OF FUNDAMENTAL FORMS OF SURFACES

AND THEIR INTERPRETATION

KULJEET SINGH1, SANDEEP SHARMA1

Abstract. In this paper, we study the first and second fundamental forms of
surfaces, exploring their properties as they relate to measuring arc lengths and

areas, and identifying isometric surfaces. These forms can be used to define the
Gaussian curvature, which is, unlike the first and second fundamental forms,

independent of the parametrization of the surfaces. Also, we investigate the

geometric behaviour of rectifying curves on regular surfaces under conformal
and isometric transformation by using the concept of fundamental forms of

surfaces.

1. Introduction

For many years, surface theory has been a popular topic for many researchers
in many aspects. Calculus is used to study the properties of curves and surfaces
of all types in differential geometry. It mainly concentrates on the characteristics
of a limited subset of geometric surfaces and curves configurations. In differential
geometry, various kinds of curves are investigated, but regular curves are the most
important ones. The number of continuous derivatives is a trait that reveals the
smoothness of the curve. A curve is regarded as smooth if it is differentiable and
consequently continuous everywhere. A curve is referred to as being regular if it
can be differentiated and has no zero derivative.

The investigation of regular maps is a crucial field of study in differential ge-
ometry. For more information on the regular curve, we refer the readers to see
[1, 4, 5, 20]. There are many ways to categorize motions, but we’ll concentrate on
the ones that preserve particular geometrical characteristics. We categorize trans-
formations generally into the following equivalence classes: conformal, isometric,
homothetic, and non-conformal or general motion, depending on the varying na-
ture of the mean curvature (M) and the Gaussian curvature (G).

In isometry, lengths, and angles between curves on surfaces are both preserved.
In terms of geometry, isometry preserves the Gaussian curvature’s invariance, while
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altering the mean curvature. The isometry between a helicoid and a catenoid, which
suggests that they have the same G but different M, is one of the best-known ex-
amples. The most significant transformation is a conformal transformation, which
preserves angles in terms of magnitude and direction but not always in terms of
length. Conformal maps play a significant role in cartography. The stereographic
projection, which maps a sphere onto a plane, is the most typical example of con-
formal transformation. To create the renowned Mercator’s world map, the first
conformal (angle preserving) world map, Gerardus Mercator first employed this
conformal map attribute in the year 1569. We suggest that the readers watch an
animated movie on conformal maps that was released by Bobenko and Gunn in
2018 along with Springer VideoMATH for additional details regarding the applica-
tion of conformal maps [8]. Angles and distances between any pair of intersecting
curves are not preserved in the context of general motion. The use of motion,
transformation, and maps is for same throughout the paper.

Let P and P̃ be two smooth and regular immersed surfaces in the Euclidean
space R3, and G : P → P̃ be a smooth map. A necessary and sufficient condition
for G to be conformal is that the first fundamental form quantities are proportional.
In other words, the area element of P and P̃ are proportional to a differentiable
function (factor), which is denoted by ζ(x, y) and is commonly known as the dilation
function. For more information on the dilation function, we refer the readers to see
[2, 3, 6, 7, 9, 10, 16, 17, 21]. A generalized class of certain motions is the conformal
transformation, which is defined in the following way [9, 13, 17, 18, 21]:

• If the dilation factor ζ(x, y) = c, where c is a constant with c 6= {0, 1},
then G is a homothetic transformation.
• If the dilation function ζ(x, y) = 1, then G becomes isometry.

We begin our study by examining two properties of surfaces in R3, called the
first and second fundamental forms. For more information about these fundamental
forms of surfaces, one can refer [19, 20].

The format of this paper is as follows: Section 2 covers some fundamental def-
initions and information about the dilation function, geodesic curvature, normal
curvature, rectifying curves, and normal curves. Moreover, the first and second
fundamental forms of surfaces are also included in this section. Section 3 deals
with the understanding of rectifying curves on regular surfaces and their conformal
image under various transformations. We also examine the major results in this
section.

2. Preliminaries

This section includes some essential information on rectifying and normal curves,
including their first fundamental form, geodesic and normal curvature, and some
basic definitions. We present some known definitions and results for ready reference
to go through the work presented in this paper.

Let δ : I ⊂ R → R3 be a smooth parametrized curve having unit speed, at
least a fourth-order continuous derivative, and an arc length (r). Then the tangent,

normal, and binormal of the curve δ is denoted by ~t, ~n and ~b respectively. At each

point on the curve δ(r), the vectors ~t, ~n and ~b are mutually perpandicular to each



12 K. SINGH, S. SHARMA

other and so the triplet {~t, ~n,~b} forms an orthonormal frame.

Consider ~t′(r) 6= 0, if the unit normal vector ~n along the tangent at a point on

the curve δ, then we can write ~t′(r) = κ(r)~n(r), where ~t′(r) is the derivative of ~t
with respect to arc length parameter ‘r’ and κ(r) is the curvature of δ(r). Also the

binormal vector field is denoted by ~b and is defined by ~b = ~t× ~n, and we can write
~b′(r) = τ(r)~n(r), where τ(r) is another curvature function known as torsion of the
curve δ(r).
In [3, 4, 11, 15], Serret-Frenet equations are given as follows:

~t′(r) = κ(r)~n(r),

~n′(r) = −κ(r)~t(r) + τ(r)~b(r),

~b′(r) = −τ(r)~n(r),

where the functions κ and τ are respectively called the curvature and torsion of the
curve δ, satisfying the following conditions:

~t(r) = δ′(r), ~n(r) =
~t′(r)
κ(r) and ~b(r) = ~t(r)× ~n(r).

From the arbitrary point δ(r) on the curve δ, the plane spanned by {~t, ~n} is

called the osculating plane and the plane spanned by {~t,~b} is called the rectifying

plane. In the same way, the plane spanned by {~n,~b} is called the normal plane.
Whenever we talk about the position vector of the curve, which defines the different
kinds of curves [12, 16, 17] :

• If a curve’s position vector lies in the normal plane, it can be characterized
as a normal curve.

• If a curve’s position vector lies in the rectifying plane, it can be character-
ized as a rectifying curve.

• If a curve’s position vector is in the osculating plane, then the curve is said
to be an osculating curve.

Due to their prevalence, normal, rectifying, and osculating curves are often cov-
ered in every standard book on differential geometry of curves and surfaces. For
more information, we refer the readers to see [1, 2, 3, 6, 11]. In the Euclidean
3-dimensional space R3, Chen [5, 11] introduced the concept of the motion of rec-
tifying curves and investigated some of the properties of such curves. Shaikh and
Ghosh in [2, 3, 7, 14, 18] investigated the sufficient conditions for osculating and rec-
tifying curves on smooth surfaces to remain invariants under isometry of surfaces.
In the year 2003, Chen [5] came across the following query regarding rectifying
curves: What happens if a space curve’s position vector is always located in its
rectifying plane, and found that the component of a space curve’s position vector
along the surface normal stays invariant when surfaces are isometric.

The main goal of this paper is to expand on the work of Lone et al. [5, 12, 13],
where they studied the geometric invariants of normal curves under conformal trans-
formation in E3. In [5], the author investigated the invariant properties of normal
curves under conformal transformation and also studied the normal and tangential
components of the normal curves under the same motion. By drawing inspiration
from Shaikh and Ghosh’s work [2, 6], they investigated the geometric invariants
characteristics of rectifying curves on smooth surfaces under the isometry of the
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surfaces.

Moreover in [5], authors also investigated the invariant properties of osculating
curves under the isometry of surfaces. But a natural question arises: what happens
with the geometric properties of a rectifying curve with respect to the isometry,
and properties of first and second fundamental forms of surfaces in the Euclidean
space R3.

In the present article, we introduce the concept of fundamental forms of surfaces
and compute some of their geometric properties. Moreover, we also studied the
concept of some of the important curves in spaces namely rectifying curves, and
also investigated the invariant sufficient condition for the conformal image of such
curve on a regular surface under the conformal and homothetic transformations in
R3. Firstly, try to investigate the following:
What aspects of a rectifying curve on a smooth immersed surface remain unchanged
after conformal transformation.

If the position vector of a curve is located in the rectifying plane, then the curve
is said to be a rectifying curve [8, 12, 15], i.e.,

δ(r) = µ1(r)~t(r) + µ2(r)~b(r), (2.1)

where µ1 and µ2 are two smooth functions.
Let σ : U → P be the coordinate chart map on the regular surface P and the
smooth parametrized unit speed curve δ(r) : I → P , where I = (a , b) ⊂ R and
U⊂ R2.
As a result, the curve δ(r) is given by

δ(r) = σ(x(r), y(r)). (2.2)

By using the chain rule to differentiate (2.2), with respect to r, we get

δ′(r) = σxx
′ + σyy

′. (2.3)

Now, ~t(r) = δ′(r). Then, from equation (2.3), we find that

~t(r) = σxx
′ + σyy

′. (2.4)

When we differentiate equation (2.4) again in terms of r, we get

~t′(r) = x′′σx + y′′σy + x′2σxx + 2x′y′σxy + y′2σyy.

If N is the normal to the surface P and κ(r) is the curvature of the curve δ(r), then
the normal vector ~n(r) can be written as

~n(r) =
1

κ(r)
(x′′σx + y′′σy + x′2σxx + 2x′y′σxy + y′2σyy). (2.5)

Now the binormal vector ~b(r) can be written as

~b(r) = ~t(r)× ~n(r).
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By substituting the value of ~t(r) and ~n(r) from equation (2.4) and (2.5) we obtained

~b(r) =
1

κ(r)
[(σxx

′ + σyy
′)× (x′′σx + y′′σy + x′2σxx + 2x′y′σxy + y′2σyy)],

=
1

κ(r)
[(y′′x′ − y′x′′)N + x′3σx × σxx + 2x′2y′σx × σxy + x′y′2σx × σyy

+x′2y′σy × σxx + 2x′y′2σy × σxy + y′3σy × σyy]. (2.6)

Definition 2.1. [4] Let P and P̃ be two regular surfaces in the Euclidean surface
R3 and δ(r) be an arc length parametrized curve lying on the surface P . Then
δ′(r) is perpandicular to the unit surface normal N, and also δ′(r) and δ′′(r) are
perpandicular. Thus, δ′′ can be represented as the linear combination of N and
N×δ′, i.e.,

δ′′ = κnN + κgN×δ′,
where the parameters κn and κg, which are commonly known as the normal and
geodesic curvatures of the curve δ, and are given by

κn = δ′′·N,
κg = δ′′·(N× δ′).

Definition 2.2. [3] If there exists a neighborhood V of G(q) ∈ P̃ such that G :

U → V is an isometry, then the diffeomorphism G : U ⊂ P → P̃ of the neighbor-
hood U of a point ’q’ in P is referred to as a local isometry at ’q’. The surface P
and P̃ are said to be locally isometric when the local isometry exists at every point
of P . In general, G is said to as global isometry if it is local isometry at each point
of the surface P .

Definition 2.3. [4] A smooth surface in R3 is a subset P ⊂ R3 such that each
point has a neighbourhood U ⊂ P and a map σ : V → R3 from an open set V ⊂ R2

such that

• σ : V → U is a homeomorphism. This means that σ is a bijection that
continuously maps V into U and that the inverse function σ−1 exists and
is continuous.
• σ(x, y) = (u(x, y), v(x, y), w(x, y)) has derivatives of all orders.
• At all points, the first partial derivatives σx = ∂σ

∂x and σy = ∂σ
∂y are linearly

independent.

2.1. First Fundamental Form. The study and classification of surface shape are
made easier with knowledge of a surface’s first fundamental form I and second fun-
damental form II. The first fundamental form of a surface provides information
about the local geometry of the surface. It defines the metric properties of the
surface and allows us to calculate arc lengths and angles on the surface. We can de-
termine properties such as curvature and geodesic paths by measuring the lengths
and angles of curves on the surface. Regarding the investigation of the intrinsic and
extrinsic geometric features of the surfaces, the geometry of the second fundamental
form II in particular has grown to be a significant concern. In [18, 21], there are
numerous results relating to the curvature characteristics related to I, II, and other
variational features.
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Let σ = σ(x, y) represent the equation of a surface. Let us define E = (σx ·σx),
F = (σx · σy), G = (σy · σy). Then the expression Edx2 + 2Fdxdy + Gdy2 is
called the first fundamental form, and E, F , and G are called the first fundamental
form coefficient or the first fundamental form magnitude. Note that in the above
expression, dx and dy cannot vanish together. We denote notion of

√
EG− F 2 by

H. The first fundamental form can be written as the square of the metric. From
this expression, we can see very clearly that the first fundamental form is a qua-
dratic form. It is also a bilinear form, though we only examine it as a quadratic
form here. Furthermore, its arguments come from the tangent space, so it is an
inner product of the tangent space. We can calculate the first fundamental form
for different surfaces. For example, in the case of the sphere we have the equation
for the sphere given below:

σ(x, y)= a sin(x) sin(y)i + a cos(x) sin(y)j + a cos(y)k.

Therefore,

σx = a cos(x) sin(y)i - a sin(x) sin(y)j and σy = a sin(x) cos(y)i + a cos(x)
cos(y)j - a sin(y)k.

Now, E = (σx · σx) = a2 sin2y, F = (σx · σy) = 0 and G = (σy · σy) = a2.
Then the first fundamental form for sphere is a2 sin2dx2 + a2dy2. For more infor-
mation on its fundamental form, we can refer the readers to see [19, 20]. Some of
the main results concerning the first fundamental form are given as follows:

Theorem 2.1. The expression for the ist fundamental form of surfaces is invariant
under the transformation of parameters.

Proof. Let ~σ = ~σ(x, y) be the equation of a surface, where x and y are parameters.
Let the parameters x and y be transformed to other parameters x∗ and y∗ given
by the relation x∗ = x∗(x, y) and y∗ = y∗(x, y).
On solving these we can find the relations x = x(x∗, y∗) and y = y(x∗, y∗). Now,

~σ∗x =
∂~σ

∂x∗

=
∂~σ

∂x

∂x

∂x∗
+
∂~σ

∂y

∂y

∂x∗

= ~σx
∂x

∂x∗
+ ~σy

∂y

∂x∗
. (2.7)

On a similar pattern, we obtain

~σ∗y =
∂~σ

∂y∗

=
∂~σ

∂x

∂x

∂y∗
+
∂~σ

∂y

∂y

∂y∗

= ~σx
∂x

∂y∗
+ ~σy

∂y

∂y∗
. (2.8)

Also,

dx =
∂x

∂x∗
dx∗ +

∂x

∂y∗
dy∗
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and

dy =
∂y

∂x∗
dx∗ +

∂y

∂y∗
dy∗.

Also, in (x, y) parametric system, the first fundamental form is Edx2 + 2Fdxdy +
Gdy2. Now in (x∗, y∗) parametric system, the first fundamental form is given by
the expression E∗dx∗2 + 2F ∗dx∗dy∗ +G∗dy∗2. Now,

E∗dx∗2 + 2F ∗dx∗dy∗ +G∗dy∗2 = (~σ∗x · ~σ∗x)dx∗2 + 2(~σ∗x · ~σ∗y)dx∗dy∗ + (~σ∗y · ~σ∗y)dy∗2,

= (~σ∗xdx
∗ + ~σ∗ydy

∗) · (~σ∗xdx∗ + ~σ∗ydy
∗),

= (~σ∗xdx
∗ + ~σ∗ydy

∗)2,

= [(~σx
∂x

∂x∗
+ ~σy

∂y

∂x∗
)dx∗ + (~σx

∂x

∂y∗
+ ~σy

∂y

∂y∗
)dy∗]2,

= [~σx(
∂x

∂x∗
dx∗ +

∂x

∂y∗
dy∗) + ~σy(

∂y

∂x∗
dx∗ +

∂y

∂y∗
dy∗)]2,

= [~σxdx+ ~σydy]2,

= (~σxdx+ ~σydy) · (~σxdx+ ~σydy),

= (~σx · ~σx)dx2 + 2(~σx · ~σy)dxdy + (~σy · ~σy)dy2,

= Edx2 + 2Fdxdy +Gdy2.

This shows that the expression for the first fundamental form of surfaces is invariant
under the transformation of parameters. �

2.2. Second Fundamental Form. The second fundamental form of a surface de-
scribes how the surface curves within its ambient space. It provides information
about the curvature and shape of the surface. By examining the second funda-
mental form, we can identify important geometric properties of the surface, such
as the presence of umbilical points or regions of positive or negative curvature.
One significant advantage of the Gaussian curvature is its independence from the
parametrization of the surface. While the first and second fundamental forms may
vary depending on how the surface is parametrized, the Gaussian curvature remains
invariant. This makes it a valuable tool for understanding the intrinsic geometry
of a surface.

Let ~σ = ~σ(x, y) be the equation of a surface, where x and y are param-

eters and ~N be unit normal to the surface at point P (~σ). Then we can write
~N =

~σx×~σy

|~σx×~σy| =
~σx×~σy

H . Let us define dxx = L = ~σxx · ~N , dxy = M = ~σxy · ~N ,

and dyy = N = ~σyy · ~N . Then the expression Ldx2 + Mdxdy + Ndy2 is called
the second fundamental form of the surfaces, and L, M , N are called the second
fundamental coefficient or second fundamental magnitudes of the surfaces. Note
that both dx and dy cannot vanish together. For more information on it and the
second fundamental form of the surfaces, we refer the reader to see [1, 19]. The
coefficient L, M and N are the projection of ~σxx, ~σxy and ~σyy respectively on the

normal vector. We denote the notion for
√
LN −M2 by T .

From the geometrical point of view in [19], the expression of the second funda-
mental form of surfaces is twice the length of perpendicular as far as the terms of
second order, on the tangent plane to a surface at two neighboring points. As we
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know that ~N =
~σx×~σy

H . It means that ~N ⊥ ~σx and ~N ⊥ ~σy. In [1, 20], a vector
of constant magnitude is perpendicular to its derivative vector. Being a vector of

constant magnitude, we can write ~N ⊥ ~Nx and ~N ⊥ ~Ny. Thus, we can conclude

that ~Nx, ~Ny are coplanar with ~σx and ~σy. By using these concepts we find the

values in terms of ~Nx, ~Ny in the following results;

Theorem 2.2. Let L, M and N be the second fundamental magnitudes of sur-

faces, and ~Nx and ~Ny be the derivative of unit normal ~N with respect to x and y
respectively. Then

(i) The values of L, M and N in term of ~Nx and ~Ny i.e., L = − ~Nx · ~σx,

M = − ~Ny · ~σx = − ~Nx · ~σy, and N = − ~Ny · ~σy.

(ii) H ~N × ~Nx = M~σx − L~σy.

(iii) H ~N × ~Ny = N~σx −M~σy.

Proof. (i) We know that ~N =
~σx×~σy

H . It means that ~N ⊥ ~σx and ~N ⊥ ~σy.
Therefore,

~N · ~σx = 0, (2.9)

~N · ~σy = 0. (2.10)

Differentiating (2.9) with respect to x and y respectively, we obtained

~N · ~σxx + ~Nx · ~σx = 0, and ~N · ~σxy + ~Ny · ~σx = 0

⇒ L+ ~Nx · ~σx = 0, and M + ~Ny · ~σx = 0,

⇒ L = − ~Nx · ~σx, and M = − ~Ny · ~σx.
Again differentiating (2.10) with respect to x and y respectively, we ob-
tained

~N · ~σyx + ~Nx · ~σy = 0, and ~N · ~σyy + ~Ny · ~σy = 0

⇒ M + ~Nx · ~σy = 0, and N + ~Ny · ~σy = 0,

⇒ M = − ~Nx · ~σy, and N = − ~Ny · ~σy.
This proves (i).

(ii) Since, we have ~N =
~σx×~σy

H implies that

H ~N = ~σx × ~σy. (2.11)

Differentiating equation (2.11) with respect to x, we get

H ~Nx +Hx
~N = ~σx × ~σxy + ~σxx × ~σy.

Taking cross product with ~N , we get

~N ×H ~Nx + ~N ×Hx
~N = ~N × (~σx × ~σxy) + ~N × (~σxx × ~σy),

⇒ H( ~N × ~Nx) +Hx( ~N × ~N) = [( ~N · ~σxy)~σx − ( ~N · ~σx)~σxy] + [( ~N · ~σy)~σxx − ( ~N · ~σxx)~σy],

⇒ H( ~N × ~Nx) = [( ~N · ~σxy)~σx − ( ~N · ~σxx)~σy],

⇒ H( ~N × ~Nx) = M~σx − L~σy.

This proves (ii).
(iii) Now, differentiating equation (2.11) with respect to y, we get

H ~Ny +Hy
~N = ~σx × ~σyy + ~σxy × ~σy.
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Taking cross product with ~N , we get

~N ×H ~Ny + ~N ×Hy
~N = ~N × (~σx × ~σyy) + ~N × (~σxy × ~σy),

⇒ H( ~N × ~Ny) +Hy( ~N × ~N) = [( ~N · ~σyy)~σx − ( ~N · ~σx)~σyy] + [( ~N · ~σy)~σxy − ( ~N · ~σxy)~σy],

⇒ H( ~N × ~Ny) = [( ~N · ~σyy)~σx − ( ~N · ~σxy)~σy],

⇒ H( ~N × ~Ny) = N~σx −M~σy.

This proves (iii).
�

3. Conformal image of a rectifying curve

Consider two regular surfaces P and P̃ in the Euclidean surface R3 and δ(r) is
a rectifying curve that is located on the surface P . Then δ(r) can be written as:

δ(r) = µ1(r)~t(r) + µ2(r)~b(r).

Now using equations (2.4) and (2.6) we get,

δ(r) = µ1(r)(σxx
′ + σyy

′) + µ2(r)
1

κ(r)
{(x′y′′ − x′′y′)N + x′3σx × σxx

+2x′2y′σx × σxy + x′y′2σx × σyy + x′2y′σy × σxx + 2x′y′2σy × σxy
+y′3σy × σyy}. (3.1)

In the following theorem, we will take into account the equation G∗(δ(r)), which
results from the product of the 3× 3 matrix G∗ and the 3× 1 matrix δ(r)[11].

Theorem 3.1. Let P and P̃ be two regular surfaces in the Euclidean surface R3

and G : P → P̃ is a conformal map. Let δ(r) be a rectifying curve on the surface

P . Then δ̃(r) is also a rectifying curve on the surface P̃ if

δ̃(r) = ζG∗(δ(r)) +
µ2(r)

κ(r)
{x′3ζG∗σx × (ζG∗)xσx + 2x′2y′ζG∗σx × (ζG∗)yσx

+x′y′2ζG∗σx × (ζG∗)yσy + x′2y′ζG∗σy × (ζG∗)xσx + 2x′y′2ζG∗σy

×(ζG∗)xσy + y′3ζG∗σy × (ζG∗)yσy}. (3.2)

Proof. Given that P̃ is the conformal image of P under the map G and δ(r) is a
rectifying curve on P . Let σ(x, y) and and σ̃(x, y) be the surface patches of P and

P̃ respectively, and σ̃(x, y) = G ◦σ(x, y). Then, each tangent space vector Tp(P ) is

sent to a dilated tangent vector of the tangent space of TG(p)(P̃ ) with the dilation

function ζ by the differential map dG = G∗ of G. We shall show that δ̃(r) is a

rectifying curve on P̃ .

σ̃x(x, y) = ζ(x, y)G∗(σ(x, y))σx, (3.3)

σ̃y(x, y) = ζ(x, y)G∗(σ(x, y))σy. (3.4)
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When we partially differentiate equations (3.3) and (3.4) with respect to both x
and y, we obtain

σ̃xx = ζxG∗σx + ζ
∂G∗
∂x

σx + ζG∗σxx,

σ̃yy = ζyG∗σy + ζ
∂G∗
∂y

σy + ζG∗σyy,

σ̃xy = ζxG∗σy + ζ
∂G∗
∂x

σy + ζG∗σxy,

σ̃yx = ζyG∗σx + ζ
∂G∗
∂y

σx + ζG∗σyx.

(3.5)

Since σ is a differentiable curve, so for the sake of simplicity, we take σ̃xy = σ̃yx
and σxy = σyx.
Now,

ζG∗σx × (ζG∗)xσx = ζG∗σx×(ζxG∗σx + ζ
∂G∗
∂x

σx),

= ζG∗σx×(ζxG∗σx + ζ
∂G∗
∂x

σx + ζG∗σxx)− ζG∗(σx × σxx),

= σ̃x × σ̃xx − ζG∗(σx×σxx). (3.6)

On a similar pattern, we find

ζG∗σx × (ζG∗)yσx = σ̃x × σ̃xy − ζG∗(σx×σxy),

ζG∗σx × (ζG∗)yσy = σ̃x × σ̃yy − ζG∗(σx×σyy),

ζG∗σy × (ζG∗)xσx = σ̃y × σ̃xx − ζG∗(σy×σxx),

ζG∗σy × (ζG∗)xσy = σ̃y × σ̃xy − ζG∗(σy×σxy),

ζG∗σy × (ζG∗)yσy = σ̃y × σ̃yy − ζG∗(σy×σyy).

(3.7)
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Now, from the equation (3.1), (3.2), (3.3), (3.4), (3.6) and (3.7), we obtained that

δ̃(r) = ζG∗(µ1(r)(σxx
′ + σyy

′) + µ2(r)
1

κ(r)
{(x′y′′ − x′′y′)N + x′3σx × σxx

+2x′2y′σx × σxy + x′y′2σx × σyy + x′2y′σy × σxx + 2x′y′2σy × σxy

+y′3σy × σyy}) +
µ2(r)

κ(r)
{x′3ζG∗σx × (ζG∗)xσx + 2x′2y′ζG∗σx

×(ζG∗)yσx + x′y′2ζG∗σx × (ζG∗)yσy + x′2y′ζG∗σy × (ζG∗)xσx

+2x′y′2ζG∗σy × (ζG∗)xσy + y′3ζG∗σy × (ζG∗)yσy},

= µ1(r)(ζG∗σxx
′ + ζG∗σyy

′) +
µ2(r)

κ(r)
{(x′y′′ − x′′y′)ζG∗N + x′3ζG∗σx

×σxx + 2x′2y′ζG∗σx × σxy + x′y′2ζG∗σx × σyy + x′2y′ζG∗σy × σxx

+2x′y′2ζG∗σy × σxy + y′3ζG∗σy × σyy}+
µ2(r)

κ(r)
{x′3ζG∗σx × (ζG∗)xσx

+2x′2y′ζG∗σx × (ζG∗)yσx + x′y′2ζG∗σx × (ζG∗)yσy + x′2y′ζG∗σy

×(ζG∗)xσx + 2x′y′2ζG∗σy × (ζG∗)xσy + y′3ζG∗σy × (ζG∗)yσy},

= µ1(r)(x′σ̃x + y′σ̃y) +
µ2(r)

κ(r)
{(x′y′′ − x′′y′)Ñ + x′3σ̃x × σ̃xx + 2x′2y′σ̃x

×σ̃xy + x′y′2σ̃x × σ̃yy + x′2y′σ̃y × σ̃xx + 2x′y′2σ̃y × σ̃xy + y′3σ̃y × σ̃yy},

= µ̃1(r)~̃t(r) + µ̃2(r)~̃b(r),

where µ̃1 and µ̃2 are some smooth functions. If we assume that µ̃1 = µ1 and µ̃2 =
µ1 then δ̃(r) is a rectifying curve on the surface P̃ .

�

Corollary 3.2. Let δ(r) be a rectifying curve on the surface P and G : P → P̃ be

a homothetic map. Then δ̃(r) is also a rectifying curve on the surface P̃ if

δ̃(r) = cG∗(δ(r)) +
µ2(r)

κ(r)
{x′3cG∗σx × (cG∗)xσx + 2x′2y′cG∗σx × (cG∗)yσx

+x′y′2cG∗σx × (cG∗)yσy + x′2y′cG∗σy × (cG∗)xσx + 2x′y′2cG∗σy

×(cG∗)xσy + y′3cG∗σy × (cG∗)yσy}.

Proof. We know that for a homothetic map the dilation factor ζ(x, y) = c6={0, 1}.
By putting the value of ζ = c in the equation (13), we get the desired result for
the case of homothetic map and hence, we obtained the expression for the case of
homothetic image of rectifying curve. �

4. Conclusion

In this article, we study the first and second fundamental forms of surfaces. We
investigated some geometric properties of these forms. The sufficient condition for
the invariance of the conformal image of the rectifying curve under the isometry is
also investigated in this study.
In the future, one can discuss some other properties such as the normal and the
tangential components of rectifying curves under different transformations, namely,
conformal, homothetic, and isometric of the surfaces, and one can also find out that
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these components are invariant under isometry of the surfaces. These results can
also be extended to check the behaviour of the mean, gaussian, and sectional cur-
vature for some surfaces like translation, minimal and slant surfaces under affine
transformations.
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