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MAXIMAL CONVERGENCE OF FABER SERIES IN WEIGHTED

SMIRNOV CLASSES WITH VARIABLE EXPONENT ON THE

DOMAINS BOUNDED BY SMOOTH CURVES

BURÇİN OKTAY, ESRA AYDIN

Abstract. In this paper, we suppose that the boundary of a domain G in

the complex plane C belongs to a special subclass of smooth curves and that

the canonical domain GR, R > 1 is the largest domain where a function f is
analytic. We investigate the rate of convergence to the function f by the partial

sums of Faber series of the function f on the domain G. Under the boundary

conditions of the domain G, we obtain some results which characterize the
maximal convergence of the Faber expansion of the function f which belongs

to the weighted Smirnov class with variable exponent E
p(.)
ω (GR).

1. Introduction and new results

Let G be a simply connected domain bounded by a rectifiable curve Γ in the
complex plane C, and let also the complement of the closed domain G be a simply
connected domain G′ containing the point of infinity z = ∞. By the Riemann
conformal mapping theorem there exists a unique function w = ϕ(z) meromorphic
in G′ which maps the domain G′ conformally and univalently onto the domain
|w| > 1 and satisfies the conditions

ϕ(∞) =∞, ϕ′(∞) = γ > 0,

where γ is the capacity of G. Let ψ be the inverse to ϕ and let ψ0 be the mapping
which maps the unit disk onto the domain G under the conditions ψ0(0) = 0 and
ψ′0(0) > 0. Let Γr be the image of the circle |w| = r, 0 < r < 1, under the
mapping ψ0. If a function f(z), analytic on a domain G, satisfies the inequality∫

Γr

|f(z)|p |dz| ≤M, p > 0

for any r such that 0 < r < 1, then f belongs to the Smirnov class Ep(G). In this
definition one can replace the set of the images of the circles {Γr} by an arbitrary
sequence of rectifiable curves {Γn}, which converge from inside the domain G to
the curve Γ (see, e.g., [26, p. 77]). If f ∈ Ep(G), then it has a nontangential limit
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almost everywhere on Γ and the boundary function belongs to Lp(Γ) (see, e.g., [8,
pp. 438-453]).

Definition 1. Let f be a Lebesque measurable function. For a given Lebesgue
measurable variable exponent function p(·) : Γ → [1,∞] and the weight function
ω(·) : Γ→ (0,∞), if the condition∫

Γ

[ω(z) |f(z)|]p(z) |dz| ≤ ∞.

holds, then the set of Lebesgue measurable functions f is defined to be the weighted

Lebesgue spaces L
p(.)
ω (Γ) with variable exponent.

L
p(.)
ω (Γ), esssup

z∈Γ
p(z) <∞, becomes a Banach spaces with the norm

‖f‖
L

p(.)
ω (Γ)

:= inf

{
λ > 0 :

∫
Γ

[
ω(z)

∣∣∣∣f(z)

λ

∣∣∣∣]p(z) |dz| ≤ 1

}
Obviously we have

‖f‖
L

p(.)
ω (Γ)

:= ‖fω‖Lp(.)(Γ) ,

(see, [6, p.192]).

If p(.) := constant, then L
p(.)
ω (Γ) coincides with the weighted Lebesque spaces

Lpω(Γ).

Definition 2. Let p(.) : Γ → [1,∞] be a Lebesque measurable function and ω(·) :
Γ→ (0,∞) be a weight function. For an analytic function f in G, the set

Ep(.)ω (G) :=
{
f ∈ E1

ω(G) : f ∈ Lp(.)ω (Γ)
}

is called weighted Smirnov class with variable exponent p(.).

E
p(.)
ω (G), esssup

z∈F
p(z) <∞, becomes a Banach space equipped with the norm

‖f‖
E

p(.)
ω (G)

:= ‖f‖
L

p(.)
ω (Γ)

Let F be a segment [0, 2π] or a Jordan rectifiable curve Γ in the complex plane
C and let p(.) : F → [0,∞) be a Lebesque measurable function such that

1 ≤ p− := essinf
z∈F

p(z) ≤ esssup
z∈F

p(z) = p+ <∞ (1.1)

Definition 3. We say that p(.) ∈ P log(F ), if p(.) satisfies the conditions (1.1) and

|p(z1)− p(z2)| ln
(
|F |

|z1 − z2|

)
≤ c, ∀z1, z2 ∈ F,

with a positive constant c, where |F | is the Lebesgue measure of F.

If p(.) ∈ P log(F ) and p− > 1, then we say that p(.) ∈ P log0 (F ). In our investi-
gations we will use the generalized Muckenhoupt weights class Ap(·)(Γ) defined as
follows.

Definition 4. For a given exponent p(.) defined on Γ, we say that ω ∈ Ap(·)(Γ) if

sup
Bj

|Bj |−1 ∥∥ωχBj

∥∥
Lp(.)(Γ)

∥∥ω−1χBj

∥∥
Lq(.)(Γ)

<∞, 1

p(.)
+

1

q(.)
= 1,

where the supremum is taken over all balls Bj ⊂ Γ with the characteristic functions
χBj

.
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Let θ(s) denote the angle between the positive direction of the real axis and the
tangent to the curve Γ at a point M on curve Γ at a distance s along this curve
from a fixed point.

Definition 5. (see [11]). If the inequality

ω(θ, δ) := sup
|h|≤δ

‖θ (·)− θ (·+ h)‖[0,2π] ≤ cδ
α lnβ

4

δ
, δ ∈ (0, π] (1.2)

holds for some parameters α ∈ (0, 1], β ∈ [0,∞) and for a positive constant c
independent of δ, then Γ ∈ B (α, β).

In this definition, the norm ‖·‖[0,2π] means the maximum norm on the interval

[0, 2π].
In particular the class B(α, 0) coincides with the class of Lyapunov curves. Fur-

thermore the class B (α, β) is a subclass of Dini-smooth curves, i.e.∫ c
0
ω(θ,t)
t dt < ∞, for some c > 0. For a proof of this fact and some additional

information about the class B (α, β) see [11].
If Γ belongs to the class B (α, β), α ∈ (0, 1], β ∈ [0,∞), then the inequality

0 < c1 ≤ |ψ′(w)| ≤ c2 <∞, |w| ≥ 1 (1.3)

is valid for some positive constants c1 and c2 (see [26, p. 141]).

For f ∈ Lp(·)ω (Γ), p ∈ P log0 (Γ), we set f0 := f ◦ ψ, p0 := p ◦ ψ and ω0 := ω ◦ ψ.
By using (1.3) it can be shown that

f ∈ Lp(·)ω (Γ) ⇐⇒ f0 ∈ Lp0(·)
ω0

(T )

p ∈ P log0 (Γ) ⇐⇒ p0 ∈ P log0 (T )

ω ∈ Ap(·)(Γ) ⇐⇒ ω0 ∈ Ap0(·)(T ),

where T is the unit circle.
Now we define the best approximation to the function f ∈ Ep(.)ω (G) as:

Eω,p(.)n (f,G) := inf ‖f − pn‖Lp(.)
ω (Γ)

,

where inf is taken over the polynomials pn of degree at most n.

For construction of the approximation aggregates in E
p(.)
ω (G), we use the Faber

polynomials ϕk, k = 0, 1, 2, ..., defined as usual, (see, e.g., [26, p.33]). Since ϕ is
analytic in the domain G′ without the point z = ∞, it has a simple pole at the
point z = ∞, Therefore its Laurent expansion in some neighborhood of the point
z =∞ has the form

ϕ(z) = γz + γ0 +
γ1

z
+
γ2

z2
+ ...+

γn
zn

+ . . .

For a non-negative integer k, we set

ϕk(z) =
(
γz + γ0 +

γ1

z
+
γ2

z2
+ ...+

γn
zn

+ . . .
)k

(1.4)

A group of k+1 terms containing non-negative powers of z written in (1.4) is called
the Faber polynomial of order k for the domain G. For Faber polynomials we use
the notation

ϕk(z) = γkzk + a
(k)
k−1z

k−1 + a
(k)
k−2z

k−2 + . . .+ a
(k)
1 z + a

(k)
0 (1.5)
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For the sum of the terms containing negative powers of z in the expansion (1.4) we
use the notation

−Ek(z) =
b
(k)
1

z
+
b
(k)
2

z2
+ . . .+

b
(k)
n

zn
+ . . .

Hence the identity
ϕk(z) = ϕk(z) + Ek(z), z ∈ G′ (1.6)

holds in the sense of convergence. Now we denote

ΓR := {z ∈ extΓ; |ϕ(z)| = R, R > 1} , GR := intΓR

If R = 1, the line Γ1 is the boundary Γ of the domain G. Faber polynomials have
the following integral representation:

ϕk(z) =
1

2πi

∫
ΓR

ϕk(ς)

ς − z
dς, z ∈ GR (1.7)

If a function f is analytic in the canonical domain GR, then the following expansion
holds

f(z) =

∞∑
k=0

akϕk(z), z ∈ GR, R > 1

and the series converge absolutely and uniformly on GR, where

ak :=
1

2πi

∫
|t|=R

f0(t)

tk+1
dt, k = 0, 1, 2, . . .

Now we use the notation

Rn(z, f) = f(z)−
n∑
k=0

akϕk(z) =

∞∑
k=n+1

akϕk(z) (1.8)

which is called remaining term. Hence the formulas (1.7) and (1.8) implies that,

Rn(z, f) =
1

2πi

∫
|t|=R

f0(t)

[ ∞∑
k=n+1

ϕk(z)

tk+1

]
dt (1.9)

In this paper we estimate the remaining term Rn(z, f) when the function f

belongs to the class E
p(.)
ω (GR) in the case when the boundary of the domain G is

of the class B (α, β), α ∈ (0, 1], β ∈ [0,∞).
Now we give the main result.

Theorem 1.1. If G is a domain which is bounded by the curve Γ of the class

B (α, β), α ∈ (0, 1], β ∈ [0,∞) and a function f(·) ∈ E
p(.)
ω (GR), where ω(·) ∈

Ap(·)(ΓR) and p(·) ∈ P log0 (ΓR), R > 1, then Rn(z, f) satisfies the inequality

|Rn(z, f)| ≤ c(p)

Rn+1(R− 1)
Eω,p(·)n (f,GR), z ∈ Γ

with some constant c(p) > 0 independent of n.

This result is also valid for z ∈ G according to the maximum modulus principle.
Theorem 1.1 characterizes the maximal convergence of Faber series of the functions
belong to the weighted Smirnov space with variable exponent in the case of domains
bounded by the curves of the class B (α, β), α ∈ (0, 1] and β ∈ [0,∞). There are
some results related to maximal convergence in the literature. Firstly, Bernstein and
Walsh studied the maximal convergence of polynomials. They also obtained direct
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and inverse theorems when the function f is analytic on canonical domain GR, R >
1 (see [26, pp. 54-59] and also [7, p. 27]). Many results about maximal convergence
of Faber series were proved by P. K. Suetin in [26, Chapter X]. Suetin obtained
some results on maximal convergence of Faber series of the function f in the case
when it is analytic on the canonical domain GR, continuous on GR and in the
case that it belongs to the class Ep(GR). He also proved some results on maximal
convergence for the case concerning continuum K. In the case when f is a function
in the Smirnov space with variable exponent, for z ∈ K (continuum) maximal
convergence of Faber series was studied in [14]. In [14] there is no assumption
on the boundary of the domain G. The result obtained in Theorem 1.1 is an
improvement of the result given in [14], in the weighted case and in the case of
the domains bounded by smooth curves. The estimation obtained in Theorem 1.1
coincides with the Suetin’s result in [26, p. 203, Theorem 3] when p(.) = p > 1 is a
constant and ω(.) = 1. If f belongs to the Smirnov-Orlicz space, for z ∈ B (α, β),
α ∈ (0, 1], β ∈ [0,∞), maximal convergence of Faber series was studied in [20], in
the case ω(.) = 1. If f belongs to the Smirnov-Orlicz space, for z ∈ K (continuum)
maximal convergence of Faber series was studied in [10], in the case ω(.) = 1.

2. Auxiliary Results

Let Pn be the best approximation polynomial to the function f ∈ Ep(·)ω (GR) and
P ∗n(t) := Pn(ψ(t)). Hence P ∗n is the best approximation polynomial to the function

f0 ∈ Lp0(.)
ω0 (|t| = R). The formula (1.9) implies that

Rn(z, f) =
1

2πi

∫
|t|=R

{f0(t)− P ∗n(t)}
∞∑

k=n+1

ϕk(z)

tk+1
dt. (2.1)

In view of (1.6), we find that

∞∑
k=n+1

ϕk(z)

tk+1
=

∞∑
k=n+1

ϕk(z)

tk+1
+

∞∑
k=n+1

Ek(z)

tk+1
, z = ψ(w) (2.2)

It is seen from [25, p. 12] that Ek(ψ(ω)) is defined as follows

Ek(ψ(ω)) :=
1

2πi

∫
|τ |=1

τkF (τ, ω)dτ, |ω| ≥ 1, (2.3)

where

F (τ, ω) :=
ψ′(τ)

ψ(τ)− ψ(ω)
− 1

τ − ω
=

∞∑
k=0

Ek(ψ(ω))

tk+1
. (2.4)

If Γ is sufficiently smooth, then this expansion converges in the closed domain
|τ | ≥ 1, |ω| ≥ 1 (see [26, p. 156]).

For |w| ≥ 1 and |t| = R, we have that

∞∑
k=n+1

Ek(ψ(ω))

tk+1
=

1

2πi

∫
|τ |=1

F (τ, ω)

∞∑
k=n+1

τk

tk+1
dτ. (2.5)

It is very important to notice that if one wants to estimate remaining term Rn(z, f),
because of (2.1), (2.2) and (2.5), it is necessary to show that the integral∫

|τ |=1

|F (τ, ω)| |dτ | (2.6)
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is finite for all |w| ≥ 1, according to the geometric properties of the boundary of the
domain G. We show this according to the properties of the boundary Γ in Theorem
2.2.

We define the modulus of continuity of ψ′ by

ω(ψ′, δ) := sup
|h|≤δ

∥∥∥ψ′(ei(t+h))− ψ′(eit)
∥∥∥
T
,

where ‖·‖T means the maximum norm over T .

Lemma 2.1. If the boundary of the domain G is of the class B (α, β), α ∈ (0, 1],
β ∈ [0,∞), then the inequality ∫ 1

0

ω(ψ′, τ)

τ
dτ <∞

holds.

Theorem 2.2. If G is a domain bounded by a curve Γ of the class B (α, β), α ∈
(0, 1], β ∈ [0,∞), then there exists a constant c > 0 such that for all |w| ≥ 1 the
following inequality holds:∫

|τ |=1

|F (τ, w)| |dτ | =
∫
|τ |=1

∣∣∣∣ ψ′(τ)

ψ(τ)− ψ(w)
− 1

τ − w

∣∣∣∣ |dτ | ≤ c <∞,
and this integral converges uniformly with respect to |w| ≥ 1.

In the proof of the main result Theorem 1.1, we will use the following theo-
rem, which characterizes the Hölder’s inequality in the variable exponent Lebesque
spaces. See e.g. ([23, p. 24]) or ([4, p. 27]).

Theorem 2.3. Let p(.) : Γ→ [1,∞] be a measurable function. If f ∈ Lp(.)(Γ) and
g ∈ Lq(.)(Γ), such that 1

p(.) + 1
q(.) = 1, then fg ∈ L1(Γ) and the inequality∫

Γ

|f(z)g(z)| dz ≤ c(p) ‖f‖Lp(.) ‖g‖Lq(.) (2.7)

holds.

3. Proofs

3.1. Proof of Lemma 2.1. Since Γ is smooth, from the equality (3) in [22, p. 44],
we have that

argψ′(w) = θ(s)− argw − π

2
, w = eit.

Therefore, ∣∣∣argψ′(ei(t+h))− argψ′(eit)
∣∣∣ ≤ |θ(s+ h)− θ(s)|+ |h| .

By taking maximum norm over s ∈ [0, 2π] and supremum over |h| ≤ δ, respectively
and using (1.2) since Γ ∈ B (α, β), α ∈ (0, 1] and β ∈ [0,∞), we have that∣∣∣argψ′(ei(t+h))− argψ′(eit)

∣∣∣ ≤ ‖θ(s+ h)− θ(s)‖[0,2π] + |h|

≤ ω(θ, δ) + δ

≤ c1δ
αlnβ

4

δ
+ δ,
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where α ∈ (0, 1] and β ∈ [0,∞). Hence

ω(argψ′, δ) ≤ c1δαlnβ
4

δ
+ δ. (3.1)

It is known that

lnψ′(w) = ln |ψ′(w)|+ iargψ′(w)

for |w| = 1. From this formula, we can conclude that∣∣∣lnψ′(ei(t+h))− lnψ′(eit)
∣∣∣ ≤ ∣∣∣ln | ψ′(ei(t+h)) | −ln | ψ′(eit) |

∣∣∣
+
∣∣∣argψ′(ei(t+h))− argψ′(eit)

∣∣∣ . (3.2)

Taking into account the relation (1.3), we obtain that∣∣∣ln | ψ′(ei(t+h)) | −ln | ψ′(eit) |
∣∣∣ ≤ lnc2 + lnc3 = c4 (3.3)

On the other hand, the following inequality∣∣∣ψ′(ei(t+h))− ψ′(eit)
∣∣∣ ≤ c5 ∣∣∣lnψ′(ei(t+h))− lnψ′(eit)

∣∣∣ (3.4)

holds (see [26, p. 140]). Hence, (3.2), (3.3) and (3.4) imply that∣∣∣ψ′(ei(t+h))− ψ′(eit)
∣∣∣ ≤ c6 ∣∣∣argψ′(ei(t+h))− argψ′(eit)

∣∣∣
If we take maximum norm over T and supremum over |h| ≤ δ in the last inequality
and use (3.1), we obtain that

ω(ψ′, δ) ≤ c6ω(argψ′, δ) ≤ c7δαlnβ
4

δ
+ c8δ

Now we divide by δ the both side of the last inequality and integrate from 0 to 1
and find that ∫ 1

0

ω(ψ′, δ)

δ
dδ ≤ c9

∫ 1

0

δα−1lnβ
4

δ
dδ ≤ c10

∫ 1

0

δα−1−εdδ

since limδ→0δ
εlnβ 4

δ = 0. Hence we obtain that∫ 1

0

ω(ψ′, δ)

δ
dδ ≤ c11 <∞.

The proof is complete.

3.2. Proof of Theorem 2.2. F (τ, w) defined in (2.4) can be written in the fol-
lowing way:

F (τ, w) =

[
ψ′(τ)(τ − w)− ψ(τ) + ψ(w)

(τ − w)2

]
:

[
ψ(τ)− ψ(w)

τ − w

]
. (3.5)

By (1.3), the inequality[
ψ(τ)− ψ(w)

τ − w

]
≥ c11 > 0, |τ | ≥ 1, |w| ≥ 1

holds. If we estimate the integral

I(w) =

∫
|τ |=1

∣∣∣∣ψ′(τ)(τ − w)− ψ(τ) + ψ(w)

(τ − w)2

∣∣∣∣ |dτ | (3.6)
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with the similar prosedure as that in [26, p. 141], by taking into account that Γ
belongs to the class B (α, β), α ∈ (0, 1], β ∈ [0,∞) and using Lemma 2.1, we have
that

I(w) ≤
∫
|τ |=1

ω(ψ′, |τ − w|)
|τ − w|

|dτ | ≤ c12 <∞

Finally we obtain that ∫
|τ |=1

|F (τ, w)| |dτ | ≤ c <∞

The proof is complete.

3.3. Proof of Theorem 1.1. Let z ∈ Γ. From the relations (2.1) ve (2.2), it
follows that

|Rn(z, f)| ≤ 1

2π

∫
|t|=R

|f0(t)− P ∗n(t)|

∣∣∣∣∣
∞∑

k=n+1

wk

tk+1

∣∣∣∣∣ |dt|
+

1

2π

∫
|t|=R

|f0(t)− P ∗n(t)|

∣∣∣∣∣
∞∑

k=n+1

Ek(ψ(w))

tk+1

∣∣∣∣∣ |dt| ,
where w = ϕ(z) and t = ϕ(ζ).

We find that

I1 : =
1

2π

∫
|t|=R

|f0(t)− P ∗n(t)|

∣∣∣∣∣
∞∑

k=n+1

wk

tk+1

∣∣∣∣∣ |dt|
=

1

2π

∫
ΓR

|f(ζ)− Pn(ζ)|

∣∣∣∣∣
∞∑

k=n+1

[ϕ(z)]
k

[ϕ(ζ)]
k+1

∣∣∣∣∣ |ϕ′(ζ)| |dζ|

≤ c14

2π

∫
ΓR

|f(ζ)− Pn(ζ)| |ϕ(z)|n+1

|ϕ(ζ)|n+1 |ϕ(ζ)− ϕ(z)|
|dζ|

≤ c14

2πRn+1(R− 1)

∫
ΓR

(ω(ζ) |f(ζ)− Pn(ζ)|)ω−1(ζ) |dζ|

Since z ∈ Γ, |ϕ(z)| = 1, using the Hölder’s inequality and the fact that ω(·) ∈
Ap(·)(ΓR), we have that

I1 ≤ c15(p)

2πRn+1(R− 1)
‖ω(f − Pn)‖Lp(.)(ΓR)

∥∥ω−1
∥∥
Lq(.)(ΓR)

≤ c16(p)

2πRn+1(R− 1)
‖(f − Pn)‖

L
p(.)
ω (ΓR)

Hence, the last inequality implies that

I1 ≤
c17(p)

Rn+1(R− 1)
Eω,p(.)n (f,GR) (3.7)

Now we notate

I2 :=
1

2π

∫
|t|=R

|f0(t)− P ∗n(t)|

∣∣∣∣∣
∞∑

k=n+1

Ek(ψ(w))

tk+1

∣∣∣∣∣ |dt|
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Using the definition of Ek(ψ(w)) and assumptions of Theorem 2.2, we find that

I2 ≤
1

2π

∫
|t|=R

|f0(t)− P ∗n(t)| 1

2π

∫
|τ |=1

∣∣∣∣∣
∞∑

k=n+1

τk

tk+1
F (τ, w)

∣∣∣∣∣ |dτ | |dt|

≤ 1

4π2

∫
|τ |=1

|F (τ, w)|

{∫
|t|=R

|f0(t)− P ∗n(t)|
∣∣∣∣ τn+1

tn+1(t− τ)

∣∣∣∣ |dt|
}
|dτ |

≤ 1

4π2Rn+1(R− 1)

∫
|τ |=1

|F (τ, w)| |dτ |

{∫
|t|=R

|f0(t)− P ∗n(t)| |dt|

}

≤ c18

4π2Rn+1(R− 1)

∫
ΓR

|f(ζ)− Pn(ζ)| |ϕ′(ζ)| |dζ| .

Again using the Hölder’s inequality and the fact that ω(·) ∈ Ap(·)(ΓR), we have
that

I2 ≤ c19(p)

4π2Rn+1(R− 1)
‖ω[f − Pn]‖Lp(.)(ΓR)

∥∥ω−1
∥∥
Lq(.)(ΓR)

≤ c20(p)

Rn+1(R− 1)
‖(f − Pn)‖

L
p(.)
ω (ΓR)

.

The last inequality implies that

I2 ≤
c21(p)

Rn+1(R− 1)
Eω,p(.)n (f,GR). (3.8)

From (3.7) and (3.8), we can finally conclude that

|Rn(z, f)| ≤ I1 + I2 ≤
c(p)

Rn+1(R− 1)
Eω,p(.)n (f,GR)

with some constant c(p) > 0 independent of n. The proof is complete.

4. Conclusion

In this paper, assuming that a function f belongs to the weighted Smirnov class

with variable exponent E
p(.)
ω (GR) where R > 1 is the largest number such that

the function f is analytic inside GR, we obtained the rate of maximal convergence
of the Faber expansion of the function f . The result obtained in Theorem 1.1
improves and generalises the result in Theorem 1 in [14], because of our study on
the domains bounded by a curve Γ of the class of smooth curves and the study
on the weighted case, respectively. And also, the result obtained in Theorem 1.1
coincides with the Suetin’s result in [26, p. 203, Theorem 3] when p(.) = p > 1 is
a constant and ω(.) = 1.
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