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EXISTENCE OF SOLUTION TO A CLASS OF INTEGRAL

EQUATIONS VIA F - CONTRACTIONS

OM PRAKASH CHAUHAN, VISHAL JOSHI

Abstract. The notion of generalized F -contractions is presented in this ar-
ticle within the context of metric-like spaces. The presence of a fixed point
of such contractive mappings is established. An example is also provided to
support the correctness of the acquired results. Moreover, our results are used
to prove the existence of a solution to an integral equation.

1. Introduction

In 1992, Matthews [12] introduced the concept of a partial metric space which is
a generalized metric space. Further, Matthews showed that the Banach contraction
principle is valid in partial metric spaces and can be applied in program verification.
In this space, the usual metric is replaced by a partial metric with an interesting
property that the self-distance of any point of space may not be zero. After that,
fixed point results in partial metric spaces were studied by many other authors.
Furthermore, ÓNeill [13] coined the idea of dualistic partial metric by extending
the range R+

0 to R.
Heckmann [9] extended it by omitting the small self-distance axiom. The partial
metric defined by Heckmann is called a weak partial metric.
Very recently, Hitzler and Seda [10] generalized the partial metric spaces by intro-
ducing dislocated space and projected their generalization of Banach-Caccioppoli’s
theorem to obtain a unique supported model for acceptable logic programs.
Recently, applications based discussion on new contractions, providing young re-
searchers with fresh ideas, you may refer M. Younis et al. [18, 19, 20, 21, 22]. In
2012, Amini-Harandi [2] introduced a new generalization of a partial metric space
which is called a metric-like space.

Definition 1.1. [12] A partial metric on a nonempty set X is a function p :
X ×X → [0,∞) such that for all x, y, z ∈ X

(p1) x = y iff p(x, x) = p(x, y) = p(y, y);
(p2) p(x, x) ≤ p(x, y);
(p3) p(x, y) = p(y, x);
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(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a
partial metric on X.

Every partial metric space is a metric-like space. Below we give another example
of metric-like spaces.

Example 1.1. [12] Let X = [0, 1] then the mapping σ1 : X × X → R defined by
σ1(x, y) = x+ y − xy is a metric like space on X.

Note that every partial metric space is a metric-like space, but the converse may
not be true.

Example 1.2. [11] Let X = R, k ≥ 0 and σ : X ×X → R+ be defined by

σ(x, y) =

{

2k, if x = y = 0,

k, otherwise.

Then (X, σ) is a metric-like space, but for k > 0 it is not a partial metric space, as
σ(0, 0) � σ(0, 1).

Definition 1.2. [2] Let (X, σ) be a metric-like space. Then
(1) a sequence {xn} in a metric-like space (X, σ) converges to x ∈ X if and only if
lim
n→∞

(xn, x) = σ(x, x);

(2) a sequence {xn} in a metric-like space (X, σ) is called a σ- Cauchy sequence if
and only if lim

n,m→∞
(xn, xm) exists and is finite;

(3) a metric-like space (X, σ) is said to be complete if every σ- Cauchy sequence
{xn} in X converges, with respect to τσ, to a point x ∈ X such that

σ(x, x) = lim
n→∞

(xn, x) = lim
n,m→∞

(xn, xm).

Lemma 1.1. Let (X, σ) be a metric-like space and {xn} be a sequence in X. If the
sequence {xn} converges to some x ∈ X with σ(x, x) = 0 then lim

n→∞
(xn, y) = σ(x, y)

for all x ∈ X.

2. Fixed point results for partially ordered metric like spaces

Berinde initiated some new mappings, called weak contraction mappings in a
metric space ([6],[7]). He demonstrated that Banach’s, Kannan’s, and Chatterjee’s
mappings are weak contractions. Afterward, many generalizations of these results
in several spaces appeared in the literature. A detailed synthesis of fixed point
problems and their applications can be found in the noteworthy manuscripts [3, 4,
5, 18, 20, 14, 15, 16, 17] Berinde-type weak contractions are usually called almost
contractions. Clubbing the ideas of Berinde, ψ, φ and the notion of F -contraction,
subsequent ψ, φ-Berinde-type F - contractive mapping is defined in the framework
of partially ordered metric-like spaces.

2.1. Results via (ψ, φ) Berinde-type F - contraction.

Definition 2.1. Let (X, σ,-) be a complete partially ordered metric-like space. Let
f : X → X be mapping. Suppose τ ≥ 0 and F ∈ ∆F are such that for all x, y ∈ X

with x 6= y,

σ(fx, fy) > 0 ⇒
τ + F (ψ(σ(fx, fy))) ≤ F (ψ(M(x, y))) − φ(M(x, y)) + L(N(x, y))

(2.1)
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where

M(x, y) = max
{

σ(x, y), σ(x, fx), σb(y, fy),
σ(x, fy) + σ(fx, y)

2

}

, (2.2)

and

N(x, y) = min{σs(x, fx), σs(y, fy), σs(x, fy), σs(y, fx)},
with L ≥ 0.
Then mapping f is called partially ordered (ψ, φ) Berinde-type F - contraction.

Theorem 2.1. Let (X, σ,-) be a complete partially ordered metric like space and
f : X → X be a continuous and non-decreasing (ψ, φ) Berinde-type F contraction.
If there exist x0 ∈ X with x0 - fx0, then f has a fixed point.

Proof. Let x0 ∈ X be such that x0 - fx0 and let {xn} be the sequence of initial
point x0 that is xn = fnx0 = fxn−1. If xn = xn−1 for some n ∈ N , then xn is a
fixed point of f .
Now let dn = d(xn, xn+1) for all n ∈ N ∪ {0}. Assume that xn 6= xn−1 for all
n ∈ N . As f is non-decreasing and x0 - fx0, we deduce that

x0 ≺ x1 ≺ x2 ≺ · · · ≺ xn · · · (2.3)

that is xn and xn+1 are comparable and fxn−1 6= fxn for all n ∈ N ∪ {0}.
Now we construct a sequence {xn} in X in such a way that xn = fxn−1 for all
n ∈ N ∪ {0}.
Suppose that σ(xn0

, xn0+1) = σ(xn0
, fxn0

) = 0, for some n0 ≥ 0. Then one can
get xn0

= xn0+1 = fxn0
then xn0

is a required fixed point, and we are done in this
case. Thus, for now, assume that σ(xn, fxn) > 0, for all n ∈ N . Consequently, we
have

σ(fxn, fxn+1) = σ(xn+1, xn+2), ∀ n ∈ N.

Then by the Definition 2.1 with x = xn and y = xn+1, we have

τ + F
(

ψ
(

σ(fxn, fxn+1

)

)

≤ F
(

ψ
(

M(xn, xn+1)
)

)

− φ
(

M(xn, xn+1)
)

+ L
(

N(xn, xn+1)
)

(2.4)

where

N(xn, xn+1) = min{σs(xn, fxn), σ
s(xn+1, fxn+1), σ

s(xn, fxn+1), σ
s(xn+1, fxn)

= min{σs(xn, xn+1), σ
s(xn+1, xn+2), σ

s(xn, xn+2), σ
s(xn+1, xn+1)

= 0

and

M(xn, xn+1) = max
{

σ(xn, xn+1), σ(xn, fxn), σ(xn+1, fxn+1),
σ(xn, fxn+1) + σ(fxn, xn+1)

2

}

= max
{

σ(xn, xn+1), σ(xn, xn+1), σ(xn+1, xn+2),
σ(xn, xn+2) + σ(xn+1, xn+1)

2

}

= max
{

σ(xn, xn+1), σ(xn+1, xn+2),
σ(xn, xn+1) + σ(xn+1, xn+2)

2

}

= max
{

σ(xn, xn+1), σ(xn+1, xn+2)
}

.

If M(xn, xn+1) = σ(xn+1, xn+2) then from (2.4),

τ + F
(

ψ
(

σ(xn+1, xn+2)
)

)

≤ F
(

ψ
(

σ(xn+1, xn+2)
)

)

− φ
(

σ(xn+1, xn+2)
)

(2.5)



18 O.P. CHAUHAN, V. JOSHI

Which leads to a contradiction, in view of F1 and the hypothesis of ψ, φ as
φ
(

σ(xn+1, xn+2)
)

> 0. Then we arrive at

τ + F
(

ψ
(

σ(xn+1, xn+2)
)

)

≤ F
(

ψ
(

σ(xn, xn+1)
)

)

− φ
(

σ(xn, xn+1)
)

< F
(

ψ
(

σ(xn, xn+1)
)

)

.
(2.6)

Thus from (2.6) and F1, we get

τ + ψ
(

σ(xn+1, xn+2)
)

< ψ
(

σ(xn, xn+1)
)

(2.7)

or equivalently

τ + σ(xn, xn+1) < σ(xn−1, xn), ∀ n ∈ N.

Therefore {σ(xn, xn+1)}n∈N is a non negative decreasing sequence of real numbers
and is bounded below at 0, consequently convergent to some point p ∈ R+, now we
claim that p = 0. Now suppose p > 0.
Letting n→ ∞ in (2.6), we have τ + F

(

ψ(p)
)

≤ F
(

ψ(p)
)

− φ(p),
which is a contradiction in view of F1 and φ. Thus we have p = 0.
Consequently, we have

lim
n→∞

σ(fxn, fxn+1) = lim
n→∞

σ(xn+1, xn+2) = 0. (2.8)

Now we will show that {xn} is a σ-Cauchy sequence.
Suppose that {xn} is not a σ-Cauchy sequence. Then there exists ǫ > 0 for which
we can find subsequences {xmk

} and {xnk
} with nk > mk > k such that

σ(xnk
, xmk

) ≥ ǫ. (2.9)

Further, corresponding tomk, we can choose nk in such a way that it is the smallest
integer with nk > mk satisfying (2.9). Then

σ(xnk−1, xmk
) < ǫ. (2.10)

Using (2.9), (2.10) and the triangle inequality, we have

ǫ ≤ σ(xnk
, xmk

) ≤ σ(xnk
, xnk−1) + σ(xnk−1, xmk

) < σ(xnk
, xnk−1) + ǫ.

Letting k → ∞ and using (2.8), we obtain

lim
k→∞

σ(xnk
, xmk

) = ǫ. (2.11)

Again, the triangle inequality gives us

σ(xnk−1, xmk
) ≤ σ(xnk−1, xnk

) + σ(xnk
, xmk

),

σ(xnk
, xmk

) ≤ σ(xnk
, xnk−1) + σ(xnk−1, xmk

).

Then we have |σ(xnk−1, xmk
) − σ(xnk

, xmk
)| ≤ σ(xnk

, xmk−1). Letting k → ∞ in
the above inequality and using (2.8) and (2.11), we get

lim
k→∞

σ(xnk−1, xmk
) = ǫ. (2.12)

Similarly, we can show that

lim
k→∞

σ(xnk
, xmk−1) = lim

k→∞
σ(xnk−1, xmk−1)

= lim
k→∞

σ(xnk
, xmk+1)

= lim
k→∞

σ(xnk+1, xmk
) = ǫ

(2.13)
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As

M(xnk−1, xmk−1) = max
{

σ(xnk−1, xmk−1), σ(xnk−1, fxnk−1), σ(xmk−1, fxmk−1),

σ(xnk−1, fxmk−1) + σ(fxnk−1, xmk−1)

2

}

= max
{

σ(xnk−1, xmk−1), σ(xnk−1, xnk
), σ(xmk−1, xmk

),

σ(xnk−1, xmk
) + σ(xnk

, xmk−1)

2

}

,

using (2.8) and (2.11)-(2.13), we have

lim
k→∞

max{ǫ, 0, 0, ǫ} = ǫ. (2.14)

As nk > mk and xnk−1and xmk−1 are comparable, setting x = xnk−1 and y =
xmk−1 in (2.1), we obtain

τ + F
(

ψ
(

σ(xnk
, xmk

)
)

)

= τ + F
(

ψ
(

σ(fxnk−1, fxmk−1)
)

)

≤ F
(

ψ
(

M(xnk−1, xmk−1)
)

)

− φ
(

M(xnk−1, xmk−1)
)

.

Letting k → ∞ in the above inequality and using (2.11) and (2.14), we get

τ + F
(

ψ(ǫ)
)

≤ F
(

ψ(ǫ)
)

− φ(ǫ),

which is a contradiction as ǫ > 0. Hence {xn} is a σ-Cauchy sequence. By the
completeness of X , there exists z ∈ X such that lim

n→∞
xn = z, that is,

lim
n→∞

σ(xn, z) = σ(z, z) = lim
m,n→∞

σ(xm, xn) = 0 (2.15)

Moreover, the continuity of F implies that

lim
n→∞

σ(xn+1, z) = lim
n→∞

σ(fxn, z) = σ(fz, z) = 0

and this proves that z is a fixed point. �

Notice that the continuity of f in Theorem 2.1 is not necessary and can be
dropped.

Theorem 2.2. Under the same hypotheses of Theorem 2.1 and without assuming
the continuity of f , assume that whenever {xn} is a nondecreasing sequence in X

such that xn → x ∈ X implies xn - x for all n ∈ N, then f has a fixed point in X.

Proof. Following similar arguments to those given in Theorem 2.1, we construct a
nondecreasing sequence {xn} in X such that xn → z for some z ∈ X . Using the
assumption of X , we have xn - z for every n ∈ N . Now, we show that fz = z.
Suppose

F (fz, z) = lim
n→∞

F (fz, xn+1) = lim
n→∞

F (fz, fxn) > 0,

then from (2.1), we have

τ + F
(

ψ
(

σ(fz, xn+1)
)

)

= τ + F
(

ψ
(

σ(fz, fxn)
)

)

≤ F
(

ψ
(

M(z, xm)
)

)

− φ
(

M(z, xn)
)

+ L
(

N(z, xn)
)

.

(2.16)
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where

σ(fz, z) ≤M(z, xn)

= max
{

σ(z, xn), σ(fz, z), σ(xn, xn+1),
σ(z, xn+1) + σ(fz, xn)

2

}

= max
{

σ(z, xn), σ(fz, z), σ(xn, xn+1),
σ(z, xn+1) + σ(fz, z) + σ(z, xn)

2

}

.

Taking limit as n→ ∞, by (2.15), we obtain

σ(fz, z) ≤ lim
n→∞

M(z, xn) ≤ σ(z, fz)

⇒ M(z, xn) = σ(z, fz)

and
σ(fz, z) ≤ N(z, xn)

= min
{

σs(z, fz), σs(xn, fxn), σ
s(z, fxn), σ

s(xn, fz)
}

= min
{

σs(z, fz), σs(xn, xn+1), σ
s(z, xn+1), σ

s(xn, fz)
}

Taking limit as n→ ∞, by (2.15), we obtain

lim
n→∞

N(z, xn) = 0.

Therefore, letting n→ ∞ in (2.16), we get

τ + F
(

ψ
(

σ(fz, z)
)

)

≤ F
(

ψ
(

σ(fz, z)
)

)

− φ
(

σ(fz, z)
)

,

which is a contradiction in view of F1, ψ and φ.
Then σ(fz, z) = 0. Thus fz = z. �

Next theorem gives a sufficient condition for the uniqueness of the fixed point.

Theorem 2.3. Let all the conditions of Theorem 2.1 (resp. Theorem 2.2) be
fulfilled and let the following condition be satisfied: For arbitrary two points x, y ∈
X , there exists z ∈ X which is comparable with both x and y. Then the fixed point
of f is unique.

Proof. Suppose that there exist z, x ∈ X which are fixed points. We distinguish
two cases.
Case I. If x is comparable to z, then Fnx = x is comparable to Fnz = z for
n = 1, 2, 3, · · · and

τ + F
(

ψ
(

σ(z, x)
)

)

= τ + F
(

ψ
(

σ(fnz, fnx)
)

)

≤ F
(

ψ
(

M(fn−1z, fn−1x)
)

)

− φ
(

M(fn−1z, fn−1x)
)

+ L
(

N(fn−1z, fn−1x)
)

.

(2.17)

where

M(z, x) = max
{

σ(z, x), σ(z, fz), σ(x, fx),
σ(z, fx) + σ(fz, x)

2

}

=
{

σ(z, x), σ(z, z), σ(x, x),
σ(z, x) + σ(z, x)

2

}

= σ(z, x)

(2.18)
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and

N(z, x) = min
{

σs(z, fz), σs(x, fx), σs(z, fx), σs(x, fz)
}

= min
{

σs(z, z), σs(x, x), σs(z, x), σs(x, z)
}

= 0

(2.19)

Using (2.17),(2.18) and (2.19), we have

τ + F
(

ψ
(

σ(z, x)
)

)

≤ F
(

ψ
(

σ(z, x)
)

)

− φ
(

σ(z, x)
)

,

which is a contradiction in view of F1, ψ hypothesis of and φ.
Then σ(z, x) = 0. This implies that z = x.
Case II. If x is not comparable to z, then there exists y ∈ X comparable to x and
z. The monotonicity of f implies that fny is comparable to fnx = x and fnz = z,

for n = 1, 2, 3, · · ·
Moreover,

τ + F
(

ψ
(

σ(z, fny)
)

)

= τ + F
(

ψ
(

σ(fnz, fny)
)

)

≤ F
(

ψ
(

M(fn−1z, fn−1y)
)

)

− φ
(

M(fn−1z, fn−1y)
)

+ L
(

N(fn−1z, fn−1y)
)

.

(2.20)
where

N(fn−1z, fn−1y) = min
{

σs(fn−1z, ffn−1z), σs(fn−1y, ffn−1y), σs(fn−1z, fny), σs(fn−1y, fnz)
}

= min
{

σs(fn−1z, fnz), σs(fn−1y, fny), σs(fn−1z, fny), σs(fn−1y, fnz)
}

= min
{

σs(z, z), σs(fn−1y, fny), σs(z, fny), σs(fn−1y, z)
}

= 0.

(2.21)
and

M(fn−1z, fn−1y) = max
{

σ(fn−1z, fn−1y), σ(fn−1z, ffn−1z), σ(fn−1y, ffn−1y),

σ(fn−1z, ffn−1y) + σ(ffn−1z, fn−1y)

2

}

= max
{

σ(fn−1z, fn−1y), σ(fn−1z, fnz), σ(fn−1y, fny),

σ(fn−1z, fny) + σ(fnz, fn−1y)

2

}

= max
{

σ(z, fn−1y), σ(z, z), σ(fn−1y, fny),
σ(z, fny) + σ(z, fn−1y)

2

}

≤ max
{

σ(z, fn−1y), σ(z, fny)
}

(2.22)
for n sufficiently large, because σ(fn−1y, fn−1y) → 0 and σ(fn−1y, fny) → 0
when n → ∞. Similarly as in the proof of Theorem 2.1, it can be shown that
σ(z, fny) ≤M(z, fn−1y) ≤ σ(z, fn−1y). It follows that the sequence {σ(z, fny)} is
non-negative decreasing and, consequently, there exists α ≥ 0 such that

lim
n→∞

σ(z, fny) = lim
n→∞

M(z, fn1y) = α.
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We suppose that α > 0. Then letting n→ ∞ in (2.20), we have

τ + F
(

ψ(α)
)

≤ F
(

ψ(α)
)

− φ(α),

which is a contradiction. Hence α = 0. Similarly, it can be proved that

lim
n→∞

α(x, fny) = 0.

Now, passing to the limit in σ(x, z) ≤ σ(x, fny)+σ(fny, z), it follows that σ(x, z) =
0, so x = z, and the uniqueness of the fixed point is proved. �

We now discuss the following consequence of Theorem 2.1
As φ : [0,∞] → [0,∞] and taking L = 0 in Theorem 2.1, we get the following

corollary.

Corollary 2.4. Let (X, σ,-) be a complete partially ordered metric like space and
f : X → X be a continuous mapping. If there exist τ > 0, F ∈ ∆F and ψ ∈ Ψ such
that for all x, y ∈ X with x 6= y,

σ(fx, fy) > 0 ⇒

τ + F
(

ψ
(

σ(fx, fy)
)

)

≤ F
(

ψ
(

M(x, y)
)

)

− φ
(

M(x, y)
) (2.23)

where

M(x, y) = max
{

σ(x, y), σ(x, fx), σb(y, fy),
σ(x, fy) + σ(fx, y)

2

}

,

Then f has a unique fixed point.

Now, we present an example to support the useability of our results.

Example 2.1. Let X = [0, 1] be equipped with partial order relation � defined by

x - y ⇒ x > y.

Define function σ : X ×X → [0,∞) by

σ(x, y) =

{

2x, x = y

max(x, y), otherwise.

Then (X, σ) is a complete metric-like space.
Let fx = x√

x3+2
. Clearly for all x ∈ X, x � fx.

Taking ψ = log 3x, φ(t) = 1
100+t3

and F (α) = α+ logα.
Here x � y then without loss of generality it is assumed that x > y. Now we
calculate values

σ(fx, fy) =
x√

x3 + 2
, σ(x, y) = x, σ(x, fx) = x,

σ(y, fy) = y, σ(x, fy) = x, σ(fx, y) = fx or y, and M(x, y) = x

and
σs(x, fx) = |2σ(x, fx) − σ(x, x) − σ(fx, fy)|

= |2x− 2x− 2fx|

= 2
x√

x3 + 2
,

σs(x, fy) = 2 y√
y3+2

,

when fx > y, σs(y, fx) = |2fx− 2y − 2fx| = 2y,
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when fx < y, σs(y, fx) = |2y − 2y − 2fx| = 2 x√
x3+2

,

σs(y, fy) = |2y − 2y − 2fx| = 2 y√
y3+2

, so

N(x, y) = min{σs(x, fx), σs(x, fy), σs(y, fx), σs(y, fy)} =
2y

√

y3 + 2

then L.H.S. of (2.1) becomes

τ + log
(

log 3
x√

x3+2

)

+ log 3
x√

x3+2

and R.H.S. comes out

log(log 3x) + log 3x − 1

100 + x3
+ L

2y
√

y3 + 2
.

Following figures shows that R.H.S. function with colored figure dominates L.H.S.
function with black and white checked function.

Figure 1. Domination of R.H.S. over L.H.S., exactly in [0, 1]

Thus we see that (2.1) is satisfied with τ ∈ (0, 0.13] and L = [3,∞).
Hence all the conditions of Theorem 2.1 are fulfilled then Tx has a fixed point as
x = 0 which is indeed unique in [0, 1], which is demonstrated by following figure.
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Figure 2. Fixed Point of f

3. Application to integral equation

Fixed point theory is critical in determining the solution of many nonlinear
models in engineering and research. This section will use the previously stated
fixed point findings to explain the existence of a solution to a class of integral
equations 3.1. Consider the following integral equation

θ(t) = P (t) +

∫ b

a

K(t, u)f(u, θ(u)du, ∀t ∈ [a, b] (3.1)

Consider the space X = C([a, b], R) of continuous functions on [a, b]. For θ ∈ X ,
we define

‖θ1 − θ2‖ = sup
s∈[a,b]

{|θ1(t)− θ2(t)|} . (3.2)

Define metric-like σ : X ×X → R+ by

σ(x, y) = ‖x− y‖+ ‖x‖+ ‖y‖, for all x, y ∈ X, (3.3)

where ‖x− y‖ is defined by (3.2).
Equivalent metric to metric-like space is given by

dσ(x, y) = 2σ(x, y)− σ(x, x) − σ(y, y) = 2‖x− y‖.
Clearly dσ(x, y) is complete and hence (X, σ) is also complete.
Consider the self map A : X → X defined by

A(θ(t)) =

∫ b

a

K(t, u)f(u, θ(u))du, t ∈ [a, b] and for all θ ∈ X.

It is evident that θ is a solution of equation (3.1) if and only if θ is fixed point of
A. Now succeeding theorem is established for the guarantee of the existence of a
fixed point of A.

Theorem 3.1. Consider the problem (3.1) and assume that
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(I) f : [a, b]×R→ R is continuous;
(II) P : [a, b] → R is continuous;
(III) K : [a, b]×R → [0,∞) is continuous;
(IV) ψ ∈ Ψ such that for all θ1, θ2 ∈ R , such that

|f(u, θ1)− f(u, θ2)| ≤ e−τ |θ1 − θ2| for every u ∈ [a, b];

(V)
there exists a continuous function z : I → R+ such that

|f(u, θ1)| ≤ e−τ |θ1| for every u ∈ [a, b];

(VI) assume that sup
t∈[a,b]

=
∫ b

a
K(t, u)du ≤ 1.

Then the integral equation (3.1) has a solution in X .

Proof. For all θ1, θ2 ∈ X such that Aθ1(t) 6= Aθ2(t), we have

|Aθ1(t)−Aθ2(t)| ≤
∣

∣

∣

∣

∣

∫ b

a

k(t, u)
(

f(u, θ1(u))− f(u, θ2(u))
)

∣

∣

∣

∣

∣

du

≤
∫ b

a

K(t, u) |f(u, θ1(u))− f(u, θ2(u))| du

≤ e−τ

∫ b

a

K(t, u)
∣

∣

∣
θ1(u)− θ2(u)

∣

∣

∣
du

≤ e−τ‖θ1 − θ2‖ sup
t∈[a,b]

∫ b

a

K(t, u)du

≤ e−τ‖θ1 − θ2‖.
Ultimately we have

‖Aθ1(t)−Aθ2(t)‖ ≤ e−τ‖θ1 − θ2‖. (3.4)

Also, we have
∣

∣

∣
Aθ1(t)

∣

∣

∣
=

∣

∣

∣

∣

∣

∫ b

a

K(t, u)f(u, θ(u))

∣

∣

∣

∣

∣

du

≤
∫ b

a

K(t, u)
∣

∣

∣
f(u, θ(u))

∣

∣

∣
du

≤
∫ b

a

K(t, u)e−τ
∣

∣

∣
θ1

∣

∣

∣
du

≤ eτ‖θ1‖ sup
t∈[a,b]

∫ b

a

K(t, u)du

≤ eτ‖θ1‖.
Thus, one can get

‖Aθ1(t)‖ ≤ α2e
−τ‖θ1‖. (3.5)

With the similar treatment, we can get

‖Aθ2(t)‖ ≤ e−τ‖θ2‖. (3.6)

Now we know that from (3.3),

σ(Aθ1, Aθ2) = ‖Aθ1 −Aθ2‖+ ‖Aθ1‖+ ‖Aθ2‖.
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Utilizing (3.4), (3.5) and (3.6), we get

σ(Aθ1, Aθ2) ≤ e−τ
[

‖θ1 − θ2‖+ ‖θ1‖+ ‖θ2‖
]

= e−τσ(θ1, θ2)

≤ e−τM(θ1, θ2).

Passing logarithm both sides, we get

log(σ(Aθ1, Aθ2)) ≤ log(M(θ1, θ2))− τ.

Here we note that the function F : R+ → R defined by F (θ) = log(θ) for every
θ ∈ C[a, b] and for τ > 0 is in ∆F . Consequently with ψ = t all the conditions of
Corollary 2.4 are satisfied. Subsequently A has a fixed point which is the solution
of Integral equation (3.3). �

4. Conclusion

In this study, recognizing the concept of F -contraction, some fixed point theo-
rems for (ψ, φ) Berinde-type F - contraction in partially ordered metric- like space
are established. The applications and illustrative examples show the high degree
of reliability to other authors to generalize and improve these results for future
research.
Acknowledgments: The authors are grateful to the learned referees for their care-
ful reading of our manuscript especially for the comments and suggestions which
brought several improvements.
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