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A VISCOSITY IMPLICIT MIDPOINT ITERATIVE METHOD

FOR NONEXPANSIVE MAPPING IN CAT(0) SPACES

SHUJA HAIDER RIZVI, F. SIKANDER

Abstract. In this paper, we suggest and analyze a viscosity implicit midpoint

iterative method for a nonexpansive mapping in the framework of CAT(0)

space. Further, under the some conditions, strong convergence theorem is
proved by the sequence generated by the proposed iterative method, which,

also solves the variational inequality problem. Further, the results presented

in this paper may be treated as an extension and generalization of some cor-
responding ones in the literature.

1. Introduction

A metric space (X, d) is termed a CAT(0) space if it possesses geodetic connect-
edness and if every geodesic triangle within X is ”thin” to at least the extent of its
comparison triangle in the Euclidean plane. It is recognized that any complete, sim-
ply connected Riemannian manifold with non-positive sectional curvature qualifies
as a CAT(0) space. Additional examples of CAT(0) spaces encompass pre-Hilbert
spaces, R-trees [1], Euclidean buildings [2], among numerous others. A complete
CAT(0) space earns the designation of a Hadamard space. In a CAT(0) space X,
a subset K is deemed convex if, for any x, y ∈ K, the interval [x, y] ⊂ K, where
[x, y] signifies the uniquely geodesic path linking x and y. For an in-depth explo-
ration of CAT(0) spaces and their pertinent properties that wield a significant role
in geometry, we direct interested readers to [1] and the references therein.

Recall that, a mapping S : X → X on a metric space (X, d) is called contraction,
if there exists a constant α ∈ (0, 1) such that

d(Sx, Sy) ≤ d(x, y),∀x, y ∈ X.
If α = 1, S is called nonexpansive mapping.

A study of nonpositive curvature geodesic metric spaces was initiated and studied
in the first decades of the twentieth century with an introduction of hyperbolic
spaces by Hadamard and Cartan. Later on Gromov restated some features of global
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Riemannian geometry solely based on the so-called CAT(0) inequality; the letters
C, A and T stand for Cartan, Alexandrov and Toponogov, respectively. For more
details of these spaces and their properties in different branches of mathematics,
we refer to Bridson and Haefliger [1] and references cited therein.

On the other hand, some iterative methods have been developed and studied
to approximate the fixed points of nonexpansive mappings defined on suitable do-
mains. These iterative algorithms have received much attention due to its appli-
cations in a variety of mathematical problems such as inverse problems, solution
approximation of partial differential equations, image recovery, and signal process-
ing see for example, [3–11] and references cited therein. The geometric properties of
structure of a domain of nonexpansive mappings play a significant role for finding
the solution of its fixed point equation. In this regard, Banach spaces and Hilbert
spaces are natural choices to study the existence and approximation of fixed points
of certain mappings. The problem of switching from linear structures to nonlinear
structures has attracted the attention of several mathematicians. CAT(0) space is
a typical example of a domain possessing a nonlinear structure. Berg and Niko-
laev [31] introduced an inner product-like notion which is called quasilinearization
in CAT(0) spaces to deal the problems of a nonlinear structure of an underlying
domain.

Fixed-point theory in CAT(0) spaces was first studied by Kirk [13,14]. He showed
that every nonexpansive mapping defined on a bounded, closed, convex subset of a
complete CAT(0) space has always a fixed point. Since then, the fixed point theory
for single-valued and multivalued mappings in CAT(0) spaces has been studied
extensively.

The viscosity approximation method was introduced and studied by Moudafi
[15] to approximate a fixed point of a nonexpansive mapping in the framework
of a Hilbert space, which generates the sequence {xn} by the following iterative
algorithm:

xn+1 = αnQ(xn) + (1− αn)Sxn, n ≥ 0, (1.1)

where {αn} ⊂ [0, 1] and Q is a contraction mapping on Hilbert space H. Further
he proved that the sequences generated by (1.1) converge strongly to the unique
solution q ∈ Fix(S) which also solves of variational inequality problem.

〈(I −Q)q, x− q〉 ≥ 0, ∀x ∈ Fix(S). (1.2)

The implicit midpoint iterative method is one of the powerful numerical methods
for solving ordinary differential equations and differential algebraic equations. For
related works, we refer to [16–23] and the references cited therein.

In 2014, Alghamdi et al. [24] has been extended implicit midpoint iterative
method to nonexpansive mappings, which generates a sequence {xn} by the fol-
lowing implicit iterative algorithm:

xn+1 = αnxn + (1− αn)S

(
xn + xn+1

2

)
, n ≥ 0. (1.3)

Recently, Rizvi [25] extended and generalized the results of Alghamdi et al. [24]
and presented the following general viscosity implicit midpoint iterative method for
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nonexpansive mapping, which generates a sequence {xn} by the following implicit
iterative algorithm:

xn+1 = αnγQ(xn) + (1− αnB)S

(
xn + xn+1

2

)
, n ≥ 0, (1.4)

where {αn} ⊂ [0, 1] and S is a nonexpansive mapping and B is a strongly positive
self-adjoint bounded linear operator on H with constant γ̄ > 0 and γ ∈ (0, γ̄α ). He
proved that under some mild conditions, the sequence generated by (1.4) converge
in norm to fixed point of nonexpansive mapping, which, in addition, solves the
variational inequality (1.2). For related work see [26].

In 2012, Shi and Chen [27] studied and extends the convergence result of Moudafi’s
viscosity approximation method for a nonexpansive mapping in the setting of
CAT(0) spaces, which generates the sequence {xn} by the following iterative al-
gorithm:

xn+1 = αnQ(xn)⊕ (1− αn)Sxn, n ≥ 0, (1.5)

where {αn} ⊂ [0, 1] and Q is a contraction mapping and S is a nonexpansive
mapping on CAT(0) space X. They proved that under some mild conditions,
the sequence generated by (1.5) converge in norm to fixed point of nonexpansive
mapping.

In 2017, Zhao et al. [28] introduced and studied viscosity approximation method
for implicit midpoint iterative method of a nonexpansive mapping in CAT(0) spaces,
which generates the sequence {xn} by the following iterative algorithm:

xn+1 = αnQ(xn)⊕ (1− αn)S

(
xn ⊕ xn+1

2

)
, n ≥ 0, (1.6)

where {αn} ⊂ [0, 1]. Further, they proved that under some mild conditions, the se-
quence generated by (1.6) converge in norm to fixed point of nonexpansive mapping,
which, in addition, solves the variational inequality (1.2).

Motivated by the works of Moudafi [15], Rizvi [25], Shi and Chen [27], Alghamdi
et al. [24], and Zhao et al. [28], as well as the ongoing research in this direction,
we propose and analyze a viscosity implicit midpoint iterative method for a non-
expansive mapping within the framework of CAT(0) space. Furthermore, under
certain conditions, we establish a strong convergence theorem for the sequence gen-
erated by the proposed iterative method. This sequence, moreover, constitutes the
unique solution to the variational inequality problem. These results and meth-
ods presented herein further extend and generalize the corresponding findings and
approaches outlined in [15,24,25,27,28].

2. Preliminaries

In this section, we recall some concepts and results which are needed in sequel.
Let X be a CAT(0) space, then for any x, y, z ∈ X and t ∈ [0, 1], we write

(1 − t)x ⊕ ty for the unique point z in the geodesic segment joining from x to y
such that

d(z, x) = td(x, y), and d(z, y) = (1− t)d(x, y).

The following lemmas play an important role in for the subsequent sections.

Lemma 2.1. [29] Let X be a CAT(0) space, x, y, z ∈ X and t ∈ [0, 1]. Then
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(i) d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z);
(ii) d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y).

Lemma 2.2. [30] Let X be a CAT(0) space, p, q, r, s ∈ X and λ ∈ [0, 1]. Then

d(λp⊕ (1− λ)q, λr ⊕ (1− λ)s) ≤ λd(p, r) + (1− λ)d(q, s).

In 2008, the concept of quasilinearization were introduced and studied by Berg
and Nikolaev [31], which is defined as follows as follows. Let us denote a pair

(a, b) ∈ X ×X by
−→
ab and call it a vector. Then, quasilinearization is defined as a

map 〈·, ·〉 : (X ×X)× (X× x)→ R defined by

〈
−→
ab,
−→
cd〉 =

1

2

(
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

)
, (a, b, c, d ∈ X).

It is easy to see that 〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉 and 〈−→ax,

−→
cd〉+〈

−→
xb,
−→
cd〉 =

〈
−→
ab,
−→
cd〉 for all a, b, c, d ∈ X. We say that X satisfies the Cauchy-Schwartz inequality

if
〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d)

for all a, b, c, d ∈ X. It is well-known [31] that a geodesically connected metric space
is a CAT(0) space if and only if it satisfies the Cauchy-Schwartz inequality.

Let K be a nonempty closed convex subset of a complete CAT(0) space X. The
metric projection PK : X → K is defined by

u = PK(x)⇔ d(u, x) = inf{d(y, x) : y ∈ K}, ∀x ∈ X.

Lemma 2.3. [32] Let K be a nonempty convex subset of a complete CAT(0) space
X, for x ∈ X and u ∈ K. Then u = PKx if and only if u is a solution of the
following variational inequality

〈−→yu,−→ux〉 > 0, ∀y ∈ K,
i.e., u satisfies the following inequality:

d2(x, y)− d2(y, u)− d2(u, x) ≥ 0,∀y ∈ K.

Lemma 2.4. [33]. Every bounded sequence in a complete CAT(0) space always has
a ∆-convergent subsequence.

Lemma 2.5. [28]. Let X be a complete CAT(0) space, {xn} be a sequence in X
and x ∈ X. Then {xn}∆-converges to x if and only if lim sup

n→∞
〈−−→xxn,−→xy〉 ≤ 0, for

all y ∈ X.

Lemma 2.6. [34]. Let X be a complete CAT(0) space. Then for all u, x, y ∈ X,
the following inequality holds

d2(x, u) ≤ d2(y, u) + 2〈−→xy, ~u〉.

Lemma 2.7. [35]. Let X be a complete CAT(0) space. For any t ∈ [0, 1] and
u, v ∈ X, let ut = tu⊕ (1− t)v. Then, for all x, y ∈ X,

Lemma 2.8. [36]. Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1− βn)an + δn, n ≥ 0,

where {βn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∞∑
n=1

βn =∞;
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(ii) lim sup
n→∞

δn
βn
≤ 0 or

∞∑
n=1
|δn| <∞.

Then lim
n→∞

an = 0.

3. Viscosity Implicit Midpoint Iterative Method

In this section, we prove a strong convergence theorem based on viscosity implicit
midpoint iterative method for fixed point of nonexpansive mapping.

Theorem 3.1. Let K be a nonempty, closed and convex subset of a complete
CAT(0) space X and S : K → K be a nonexpansive mapping such that Fix(S) 6= ∅.
Let Q : K → K be a contraction mapping with constant α ∈ (0, 1), let the iterative
sequence {xn} be generated by the following viscosity implicit midpoint iterative
algorithm:

xn+1 = αnQ(xn)⊕ βnxn ⊕ γnS
(
xn ⊕ xn+1

2

)
, n ≥ 0, (3.1)

where {αn}, {βn} and {γn} are the sequences in (0, 1) and satisfying the following
conditions

(i) αn + βn + γn = 1 ;
(ii) lim

n→∞
αn = 0;

(iii)
∞∑
n=0

αn =∞;

(iv)
∞∑
n=1
|αn − αn−1| <∞ or lim

n→∞

αn+1

αn
= 1.

Then the sequence {xn} converge strongly to z ∈ Fix(S), where z = PFix(S)Q(z).
In other words, which is also unique solution of variational inequality (1.2).

Proof. It is easy to observe that, if for µ ∈ C, one define a mapping.

x 7→ Sµx := αQ(µ)⊕ βµ ⊕ γS
(
µ⊕ x

2

)
.

Therefore, we compute

d(Sµx, Sµy) = γd

(
S

(
µ⊕ x

2

)
, S

(
µ⊕ y

2

))
≤ γd

(
µ⊕ x

2
,
µ⊕ y

2

)
≤ γ

2
d(x, y).

Since γ ∈ (0, 1). Hence Sµx is a contraction mapping. Hence (3.1) is well defined.
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Let p ∈ Fix(S), we compute

d(xn+1, p) = d
(
αnQ(xn)⊕ βnxn ⊕ γnS

(
xn ⊕ xn+1

2

)
, p
)

≤ αnd(Q(xn), p) + βnd(xn, p) + γnd

(
S

(
xn ⊕ xn+1

2

)
, p

)
≤ αn[d(Q(xn), Q(p)) + d(Q(p), p)] + βnd(xn, p) + γnd

(
xn ⊕ xn+1

2

)
, p

)
≤ αnkd(xn, p) + αnd(Q(p), p) + βnd(xn, p) + γnd

(
xn ⊕ xn+1

2

)
, p

)
≤ αnkd(xn, p) + αnd(Q(p), p) + βnd(xn, p) +

γn
2

(d(xn, p) + d(xn+1, p)) .

It follows that

(
1− γn

2

)
d(xn+1, p) ≤

[
αnk + βn +

γn
2

]
d(xn, p) + αnd(Q(p), p)

d(xn+1, p) ≤
[

1 + βn + (2k − 1)αn
1 + αn + βn

]
d(xn, p) +

2αn
1 + αn + βn

d(Q(p), p)

≤
[
1− 2(1− k)αn

1 + αn + βn

]
d(xn, p) +

2αn
(1 + αn + βn)

d(Q(p), p)

≤
[
1− 2(1− k)αn

1 + αn + βn

]
d(xn, p) +

2αn
(1 + αn + βn)

1

(1− k)
d(Q(p), p).

Consequently, we get

d(xn+1, p) ≤ max

{
d(xn, p),

d(Q(p), p)

1− k

}
.

Therefore by using induction, we obtain

d(xn+1, p) ≤ max

{
d(x0, p),

d(Q(p), p)

1− k

}
. (3.2)

Hence the sequence {xn} is bounded.
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Next, we show that the sequence {xn} is asymptotically regular, i.e., lim
n→∞

d(xn+1, xn) =

0. It follows from (3.1) that

d(xn+1, xn) =

d

(
αnQ(xn)⊕ βnxn ⊕ γnS

(
xn ⊕ xn+1

2

)
, αn−1Q(xn−1)⊕ βn−1xn−1 ⊕ γn−1S

(
xn ⊕ xn−1

2

))
≤ d

(
αnQ(xn)⊕ βnxn ⊕ (1− αn − βn)S

(xn ⊕ xn+1

2

)
, αnQ(xn)⊕ βnxn−1

⊕(1− αn − βn)S
(xn ⊕ xn−1

2

))
+d
(
αnQ(xn)⊕ βnxn−1 ⊕ (1− αn − βn)S

(xn ⊕ xn−1

2

))
, αnQ(xn−1)⊕ βnxn−1

⊕(1− αn − βn)S
(xn ⊕ xn−1

2

))
+d
(
αnQ(xn−1)⊕ βnxn−1 ⊕ (1− αn−1 − βn−1)S

(xn ⊕ xn−1

2

))
, αn−1Q(xn−1)

⊕βn−1xn−1 ⊕ (1− αn−1 − βn−1)S
(xn ⊕ xn−1

2

))
≤ αnd(Q(xn)−Q(xn−1)) + βnd(xn − xn−1)

+(1− αn−1 − βn−1)d
(
S
(xn+1 ⊕ xn

2

)
, S
(xn ⊕ xn−1

2

))
+|αn − αn−1|d

(
Q(xn−1), S

(xn ⊕ xn−1

2

))
+ |βn − βn−1|d

(
xn−1, S

(xn ⊕ xn−1

2

))
≤ αnkd(xn − xn−1) + βnd(xn − xn−1) + |αn − αn−1|M1 + |βn − βn−1|M2

+(1− αn − βn)d
(xn+1 ⊕ xn

2
,
xn ⊕ xn−1

2

)
≤ αnkd(xn − xn−1) + βnd(xn − xn−1) + |αn − αn−1|M1 + |βn − βn−1|M2

+
(1− αn − βn)

2

[
d(xn+1, xn) + d(xn, xn−1)

]
,

whereM1 := sup
{
d
(
Q(xn−1), S

(xn ⊕ xn−1

2

))
: n ∈ N

}
andM2 := sup

{
d
(
xn−1, S

(xn ⊕ xn−1

2

))
:

n ∈ N
}

. It follows that

[
1−

(1− αn − βn
2

)]
d(xn+1, xn) ≤

[
αnk + βn +

1− αn − βn
2

]
d(xn, xn−1) +M1|αn − αn−1|

+M2|βn − βn−1|

d(xn+1, xn) ≤
[
1− 2(1− k)αn

1 + αn + βn

]
d(xn, xn−1) +

2M1

1 + αn + βn
|αn − αn−1|

+
2M2

1 + αn + βn
|βn − βn−1|.

Since {αn} and {βn} are the sequences in (0, 1), then

1 + αn + βn < 3 and
1

1 + αn + βn
>

1

3

Therefore, we obtain
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1− 2(1− k)αn
1 + αn + βn

< (1− (1− k)αn), it follows that

d(xn+1, xn) ≤ (1−(1−k)αn)d(xn, xn−1)+
2M1

1 + αn + βn
|αn−αn−1|+

2M2

1 + αn + βn
|βn−βn−1|.

By using the conditions (i)-(ii) of Lemma 2.8, we obtain

lim
n→∞

d(xn+1, xn) = 0. (3.3)

Next, we show that

lim
n→∞

d(xn, Sxn) = 0.

We, write

d(xn, Sxn) ≤ d(xn, xn+1) + d
(
xn+1, S

(xn ⊕ xn+1

2

))
+ d
(
S
(xn ⊕ xn+1

2

)
, Sxn

)
≤ d(xn, xn+1) + αnd

(
Q(xn), S

(xn ⊕ xn+1

2

))
+ βnd

(
xn, S

(xn ⊕ xn+1

2

))
+(1− αn − βn)d

(
S
(xn ⊕ xn+1

2

)
, Sxn

)
≤ d(xn, xn+1) + αnM1 + βnM2 +

(1− αn − βn)

2
d(xn+1, xn)

≤
[
1 +

1− αn − βn
2

]
d(xn+1, xn) + αnM1 + βnM2.

It follows from condition (i) and (3.3), we obtain

lim
n→∞

‖xn − Sxn‖ = 0.

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that {xnk

}
∆-converges to x̂ and

lim sup
n→∞

(
−−−−→
Q(x̂)x̂,

−−→
xnx̂) = lim sup

k→∞
(
−−−−→
Q(x̂)x̂,

−−−→
xnk

x̂). (3.4)

Since {xnk
} ∆-converges to x̂. Therefore, it follows from (3.4) that

lim sup
k→∞

(
−−−−→
Q(x̂)x̂,

−−−→
xnk

x̂) ≤ 0. (3.5)

This together with (3.4), we have

lim sup
n→∞

(
−−−−→
Q(x̂)x̂,

−−→
xnx̂) = 0. (3.6)

Finally, we show that xn → z as n→∞. On Setting un := αnx̂⊕(1−αn−βn)yn

and yn :=
βn

1− αn − βn
xn ⊕

γn
1− αn − βn

S
(xn ⊕ xn+1

2

)
. It follows from Lemma

2.6 that
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d2(xn+1, x̂) ≤ d2(un, x̂) + 2
〈−−−−−→xn+1un,

−−−−→
xn+1x̂

〉
= d2(αnx̂⊕ (1− αn − βn)yn, x̂)

+2
[
αn

〈−−−−−→
f(xn)un,

−−−−→
xn+1x̂

〉
+ (1− αn − βn)

〈−−−→
yn)un,

−−−−→
xn+1x̂

〉 ]
≤ d2(αnx̂⊕ (1− αn − βn)yn, x̂) + 2

[
α2
n

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉
+αn(1− αn − βn)

〈−−−−−→
f(xn)yn,

−−−−→
xn+1x̂

〉
+ αn(1− αn − βn)

〈−−→
ynx̂,

−−−−→
xn+1x̂

〉
+(1− αn − βn)2

〈−−→ynyn,
−−−−→
xn+1x̂

〉 ]
≤ d2(αnx̂⊕ (1− αn − βn)yn, x̂) + 2

[
α2
n

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉

+αnβn

〈−−−−−→
f(xn)xn,

−−−−→
xn+1x̂

〉
+ αnγn

〈−−−−−−−−−−−−−−−−−→
f(xn)S

(
xn+1 ⊕ xn

2

)
x̂,
−−−−→
xn+1x̂

〉

+αnβn

〈−−→
xnx̂,

−−−−→
xn+1x̂

〉
+ αnγn

〈−−−−−−−−−−−−−→
S

(
xn+1 ⊕ xn

2

)
x̂,
−−−−→
xn+1x̂

〉]
≤ d2(αnx̂⊕ (1− αn − βn)yn, x̂) + 2

[
α2
n

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉

+αnβn

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉
+ αnγn

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉 ]
≤ d2(αnx̂⊕ (1− αn − βn)yn, x̂) + 2

[
αn(αn + βn + γn)

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉 ]
≤ d2(αnx̂⊕ (1− αn − βn)yn, x̂) + 2αnkd(xn, x̂)d(xn+1, xn) + 2αn

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉
≤ d2(αnx̂⊕ (1− αn − βn)yn, x̂) + αnk

[
d2(xn, x̂) + d2(xn+1, x̂)

]
+ 2αn

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉
≤ (1− αn − βn)d2(yn, x̂) + αnk

[
d2(xn, x̂) + d2(xn+1, x̂)

]
+ 2αn

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉
≤ (1− αn − βn)d2

(
βn

1− αn − βn
xn ⊕

γn
1− αn − βn

S

(
xn+1 ⊕ xn

2

)
, x̂

)
+αnk

[
d2(xn, x̂) + d2(xn+1, x̂)

]
+ 2αn

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉
= βnd

2(xn, x̂) +
γn
2

[
d2(xn+1, x̂) + d2(xn, x̂)

]
+ αnk

[
d2(xn, x̂) + d2(xn+1, x̂)

]
+2αn

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉
.
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This implies that(
1− αnk −

γn
2

)
d2(xn+1, x̂) ≤

(
αnk + βn +

γn
2

)
d2(xn, x̂) + 2αn

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉
d2(xn+1, x̂) ≤

(
2αnk + βn + γn
2(1− αnk)− γn

)
d2(xn, x̂) +

2αn
2(1− αnk)− γn

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉
=

1− αn(1− 2k)

1− αn(2k − 1) + βn
d2(xn, x̂) +

2αn
2(1− αnk)− γn

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉
=

[
1− 2αn(1− 2k)− βn

1− αn(2k − 1) + βn

]
d2(xn, x̂) +

2αn
2(1− αnk)− γn

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉
= (1− δn)‖xn − z‖2 + δnσn, (3.7)

where δn =
2αn(1− 2k)− βn

1− αn(2k − 1) + βn
and σn =

2αn
2(1− αnk)− γn

〈−−−−→
f(xn)x̂,

−−−−→
xn+1x̂

〉
.

Since lim
n→∞

αn = 0 and
∞∑
n=0

αn =∞, it is easy to see that lim
n→∞

δn = 0,
∞∑
n=0

δn =∞

and lim sup
n→∞

σn ≤ 0. Hence from (3.4), (3.7) and Lemma 2.8, we deduce that

xn → z. This completes the proof.
�

As a direct consequences of Theorem 3.1, we obtain the following result due to
Zhao et al. [28] for fixed point of nonexpansive mapping. Take βn := 0 and in
Theorem 3.1 then the following Corollary is obtained.

Corollary 3.2. [28] Let K be a nonempty, closed and convex subset of a complete
CAT(0) and S : K → K be a nonexpansive mapping such that Fix(S) 6= ∅. Let
Q : K → K be a contraction mapping with constant α ∈ (0, 1), let the iterative
sequence {xn} be generated by the following viscosity implicit midpoint iterative
algorithms:

xn+1 = αnQ(xn)⊕ (1− αn)S

(
xn ⊕ xn+1

2

)
, n ≥ 0, (3.8)

where {αn} is the sequence in (0, 1) and satisfying the conditions (i)-(iv) of Theorem
3.1. Then the sequence {xn} converge strongly to z ∈ Fix(S), which, in addition
also solves variational inequality (1.2).

Remark. Since every Hilbert space is a complete CAT(0) space, therefore Theorem
3.1 is any extension, and generalization of the results of Xu et al. [26] and Alghamdi
et al. [24] to a general viscosity implicit midpoint rule for a nonexpansive mappings.

If we, take βn := 0 and CAT(0) space X as an Hilbert space H in Theorem 3.1
then the following Corollary is obtained.

Corollary 3.3. [26] Let H be a real Hilbert space and Q : H → H be a contraction
mapping with constant α ∈ (0, 1). Let S : H → H be a nonexpansive mapping
such that Fix(S) 6= ∅. Let the iterative sequence {xn} be generated by the following
viscosity implicit midpoint iterative algorithms:

xn+1 = αnQ(xn) + (1− αn)S

(
xn + xn+1

2

)
, n ≥ 0, (3.9)
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where {αn} is the sequence in (0, 1) and satisfying the conditions (i)-(iv) of Theorem
3.1. Then the sequence {xn} converge strongly to z ∈ Fix(S), which, in addition
also solves variational inequality (1.2).

Take βn := 0 and Q := I and CAT(0) space X as an Hilbert space H in Theorem
3.1 then the following Corollary is obtained.

Corollary 3.4. [24] Let H be a real Hilbert space and Q : H → H be a contraction
mapping with constant α ∈ (0, 1). Let S : H → H be a nonexpansive mapping
such that Fix(S) 6= ∅. Let the iterative sequence {xn} be generated by the following
viscosity implicit midpoint iterative algorithms:

xn+1 = αnxn + (1− αn)S

(
xn + xn+1

2

)
, n ≥ 0, (3.10)

where {αn} is the sequence in (0, 1) and satisfying the conditions (i)-(iii) of Theo-
rem 3.1. Then the sequence {xn} converge strongly to z ∈ Fix(S).

4. Numerical Example

Example 4.1. Let X = R, the set of all real numbers, with the usual metric
d(x, y) = |x − y|, ∀x, y ∈ R. Let K = [0,∞); let Q : K → K be define by

Q(x) =
1

2
x, ∀x ∈ K, S : K → K be define by S(x) =

1

4
x ∀x ∈ K. Let the

sequences {xn} be generated by the iterative algorithms

xn+1 =
1

(n+ 1)
Q(xn) +

(
1

5
+

1

(n+ 1)

)
xn +

(
1

2
− 1

(n+ 1)

)
S

(
xn + xn+1

2

)
,

(4.1)

where αn = 1
n+1 , βn =

(
1
5 + 1

(n+1)

)
, γn =

(
1
2 −

1
(n+1)

)
. Then {xn} converges

strongly to 0 ∈ Fix(S).

Proof. It is easy to prove Q is contraction mapping with constant α =
1

2
and S is

a nonexpansive mapping with constant
1

4
. Furthermore, it is easy to observe that

Fix(S) = {0}. After simplification, schemes (4.1) reduce to

xn+1 =
xn

2(n+ 1)
+

(
1

5
+

1

(n+ 1)

)
xn +

1

4

(
1

2
− 1

(n+ 1)

)(
xn + xn+1

2

)
, (4.2)

Following the steps of proof of Theorem 3.1, we obtain that {xn} converge
strongly to q = 0 ∈ Fix(S) as n→∞. The proof is completed. �

Now, by using the software Matlab 7.0, we study the convergence behavior of
{xn}, which shows that {xn} converges strongly to 0.

Conclusion: The main aim of present work is to study the viscosity type implicit
midpoint iterative method for nonexpansive mapping in the setting of CAT(0)
space and proved the strong convergence theorem for solving fixed point for a
nonexpansive mapping. Theorem 3.1 extends and generalize the viscosity implicit
midpoint formula for Zhao et al. and Shi et al. [27], which also includes the results
of [24,26] as special cases.
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Figure 1. Convergence analysis for the sequence {xn}
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