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ON VECTOR VARIATIONAL INEQUALITIES AND

NONSMOOTH VECTOR OPTIMIZATION PROBLEMS WITH

GENERALIZED APPROXIMATE INVEXITY

ROHIT KUMAR BHARDWAJ, FAIZAN AHMAD KHAN*, TIRTH RAM*

Abstract. In this paper, we consider two types of vector variational inequal-

ities namely, Minty vector variational inequalities(MVVI) and Stampacchia

Vector variational inequalities(SVVI) for a nonsmooth vector optimization
problem involving locally Lipschitz generalized approximate invex functions.

We formulate approximate (MVVI) and (SVVI) involving Clarke’s generalized

Jacobians and exploit them to characterize an approximate efficient solutions
of the nonsmooth vector optimization problems to approximate (MVVI) and

(SVVI) of different types. We also give an example to show the validity of

main results. Our newly proved results generalize some well-known results in
the literature.

1. Introduction

In 1980, Giannessi [6] introduced vector variational inequality(VVI) in a finite-
dimensional Euclidean space and gave some of its applications. Chen and Cheng [3]
studied the (VVI) in infinite-dimensional space and applied it to vector optimiza-
tion problems. Giannessi [7] introduced (VVI) of Minty type as a generalization of
the variational inequalities and established the necessary and sufficient conditions
for a point to be an efficient solution of a vector optimization problem involving
differentiable and convex functions. In multiobjective optimization, the notion of
efficiency is a widely used solution concept. The concept of approximate efficiency
may be given more flexibility by making the error depending on the decision vari-
ables. This led to the development of the idea of quasi efficiency. Dutta and Vetrivel
[5] defined the notion of weak quasi efficiency and obtained necessary and sufficient
optimality conditions for nonsmooth multiobjective optimization problems.

Approximation methods are crucial in optimization theory because finding an
exact solution is sometimes unattainable or computationally very expensive. As
a result, approximate efficient solutions help in overcoming the difficulties posed
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by computational imperfections and modeling restrictions. Mishra and Laha [15]
gave the idea of approximate efficient solutions for a vector optimization problem
using locally Lipschitz approximately convex functions and characterize these ap-
proximate efficient solutions by using approximate vector variational inequalities of
Minty and Stampacchia type in terms of the Clarke subdifferentials. Later, Wang
[22] proved that under higher order generalized invexity assumptions, the solu-
tions of generalized vector variational-like inequalities in terms of the generalized
Jacobian are the generalized quasi efficient solutions of nonsmooth multiobjective
programming problems. Yang and Zheng [23] obtained the necessary and sufficient
optimality conditions for a point to be the approximate solution of a vector varia-
tional inequality problem.

In the last three decades, several definitions extending the concept of convex
function have been purposed by different researchers. The significant generaliza-
tion of a convex function is an invex function that preserves many properties of the
convex function. The notions of generalized invex function for differentiable func-
tions were introduced by Osuna-Gomez et al. [19] in a finite-dimensional space.
Using generalized Jacobian the generalized invex function has been extended to
Lipschitz functions. Further development on generalized invex function and their
application can be found in [18, 19, 21].

Recently, the class of invex functions has received a lot of interest, since it allows
us to relax the smoothness and convex function assumptions for practical applica-
tions. In 2013, Bhatia et al. [2] introduced four new classes of generalized approxi-
mate convex functions and established sufficient optimality conditions for quasi ef-
ficient solutions of a vector optimization problem involving these functions. Mishra
and Upadhyay [16] study the effort of [2, 8, 17] and consider a class of nonsmooth
vector optimization problems and two vector variational inequality problems. Cer-
tain relations between vector variational inequality problems and nonsmooth vector
optimization problems are recognized by using the quasi efficiency and generalized
approximate convexity hypotheses. Gupta and Mishra [10] gave the idea of gen-
eralized approximate convex functions and established some relationship between
vector variational inequalities and vector optimization problems in terms of Clarke’s
subdifferentials. Jennane et al. [12] formulate necessary and sufficient optimality
conditions based on Stampacchia and Minty types of vector variational inequalities
involving Clarke’s generalized Jacobians, and established the relationship between
local quasi weak efficient solutions and vector critical points. Joshi [13] considers
vector optimization problem involving locally Lipschitz generalized approximately
convex functions and formulate approximate (VVI) of Minty and Stampacchia type.

Motivated and inspired by the work of Gupta and Mishra [10], Jennane et al.
[12], Joshi [13], Mishra and Laha [15], we introduce a class of generalized approx-
imate invex function and establish some relationship between nonsmooth vector
variational inequality problems and nonsmooth vector optimization problems.

The rest sections of this paper are organized as follows:
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In section 2, we review some notions and definitions that will be used in this pa-
per. In section 3, we establish the relationship between vector variational inequal-
ities in the sense of Minty and Stampacchia and approximate efficient solutions of
the nonsmooth vector optimization problems by using generalized approximate in-
vex assumptions. Numerical examples to justify the main results have been shown
in section 4.

2. Preliminaries

In this section, we recall some notions of nonsmooth analysis. For more detail, see
[4]. Suppose Rn be the n-dimensional Euclidean space and Rn+ be its nonnegative
orthant. In the sequel, let X be a nonempty subset of Rn.
The following stipulation for equalities and inequalities will be used throughout this
paper. If x, y ∈ Rn, then
x ≤ y ⇔ xi ≤ yi, i = 1, 2, 3, ..., n with strict inequality holding for at least one i;
x ≤ y ⇔ xi ≤ yi, i = 1, 2, 3, ..., n;
x = y ⇔ xi = yi, i = 1, 2, 3, ..., n;
x < y ⇔ xi < yi, i = 1, 2, 3, ..., n.
Suppose X ⊆ Rn be a nonempty set, b : X ×X → R+, φ : R→ R be two functions
and η : X ×X → Rn be a continuous map. First of all, we recall some definitions.

Definition 2.1. A function f : X → R is said to be Lipschitz near x ∈ X if ,

‖f(y)− f(z)‖ ≤ k ‖y − z‖ ,
for some k > 0 and for all y, z within a neighborhood of x.

We say that f : X → R is Locally Lipschitz on X if it is Lipschitz near any point
of X.

Definition 2.2. Suppose f : X → R is Lipschitz at x ∈ X, the generalized deriva-
tive (in the sense of Clarke) of f at x ∈ X in the direction v ∈ Rn, is denoted by
f0(x, v) and is defined as

f0(x, v) = lim sup
y→x,λ→0

f(y + λv)− f(y)

λ
.

Definition 2.3. The Clarke’s subdifferential of f at x ∈ X is denoted by ∂f(x),
and is defined as follows:

∂f(x) = {ξ ∈ Rn : f0(x, v) ≥ 〈ξ, v〉 , for all v ∈ Rn}.
It follows that, for any v ∈ Rn

f0(x, v) = max{〈ξ, v〉 : ξ ∈ ∂f(x)}.

These definitions and properties can be extended to a locally Lipschitz vector-
valued function f : X → Rp. Denote by fi, i = 1, 2, 3, ..., p the components of f .
The Clarke generalized gradient of f at x ∈ X is the set ∂f(x) = ∂f1(x)×∂f2(x)×
∂f3(x)× ...× ∂fp(x).

Definition 2.4. [13] Suppose f : X → Rp be locally Lipschitz function on X, then
f is said to be approximate invex function at x0 ∈ X, if for all ε > 0, there exist
δ > 0 such that

f(x)− f(y) ≥ 〈ξ, η(x, y)〉 − e‖η(x, y)‖, ∀ ξ ∈ ∂f(y), x, y ∈ B(x0, δ),

where e = (ε, ε, ..., ε) ∈ intRp+
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The function f is said to be approximate invex on X, if the above condition is
satisfied for all x0 ∈ X.

Definition 2.5. Suppose f : X → Rp be locally Lipschitz function on X, then f is
said to be approximate pseudo-invex function of type I at x0 ∈ X, if for all ε > 0,
there exist δ > 0 such that, whenever x, y ∈ B(x0, δ) and if

〈ξ, η(x, y)〉 ≥ 0, for some ξ ∈ ∂f(y),

then

f(x)− f(y) ≥ −e‖η(x, y)‖.

Definition 2.6. Suppose f : X → Rp be locally Lipschitz function on X, then
f is said to be approximate pseudo-invex function of type II (strictly approximate
pseudo-invex function of type II) at x0 ∈ X, if for all ε > 0, there exist δ > 0 such
that, whenever x, y ∈ B(x0, δ) and if

〈ξ, η(x, y)〉+ e‖η(x, y)‖ ≥ 0, for some ξ ∈ ∂f(y),

then

f(x)− f(y) ≥ (>)0.

Definition 2.7. Suppose f : X → Rp be locally Lipschitz function on X, then f
is said to be approximate quasi-invex function of type I at x0 ∈ X, if for all ε > 0,
there exist δ > 0 such that, whenever x, y ∈ B(x0, δ) and if

f(x)− f(y) ≤ 0,

then

〈ξ, η(x, y)〉 − e‖η(x, y)‖ ≤ 0, ∀ ξ ∈ ∂f(y).

Definition 2.8. Suppose f : X → Rp be locally Lipschitz function on X, then f is
said to be approximate quasi-invex function of type II at x0 ∈ X, if for all ε > 0,
there exist δ > 0 such that, whenever x, y ∈ B(x0, δ) and if

f(x)− f(y) ≤ +e‖η(x, y)‖,
then

〈ξ, η(x, y)〉 ≤ 0, ∀ ξ ∈ ∂f(y).

3. Approximate Minty and Stampacchia Vector Variational
Inequalities

In this section, using generalized approximate invexity, we establish some re-
lationships between Minty and Stampacchia vector variational inequalities, and
nonsmooth vector optimization problems.

We consider the following nonsmooth vector optimization problem (for short,
V OP )

min {f(x) = (f1(x), f2(x), ..., fp(x))} such that x ∈ X,
where fi : X → R, i = 1, 2, 3, ..., p are non-differentiable locally Lipschitz functions
on X.

Definition 3.1. [16] Let f : X → Rp be a function. Then a point x0 ∈ X is said
to be:
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(i) efficient solution to the nonsmooth V OP , if there exists no y ∈ X such that
f(y) ≤ f(x0),

(ii) local weak efficient solution to the nonsmooth V OP , if there exists a δ > 0
such that the following inequality does not hold

f(y) < f(x0), ∀ y ∈ X ∩B(x0, δ).

Theorem 3.2. ([14]P.71, Theorem 5.1.3) Let f : X ⊆ Rn → Rp be a locally
Lipschitz at x0 ∈ X. If f attains its local minimum at x0, then 0 ∈ ∂f(x0).

Theorem 3.3. Let f : X ⊆ Rn → Rp be a locally Lipschitz and approximate
pseudo-invex of type II at x0 ∈ X. f attains its local minimum at x0 iff 0 ∈ ∂f(x0).

Proof. Suppose f attains its local minimum at x0, then by Theorem 3.2, we have
0 ∈ ∂f(x0).

On the other hand, if 0 ∈ ∂f(x0), then for every ε > 0 and x ∈ X, we have

〈ξ, η(x, x0)〉+ e‖η(x, x0)‖ = 〈0, η(x, x0)〉+ e‖η(x, x0)‖ ≥ 0,

where e = (ε, ε, . . . , ε)︸ ︷︷ ︸
p

∈ intRp+.

Using the definition of approximate pseudo-invex of type II, there exists a δ > 0
such that

f(x)− f(x0) ≥ 0, ∀ x ∈ X ∩B(x0, δ).

�

Joshi [13] introduced the following concepts of approximate efficient solutions,
which are beneficial when the existence of an efficient solution fails.

Definition 3.4. Let f : X → Rp be a function. A vector y ∈ X is said to be:

(i) approximate efficient solution of type I of the nonsmooth V OP , denoted by
(AES)1, iff for any e = (ε, ε, . . . , ε)︸ ︷︷ ︸

p

, ε > 0 sufficiently small, there does not

exist δ > 0 such that

f(x)− f(y) ≤ e‖η(x, y)‖, ∀ x ∈ B(y, δ) \ {y},
(ii) approximate efficient solution of type II of the nonsmooth V OP , denoted

by (AES)2, iff for any ε > 0 sufficiently small, there exist δ > 0 such that

f(x)− f(y) � e‖η(x, y)‖, ∀ x ∈ B(y, δ),

(iii) approximate efficient solution of type III of the nonsmooth V OP , denoted
by (AES)3, iff for any ε > 0 sufficiently small, there does not exist δ > 0
such that

f(x)− f(y) � −e‖η(x, y)‖, ∀ x ∈ B(y, δ).

The following vector variational inequality problems of Minty type involving
Clarke’s subdifferential introduced by Joshi [13], which will be used in the sequel
to characterize an approximate efficient solution of the nonsmooth V OP .
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(AMV V I)1 : Find x0 ∈ X such that, for any ε > 0 sufficiently small, there does
not exist δ > 0 such that

〈ξ, η(x, x0)〉 ≤ e‖η(x, x0)‖, ∀ x ∈ B(x0, δ) \ {x0}, ξ ∈ ∂f(x).

(AMV V I)2: Find x0 ∈ X such that, for any ε > 0 sufficiently small, there exist
δ > 0 such that

〈ξ, η(x, x0)〉 � e‖η(x, x0)‖, ∀ x ∈ B(x0, δ), ξ ∈ ∂f(x).

(AMV V I)3: Find x0 ∈ X such that, for any ε > 0 sufficiently small, there does
not exist δ > 0 such that

〈ξ, η(x, x0)〉 � −e‖η(x, x0)‖, ∀ x ∈ B(x0, δ), ξ ∈ ∂f(x).

The following theorem gives the conditions under which an (AES) of the V OP
is a solution of (AMV V I).

Theorem 3.5. Let f : X → Rp be a locally Lipschitz function and η : X×X → Rp
be such that η(x, y) = −η(y, x). Then

(i) If f is an approximate pseudo-invex of type II at x0 ∈ X and x0 is an
(AES)1 of the V OP , then x0 is also a solution of the (AMV V I)1.

(ii) If f is an approximate pseudo-invex of type II at x0 ∈ X and x0 is an
(AES)2 of the V OP , then x0 is also a solution of the (AMV V I)2.

(iii) If f is strictly approximate pseudo-invex of type II at x0 ∈ X and x0 is an
(AES)3 of the V OP , then x0 is also a solution of the (AMV V I)3.

Proof. (i) Suppose on the contrary that x0 is not a solution of the (AMV V I)1.

Then, for some ε > 0 sufficiently small, there exist δ̃ > 0 such that

〈ξ, η(x, x0)〉 ≤ e‖η(x, x0)‖, for all x ∈ B(x0, δ̃) and ξ ∈ ∂f(x),

where e = (ε, ε, . . . , ε)︸ ︷︷ ︸
p

∈ intRp+. We can write it as follows :

〈ξ, η(x0, x)〉+ e‖η(x0, x)‖ ≥ 0. (3.1)

Since f is approximate pseudo-invex function of type II at x0 ∈ X, it follows that
for every ε > 0, there exists δ̌ > 0 such that, whenever x, x0 ∈ B(x0, δ̌) and if

〈ξ, η(x0, x)〉+ e‖η(x0, x)‖ ≥ 0, for some ξ ∈ ∂f(x),

then

f(x)− f(x0) ≤ 0.

Using (3.1) and the definition of approximate pseudo-invex function of type II, and

by setting δ̂ = min{δ̃, δ̌}, we have

f(x)− f(x0) ≤ e‖η(x, x0)‖, for all x ∈ B(x0, δ̂) and ξ ∈ ∂f(x),

which is a contradiction that x0 is an (AES)1 of V OP .

(ii) Suppose on the contrary that x0 is not a solution of the (AMV V I)2. Then,

for some ε > 0 sufficiently small and for all δ̃ > 0, there exist x ∈ B(x0, δ̃) and
ξ ∈ ∂f(x) such that

〈ξ, η(x, x0)〉 ≤ e‖η(x, x0)‖,
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where e = (ε, ε, . . . , ε)︸ ︷︷ ︸
p

∈ intRp+. We can write it as follows :

〈ξ, η(x0, x)〉+ e‖η(x0, x)‖ ≥ 0. (3.2)

Since f is approximate pseudo-invex function of type II at x0 ∈ X, it follows that
for all ε > 0, there exists δ̌ > 0 such that, whenever x, x0 ∈ B(x0, δ̌) and if

〈ξ, η(x0, x)〉+ e‖η(x0, x)‖ ≥ 0, for some ξ ∈ ∂f(x),

then

f(x)− f(x0) ≤ 0.

Using (3.2) and the definition of approximate pseudo-invex function of type II, and

by setting δ̂ = min{δ̃, δ̌}, we have

f(x)− f(x0) ≤ e‖η(x, x0)‖, for some x ∈ B(x0, δ̂) and ξ ∈ ∂f(x),

which is a contradiction that x0 is an (AES)2 of V OP .

(iii) Suppose on the contrary that x0 is not a solution of the (AMV V I)3. Then,

for some ε > 0 and for all δ̃ > 0, we have

〈ξ, η(x, x0)〉 ≤ −e‖η(x, x0)‖ < e‖η(x, x0)‖, for all x ∈ B(x0, δ̃) and ξ ∈ ∂f(x),

where e = (ε, ε, . . . , ε)︸ ︷︷ ︸
p

∈ intRp+. We can write it as follows :

〈ξ, η(x0, x)〉+ e‖η(x0, x)‖ ≥ 0. (3.3)

Since f is strictly approximate pseudo-invex function of type II at x0 ∈ X, it follows
that for every ε > 0, there exist δ̌ > 0 such that, whenever x, x0 ∈ B(x0, δ̌) and if

〈ξ, η(x0, x)〉+ e‖η(x0, x)‖ ≥ 0, for some ξ ∈ ∂f(x),

then

f(x)− f(x0) < 0.

Using (3.3) and the definition of strictly approximate pseudo-invex function of type

II, and by setting δ̂ = min{δ̃, δ̌}, we have

f(x)− f(x0) < 0, for all x ∈ B(x0, δ̂) and ξ ∈ ∂f(x).

This implies there exists ε > 0 sufficiently small such that

f(x)− f(x0) ≤ −e‖η(x, x0)‖,

which is a contradiction that x0 is (AES)3 of V OP . �

Here we consider the approximate Stampacchia vector variational inequality
problems involving Clarke’s subdifferential introduced by Joshi [13] as follows:

(ASV V I)1: Find x0 ∈ X such that, for any ε > 0 sufficiently small, there exist
x ∈ X \ {x0} and ξ0 ∈ ∂f(x0) such that

〈ξ0, η(x, x0)〉 � e‖η(x, x0)‖.
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(ASV V I)2 : Find x0 ∈ X such that, for any ε > 0 sufficiently small, for every
x ∈ X and ξ0 ∈ ∂f(x0) such that

〈ξ0, η(x, x0)〉 � e‖η(x, x0)‖.

(ASV V I)3: Find x0 ∈ X such that, for any ε > 0, there exist δ > 0 such that

〈ξ0, η(x, x0)〉 � −e‖η(x, x0)‖ for all x ∈ B(x0, δ), ξ0 ∈ ∂f(x0).

The following theorem gives the conditions under which a solution of (ASV V I)
is (AES) of the V OP .

Theorem 3.6. Let f : X → Rp be a locally Lipschitz function. Then

(i) If f is an approximate quasi-invex of type II at x0 ∈ X and x0 is a solution
of (ASV V I)1, then x0 is also an (AES)1 of the V OP.

(ii) If f is an approximate quasi-invex of type II at x0 ∈ X and x0 is a solution
of (ASV V I)2, then x0 is also an (AES)2 of the V OP.

(iii) If f is an approximate pseudo-invex of type II at x0 ∈ X and x0 is a solution
of (ASV V I)3, then x0 is also an (AES)3 of the V OP .

Proof. (i) Suppose on the contrary that x0 is not an (AES)1 of the V OP . Then,

for some ε > 0 sufficiently small, there exists δ̃ > 0 such that

f(x)− f(x0) ≤ e‖η(x, x0)‖, for all x ∈ B(x0, δ̃), x 6= x0, (3.4)

where e = (ε, ε, . . . , ε)︸ ︷︷ ︸
p

∈ int Rp+.

Since f is approximate quasi-invex function of type II at x0 ∈ X, it follows that for
all ε > 0, there exist δ̌ > 0 such that, whenever x, x0 ∈ B(x0, δ̌) and if

f(x)− f(x0) ≤ e‖η(x, x0)‖,

then

〈ξ0, η(x, x0)〉 ≤ 0.

Using (3.4) and the definition of approximate quasi-invex function of type II, and

by setting δ̂ = min{δ̃, δ̌}, we have

〈ξ0, η(x, x0)〉 ≤ 0, for all x ∈ B(x0, δ̂), x 6= x0 and ξ0 ∈ ∂f(x0)

This implies, for ε > 0,

〈ξ0, η(x, x0)〉 ≤ e‖η(x, x0)‖,
for all x ∈ B(x0, δ̂), x 6= x0 and hence for all x ∈ X \{x0}, which is a contradiction
that x0 is a solution of (ASV )1.

(ii) Suppose that x0 is a solution of the (ASV )2. Then, for any ε > 0 sufficiently
small, for every x ∈ X and ξ0 ∈ ∂f(x0), we have

〈ξ0, η(x, x0)〉 � e‖η(x, x0)‖,

which implies

〈ξ0, η(x, x0)〉 � 0. (3.5)

Since f is approximate quasi-invex function of type II at x0 ∈ X, it follows that for
all ε > 0, there exist δ̌ > 0 such that, whenever x, x0 ∈ B(x0, δ̌) and if

f(x)− f(x0) ≤ e‖η(x, x0)‖,
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then
〈ξ0, η(x, x0)〉 ≤ 0.

Using (3.5) and the definition of approximate quasi-invex function of type II, it
follows that for x sufficiently close to x0, we have

f(x)− f(x0) � e‖η(x, x0)‖, for all x ∈ B(x0, δ̌) and x 6= x0.

Hence x0 is an (AES)2 of the V OP .

(iii) Suppose on the contrary that x0 is not an (AES)3 of the V OP . Then, for

some ε > 0, and for all δ̃ > 0, there exists x ∈ B(x0, δ̃) such that

f(x)− f(x0) ≤ −e‖η(x, x0)‖ < 0, (3.6)

where e = (ε, ε, . . . , ε)︸ ︷︷ ︸
p

∈ int Rp+.

Since f is approximate pseudo-invex function of type II at x0 ∈ X, it follows that
for all ε > 0, there exists δ̌ > 0 such that, whenever x, x0 ∈ B(x0, δ̌) and if

〈ξ0, η(x, x0)〉+ e‖η(x, x0)‖ ≥ 0, for some ξ0 ∈ ∂f(x0),

then
f(x)− f(x0) ≤ 0.

Using (3.6) and the definition of approximate pseudo-invexity of type II, and by

setting δ̂ = min{δ̃, δ̌}, we have

〈ξ0, η(x, x0)〉 < −e‖η(x, x0)‖, for some x ∈ B(x0, δ̂) and for all ξ0 ∈ ∂f(x0),

which is a contradiction that x0 is a solution of (ASV )3.
�

Remark. Under some suitable conditions, the implications of Theorem 3.5 and
Theorem 3.6 state that the solution of ASV V I is also a solution of AMV V I.

(i) If f is approximate quasi-invex of type II and approximate pseudo-invex of
type II at x0 ∈ X. Then, x0 ∈ X is a solution of (ASV V I)1 implies x0 is
a solution of (AMV V I)1.

(ii) If f is approximate quasi-invex of type II and approximate pseudo-invex of
type II at x0 ∈ X. Then, x0 ∈ X is a solution of (ASV V I)2 implies x0 is
a solution of (AMV V I)2.

(iii) If f is strictly approximate pseudo-invex of type II at x0 ∈ X. Then, x0 ∈ X
is a solution of (ASV V I)3 implies x0 is a solution of (AMV V I)3.

4. Numerical Example

The authenticity of the main results have been shown in the following example:

Example 4.1. Consider the V OP as follows:

min f(x) = (f1(x), f2(x)), subject to x ∈ R,
where

f1(x) =

{
x+ x2, if x ≥ 0,
2x, if x < 0,

and
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f2(x) =

{
2x− x2, if x ≥ 0,
3x, if x < 0.

The Clarke subdifferential of f1 and f2 at x are defined as follows:

∂f1(x) =

 1 + 2x, if x > 0,
[1, 2] , if x = 0,
2, if x < 0,

and

∂f2(x) =

 2− 2x, if x > 0,
[2, 3] , if x = 0,
3, if x < 0.

Let η : R× R→ R be a bifunction defined by η(x, y) = x− y.
For any 0 < e < 1, there exist δ > 0 such that for every x, y ∈ B(x0, δ), x0 =
0, ξ1 ∈ ∂f1(x), ξ1 ∈ ∂f2(x), we have

〈ξ1, η(x, y)〉+e‖η(x, y)‖ =



(1 + 2x)(x− y) + e‖x− y‖ > 0, if x > 0, y > 0, x− y > 0,
(1 + 2x)(x− y) + e‖x− y‖ < 0, if x > 0, y > 0, x− y < 0,
(1 + 2x)(x− y) + e‖x− y‖ < 0, if x < 0, y > 0,
2(x− y) + e‖x− y‖ > 0, if x > 0, y < 0,
2(x− y) + e‖x− y‖ > 0, if x < 0, y < 0, x− y > 0,
2(x− y) + e‖x− y‖ < 0, if x < 0, y < 0, x− y < 0,
r1(x− y) + e‖x− y‖ > 0, if y = 0, x > 0, r1 ∈ [1, 2] ,
r1(x− y) + e‖x− y‖ < 0, if y = 0, x < 0, r1 ∈ [1, 2]

and

〈ξ2, η(x, y)〉+e‖η(x, y)‖ =



(2− 2x)(x− y) + e‖x− y‖ > 0, if x > 0, y > 0, x− y > 0,
(2− 2x)(x− y) + e‖x− y‖ < 0, if x > 0, y > 0, x− y < 0,
(2− 2x)(x− y) + e‖x− y‖ < 0, if x < 0, y > 0,
3(x− y) + e‖x− y‖ > 0, if x > 0, y < 0,
3(x− y) + e‖x− y‖ > 0, if x < 0, y < 0, x− y > 0,
3(x− y) + e‖x− y‖ < 0, if x < 0, y < 0, x− y < 0,
r2(x− y) + e‖x− y‖ > 0, if y = 0, x > 0, r2 ∈ [2, 3] ,
r2(x− y) + e‖x− y‖ < 0, if y = 0, x < 0, r2 ∈ [2, 3] .

Also

f1(x)− f1(y) =


(x− y)(y + x+ 1), if x > 0, y > 0, x− y > 0,
x2 + x− 2y, if y < 0, x ≥ 0,
2(x− y), if x < 0, y < 0, x− y > 0,
x2 + x, if y = 0, x > 0,

> 0,

and

f2(x)− f2(y) =


(x− y)(2− x− y), if x > 0, y > 0, x− y > 0,
2x− x2 − 3y, if y < 0, x ≥ 0,
3(x− y), if x < 0, y < 0, x− y > 0,
2x− x2, if y = 0, x > 0.

≥ 0.
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Hence f = (f1, f2) is approximate pseudo-invex of type II at x0 = 0.

Since, for every x ∈ B(x0, δ), if x > 0, then

〈ξ01η(x, x0)〉+ e‖η(x, x0)‖ = r1x+ e‖x‖ > 0, r1 ∈ [1, 2] ,

and

〈ξ01η(x, x0)〉+ e‖η(x, x0)‖ = r2x+ e‖x‖ > 0, r2 ∈ [2, 3] .

That is, 〈ξ0, η(x, x0)〉+ e‖η(x, x0)‖ � 0.
Hence x0 = 0 is a solution of (ASV V I)3.

Since, for every ε > 0, there exist δ > 0 such that for every x ∈ B(x0, δ) and
x > 0, we have

f1(x)− f1(x0) + e‖η(x, x0)‖ = x+ x2 + e‖x‖ > 0,

and

f2(x)− f2(x0) + e‖η(x, x0)‖ = 2x− x2 + e‖x‖ > 0.

That is, f(x)− f(x0) + e‖η(x, x0)‖ � 0.
Hence x0 = 0 is an (AES)3 of the V OP .

Thus, Theorem 3.6 is verified.

Since, for every x ∈ B(x0, δ), if x > 0,

〈ξ1, η(x, x0)〉+ e‖η(x, x0)‖ = x+ x2 + e‖x‖ > 0,

and

〈ξ2, η(x0, x)〉+ e‖η(x, x0)‖ = 2x− 2x2 + e‖x‖ > 0.

That is, 〈ξ, η(x, x0)〉+ e‖η(x, x0)‖ � 0.

Hence x0 = 0 is a solution of (AMV V I)3. Thus, Theorem 3.5 is verified.

5. Conclusion

In this paper, using the concept of approximate pseudo-invex function of type
II and approximate quasi-invex function of type II, we established the relationship
between the solution of AMV V I and ASV V I to the approximate efficient solution
of the nonsmooth V OP by utilizing our results, we can establish some more rela-
tionships between the problems to approximate efficient solutions of the nonsmooth
VOP, which guarantees the novelty of our results.
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