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“ESS LIM INF” PROPERTY OF PLURISUPERHARMONIC

FUNCTIONS

MIKA KOSKENOJA

Abstract. We present an analytic approach to plurisuperharmonic functions

based on the Levi form in the sense of distributions in Cn. We observe that
the Sobolev space W 1,2

loc is a favourable function space to consider plurisu-

perharmonic functions. Using the distributional approach we derive several

properties of plurisuperharmonic functions, mostly well-known in pluripoten-
tial theory but deduced applying different methods. In particular, we show

that plurisuperharmonic functions satisfy so called “ess lim inf” property.

1. Introduction

The class of superharmonic functions consists of supersolutions to the Laplace
equation, that is, lower semicontinuous functions satisfying −∆u > 0 in a weak
sense. A natural function space to search weak supersolutions to the Laplace
equation is the Sobolev space W 1,2

loc , see [4]. It is compatible with the theory of
p-superharmonic functions in the case p = 2, see [5]. In pluripotential theory (po-
tential theory in several complex variables) a special subclass of superharmonic
functions, plurisuperharmonic functions are parallel to superharmonic functions,
originating to the work of Lelong [9, 10, 11]. The Levi form as well as the Monge–
Ampère operator correspond to the Laplace operator, and the Levi form can be
applied distributionally in a similar way to the Laplace operator.

From a measure theoretic point of view, ∆u behaves well and it is a regular Borel
measure whenever u is subharmonic. Contrary to this, the Monge–Ampère operator
(ddc)n cannot be well-defined as a regular Borel measure (ddcu)n for arbitrary
plurisubharmonic functions u in open subsets of Cn, see e.g. [6]. B locki studied this
problem in the early 2000’s. In the first paper [2] he proved the following result
in the case n = 2: for a plurisubharmonic function u the Monge–Ampère measure
(ddcu)n can be well-defined if and only if u belongs to the Sobolev space W 1,2

loc . In
a subsequent paper [3] he generalized the result for each n > 2.

These observations inspire us to consider W 1,2
loc -functions whose Levi form is

negative semidefinite in the sense of distributions. Corresponding considerations
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of distributional derivatives are standard in the space of L1
loc-functions, see e.g. [7,

Theorem 2.9.11], but in our study we restrict the space of admissible solutions. Our
proofs and justification of the results rely heavily on the corresponding results for
superharmonic functions and Laplace operator.

2. Preliminaries

Let Ω be a nonempty open subset of Cn, n > 1, and consider real-valued functions
in Ω. The class of Lebesgue integrable (1-integrable) functions in Ω is denoted by
L1(Ω). The corresponding local space L1

loc(Ω) is defined in the obvious manner: a

function u ∈ L1
loc(Ω) if and only if u ∈ L1(G) for each open set G b Ω (that is, G is

a compact subset of Ω). The support of a function u : Ω→ R, denoted by sptu, is
the smallest closed set such that u vanishes outside sptu. The classes of compactly
supported continuous and compactly supported infinitely smooth functions in Ω
are denoted by C0(Ω) and C∞0 (Ω), respectively.

Suppose that u, gj , hk, fjk ∈ L1
loc(Ω) for j, k = 1, . . . , n. We say that ∂ju =

∂u
∂zj

= gj weakly (or in the sense of distributions) in Ω if∫
Ω

u
∂ϕ

∂zj
dm = −

∫
Ω

gjϕdm (2.1)

for all ϕ ∈ C∞0 (Ω). Correspondingly, ∂ku = ∂u
∂z̄k

= hk weakly in Ω if∫
Ω

u
∂ϕ

∂z̄k
dm = −

∫
Ω

hkϕdm (2.2)

for all ϕ ∈ C∞0 (Ω). The functions gj and hk are called the weak first order partial

derivatives of u in Ω. Further, ∂j∂ku = ∂2u
∂zj∂z̄k

= fjk weakly in Ω if∫
Ω

u
∂2ϕ

∂zj∂z̄k
dm =

∫
Ω

fjkϕdm (2.3)

for all ϕ ∈ C∞0 (Ω). The functions fjk are called the weak second order partial
derivatives of u in Ω. Note that the previous definitions of the weak derivatives are
motivated by integration by parts, and this explains the signature in the formulas
(2.1), (2.2) and (2.3). In addition, we define that ∂u = g = (g1, . . . , gn), ∂u = h =
(h1, . . . , hn) and

∂∂u = f =

f11 · · · f1n

...
. . .

...
fn1 · · · fnn

 (2.4)

weakly in Ω if ∂ju = gj , ∂ku = hk and ∂j∂ku = fjk weakly in Ω for each j, k =
1, . . . , n.

The class of Lebesgue 2-integrable functions in Ω is denoted by L2(Ω). The
Sobolev space W 1,2(Ω) is defined as the space of functions u ∈ L2(Ω) whose weak
first order partial derivatives ∂ju and ∂ku exist and belong also to L2(Ω). The

corresponding local space W 1,2
loc (Ω) is defined again as follows: a function u ∈

W 1,2
loc (Ω) if and only if u ∈ W 1,2(G) for each open set G b Ω. The space W 1,2

0 (Ω)
is the closure of C∞0 (Ω) in W 1,2(Ω).
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The space L2(Ω) is equipped with a norm

‖u‖L2(Ω) =

(∫
Ω

|u|2 dm
) 1

2

, (2.5)

and

‖u‖W 1,2(Ω) = ‖u‖L2(Ω) +

n∑
j=1

(
‖∂ju‖L2(Ω) + ‖∂ju‖L2(Ω)

)
(2.6)

is the Sobolev norm of a function u ∈ W 1,2(Ω). The Sobolev spaces W 1,2(Ω) and

W 1,2
loc (Ω) are Banach spaces under the norm ‖ · ‖W 1,2(Ω). It is clear that these

definitions of the Sobolev spaces in Cn are parallel to the definitions of the Sobolev
spaces in R2n.

Recall next some terminology associated with the operators in the divergence
form, especially the Laplace operator. Suppose that Ω is still an open subset of Cn;
here Cn is identified to R2n. If a C1-function u : Ω→ R is regarded as a C1-function
that takes the real variables x1, y1, . . . , xn, yn to the real variable u, then we use
the standard notation

∂ju =
∂u

∂zj
=

1

2

(
∂u

∂xj
− i ∂u

∂yj

)
and ∂ju =

∂u

∂z̄j
=

1

2

(
∂u

∂xj
+ i

∂u

∂yj

)
,

where j = 1, . . . , n. The gradient of u is the vector

∇u = (∂1u, ∂2u, . . . , ∂2n−1u, ∂2nu) =

(
∂u

∂x1
,
∂u

∂y1
, . . . ,

∂u

∂xn
,
∂u

∂yn

)
. (2.7)

Suppose that u ∈ L1
loc(Ω). A function v = (v1, . . . , v2n) ∈ L1

loc(Ω) is the weak
gradient of u if ∫

Ω

u ∂jϕdm = −
∫

Ω

vj ϕdm (2.8)

for all ϕ ∈ C∞0 (Ω) and j = 1, 2, . . . , 2n. Then we denote v = ∇u.
The Laplace operator ∆ = ∇ · ∇ = div∇ is of order 2 and in the divergence

form. By Weyl’s lemma every weak solution u of the Laplace equation −∆u = 0 is
a smooth solution. Therefore it is justified to define the class of harmonic functions
as a subclass of twice differentiable functions: A real-valued function h ∈ C2(Ω) is
said to be harmonic in Ω if it satisfies the homogeneous Laplace equation

∆h =

n∑
j=1

(
∂2h

∂x2
j

+
∂2h

∂y2
j

)
= 4

n∑
j=1

∂2h

∂zj∂z̄j
= 0 in Ω. (2.9)

A function u : Ω→ (−∞,∞] is called superharmonic in Ω if

(i) u is lower semicontinuous in Ω,
(ii) u 6≡ ∞ in any component of Ω, and

(iii) for each open G b Ω the comparison principle holds: if h ∈ C(G) is
harmonic in G and u|∂G > h|∂G, then u > h in G.

A function v is called subharmonic in Ω if −v is superharmonic in Ω. It is well-
known that a function u ∈ C2(Ω) is superharmonic if −∆u > 0 in Ω.
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3. Elementary definitions and results for the distributional
approach

A set Ω is any open nonempty subset of Cn as always in this paper.

Definition 3.1. A function u : Ω→ (−∞,∞] is called plurisuperharmonic in Ω if

(i) u is lower semicontinuous in Ω,
(ii) u is not identically ∞ on any component of Ω, and
(iii) for each z ∈ Ω and w ∈ Cn, the function λ 7−→ u(z+λw) is superharmonic

or identically ∞ on every component of the set {λ ∈ C : z + λw ∈ Ω}.
A function v : Ω→ [−∞,∞) is called plurisubharmonic in Ω if −v is plurisuper-

harmonic in Ω. Moreover, a function u ∈ C2(Ω) is said to be pluriharmonic in Ω
if

∂2u

∂zj∂z̄k
= 0 in Ω

for all j, k = 1, . . . , n.
Recall that the Levi form of a function u ∈ C2(Ω) at z ∈ Ω is the Hermitian

form

〈Lu(z)b, c〉 =

n∑
j,k=1

∂2u

∂zj∂z̄k
(z)bjck, (3.1)

where b, c ∈ Cn. It is well-known that a function u ∈ C2(Ω) is plurisuperharmonic
in Ω if −〈Lu(z)b, b〉 is positive semidefinite in Ω, i.e.,

− 〈Lu(z)b, b〉 = −
n∑

j,k=1

∂2u

∂zj∂z̄k
(z)bjbk > 0 (3.2)

for all z ∈ Ω and b ∈ Cn. Note that −〈Lu(z)b, b〉 > 0 is equivalent to 〈Lu(z)b, b〉 6 0
for z ∈ Ω and b ∈ Cn, end hence we say that the Levi form of u is negative
semidefinite in Ω.

Definition 3.2. A function u ∈W 1,2
loc (Ω) satisfies

− 〈Lu(z)b, c〉 = −
n∑

j,k=1

∂2u

∂zj∂z̄k
(z)bjck > 0 (3.3)

weakly in Ω for b, c ∈ Cn if∫
Ω

n∑
j,k=1

(
∂ku∂jϕ+ ∂ju∂kϕ

)
bjck dm > 0 (3.4)

whenever ϕ ∈ C∞0 (Ω) is a nonnegative test function. If u ∈W 1,2
loc (Ω) and −〈Lu(z)b, b〉 >

0 weakly in Ω for all b ∈ Cn, then the Levi form of u is said to be negative semi-
definite in the sense of distributions in Ω.

Remark. Suppose that u ∈ C2(Ω). If ϕ ∈ C∞0 (Ω) is nonnegative and b ∈ Cn, then
integration by parts gives∫

Ω

n∑
j,k=1

(
∂ku(z)∂jϕ(z) + ∂ju(z)∂kϕ(z)

)
bjbk dm(z) = −2

∫
Ω

〈Lu(z)b, b〉ϕ(z) dm(z)

which is nonnegative for each b ∈ Cn if and only if −〈Lu(z)b, b〉 > 0 for each z ∈ Ω
and b ∈ Cn. This is a condition for a twice continuously differentiable function to
be plurisuperharmonic, indeed.
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A function u ∈W 1,2
loc (Ω) satisfies the equation

− ∂j∂ku− ∂k∂ju = 0 (3.5)

weakly in Ω for j, k = 1, . . . , n if∫
Ω

(
∂ku∂jϕ+ ∂ju∂kϕ

)
dm = 0 (3.6)

whenever ϕ ∈ C∞0 (Ω). In addition, a function u ∈ W 1,2
loc (Ω) is a (weak) supersolu-

tion of the equation (3.5) in Ω if∫
Ω

(
∂ku∂jϕ+ ∂ju∂kϕ

)
dm > 0 (3.7)

whenever ϕ ∈ C∞0 (Ω) is nonnegative. Then we may write that

− ∂j∂ku− ∂k∂ju > 0 (3.8)

weakly in Ω for j, k = 1, . . . , n.
Functions having the Levi form negative semidefinite in the sense of distributions

are weak supersolutions of the equation (3.5):

Lemma 3.3. If the Levi form of u ∈W 1,2
loc (Ω) is negative semidefinite in the sense

of distributions in Ω, then

−∂j∂ku− ∂k∂ju > 0

weakly in Ω for all j, k = 1, . . . , n.

Proof. Let ϕ ∈ C∞0 (Ω) be a nonnegative test function and fix j, k ∈ {1, . . . , n}.
Choose b ∈ Cn such that bj = bk = 1 and bl = 0 for each l 6= j, k. Since
−〈Lu(z)b, b〉 > 0 weakly for all z ∈ Ω and b ∈ Cn, we have∫

Ω

(
∂ku∂jϕ+ ∂ju∂kϕ

)
dm =

∫
Ω

n∑
j,k=1

(
∂ku∂jϕ+ ∂ju∂kϕ

)
bjbk dm > 0. �

Next theorem and its corollary state the relations between weak supersolutions
of the Laplace equation and functions whose Levi form is negative semidefinite in
the sense of distributions.

Theorem 3.4. If the Levi form of u ∈ W 1,2
loc (Ω) is negative semidefinite in the

sense of distributions in Ω, then u is a weak supersolution of the Laplace equation
in Ω.

Proof. Let ϕ ∈ C∞0 (Ω) be a nonnegative test function. Now

∂ju∂jϕ =
1

4

(
∂u

∂xj

∂ϕ

∂xj
− i
(
∂u

∂xj

∂ϕ

∂yj
− ∂u

∂yj

∂ϕ

∂xj

)
+
∂u

∂yj

∂ϕ

∂yj

)
and

∂ju∂jϕ =
1

4

(
∂u

∂xj

∂ϕ

∂xj
+ i

(
∂u

∂xj

∂ϕ

∂yj
− ∂u

∂yj

∂ϕ

∂xj

)
+
∂u

∂yj

∂ϕ

∂yj

)
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for each j = 1, . . . , n. This yields by Lemma 3.3 and Fubini’s theorem that∫
Ω

∇u · ∇ϕdm =

∫
Ω

n∑
j=1

(
∂u

∂xj

∂ϕ

∂xj
+
∂u

∂yj

∂ϕ

∂yj

)
dm =

∫
Ω

n∑
j=1

2
(
∂ju∂jϕ+ ∂ju∂jϕ

)
dm

= 2

n∑
j=1

∫
Ω

(
∂ju∂jϕ+ ∂ju∂jϕ

)
dm > 0.

�

Corollary 3.5. If u ∈ W 1,2
loc (Ω) satisfies the equation (3.5) weakly in Ω for all

j, k = 1, . . . , n, then u is a weak solution to the Laplace equation in Ω.

In the end of this section we consider pointwise behavior of functions whose Levi
form is negative semidefinite in the sense of distributions. Let u : Ω → R ∪ {±∞}
be a function, and denote

A = {λ ∈ R : u(z) > λ for almost every z ∈ Ω}.

If A 6= ∅, then u is said to be essentially bounded below. The essential lower bound
of u in Ω is defined by

ess inf u = supA. (3.9)

If A = ∅, then ess inf u = −∞, and if A is not bounded above, then ess inf u = +∞.
Hence the essential lower bound is always defined. Further, we set

ess lim inf
w→z

u(w) = lim
r→0

essinfw∈B(z,r) u(w). (3.10)

Then for a lower semicontinuous function

u(z) 6 lim inf
w→z

u(w) 6 ess lim inf
w→z

u(w),

and if a function u : Ω→ R ∪ {+∞} satisfies

u(z) = ess lim inf
w→z

u(z)

for all z ∈ Ω, then u is lower semicontinuous.

Theorem 3.6. Suppose that the Levi form of u ∈W 1,2
loc (Ω) is negative semidefinite

in the sense of distributions in Ω. Then u is locally essentially bounded below and
there is a lower semicontinuous representative of u such that

u(z) = ess lim inf
w→z

u(w) (3.11)

for each z ∈ Ω.

Proof. In view of Theorem 3.4, the result follows from the same result for superso-
lutions of the Laplace equation, see [5, Theorem 3.63]. �

Next theorem states an important convergence result.

Theorem 3.7. Suppose that (ui) is an increasing and locally bounded sequence

of functions in W 1,2
loc (Ω). If the Levi form of every ui is negative semidefinite in

the sense of distributions in Ω, then the same is true for the limit function u =
limi→∞ ui.
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Proof. According to Theorem 3.6 we may suppose that every ui is lower semicontin-
uous and satisfies the “ess lim inf” property (3.11). Fix an open set D b Ω. Then
we know that u ∈ W 1,2(D). Moreover, again in view of Theorem 3.4, ∂kui → ∂ku
and ∂jui → ∂ju weakly in L2(D), see [5, Theorem 3.75]. Suppose now that b ∈ Cn

and ϕ ∈ C∞0 (Ω) is a nonnegative test function such that sptϕ ⊂ D. Then

0 6
∫

Ω

n∑
j,k=1

(
∂kui∂jϕ+ ∂jui∂kϕ

)
bjbk dm =

n∑
j,k=1

∫
D

(
∂kui∂jϕ+ ∂jui∂kϕ

)
bjbk dm

→
n∑

j,k=1

∫
D

(
∂ku∂jϕ+ ∂ju∂kϕ

)
bjbk dm =

∫
Ω

n∑
j,k=1

(
∂ku∂jϕ+ ∂ju∂kϕ

)
bjbk dm.

Hence the Levi form of u is negative semidefinite in the sense of distributions in
Ω. �

Remark. Regarding Theorem 3.7, the same conclusion holds if we assume that
the limit function u belongs to W 1,2

loc (Ω) instead of the sequence (ui) being locally
bounded.

4. Plurisuperharmonic functions and Levi form in the sense of
distributions

In this section we study relationship between the Levi form in the sense of
distributions and plurisuperharmonic functions. It will turn out that plurisuper-
harmonicity can be characterized in terms of negative semidefinite Levi form in the
sense of distributions.

Theorem 4.1. Suppose that the Levi form of u ∈W 1,2
loc (Ω) is negative semidefinite

in the sense of distributions in Ω. If

u(z) = ess lim inf
w→z

u(w) (4.1)

for each z ∈ Ω, then u is plurisuperharmonic in Ω.

Proof. Since u is locally essentially bounded below by Theorem 3.6, u > −∞. The
lower semicontinuity of u follows from (4.1), and u 6≡ ∞ on every component of Ω

because it belongs to W 1,2
loc (Ω).

Let ε > 0 and choose a usual ε-mollifier ηε in Cn. Let the convolution

uε(z) = ηε ∗ u(z) =

∫
Cn

ηε(z − w)u(w) dm(z)

be the usual ε-mollification of u defined in

Ωε = {z ∈ Ω: dist(z, ∂Ω) > ε},

see [12, Section 1.6]. Then uε ∈ C∞(Ωε). Because the Levi form of u is negative
semidefinite in the sense of distributions in Ω, Fubini’s theorem gives

−
∫

Ω

〈Luε(z)b, b〉ϕ(z) dm(z) > 0

for all b ∈ Cn and nonnegative ϕ ∈ C∞0 (Ωε). This implies that −〈Luε(z)b, b〉 > 0
for each b ∈ Cn and z ∈ Ωε, and hence uε is plurisuperharmonic in Ωε.

We know that u is a supersolution of the Laplace equation in Ω (Theorem 3.4),
and thus by [5, Theorem 7.16], u is superharmonic in Ω. Hence uε decreases with
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decreasing ε and limε→0 uε = u pointwise in Ω. Thus the limit function u is pluri-
superharmonic in Ω. �

Next result follows now from Theorem 3.6 and Theorem 4.1.

Corollary 4.2. If the Levi form of u ∈ W 1,2
loc (Ω) is negative semidefinite in the

sense of distributions in Ω, then there is a plurisuperharmonic function v in Ω such
that v = u almost everywhere in Ω.

Theorem 4.3. If u is plurisuperharmonic in Ω and locally bounded above, then u ∈
W 1,2

loc (Ω) and the Levi form of u is negative semidefinite in the sense of distributions
in Ω.

Proof. Since plurisuperhamonic functions are superharmonic, we have u ∈W 1,2
loc (Ω)

by [5, Corollary 7.20]. Moreover, Theorem 3.7 implies that the Levi form of u is
negative semidefinite in the sense of distributions in Ω. �

It is essential to assume in the previous theorem that u is locally bounded above.
This is because there exist plurisuperharmonic functions which do not belong to
W 1,2

loc (Ω), see [6].

Corollary 4.4. If a plurisuperharmonic function u belongs to W 1,2
loc (Ω), then the

Levi form of u is negative semidefinite in the sense of distributions in Ω.

Proof. By Remark 3 the result is obtained if we apply Corollary 4.3 to the plurisu-
perharmonic functions ui = min(u, i), i = 1, 2, . . .. �

Theorem 4.5. If u is a plurisuperharmonic function in Ω, then

u(z) = ess lim inf
w→z

u(w)

for each z ∈ Ω.

Proof. Since plurisuperharmonic functions are superharmonic, the result follows
from [5, Theorem 7.22]. �

Corollary 4.6. If the Levi form of u ∈ W 1,2
loc (Ω) is negative semidefinite in the

sense of distributions in Ω, then a plurisuperharmonic representative of u is unique.

Proof. The result follows from Corollary 4.2 and Theorem 4.5. �

Corollary 4.7. Suppose that u and v are plurisuperharmonic functions in Ω. If
u = v almost everywhere in Ω, then u(z) = v(z) for all z ∈ Ω.

Proof. The result follows from Theorem 4.5. �

As a final comment, the most properties of plurisuperharmonic functions pre-
sented in this section belong to the standard literature in pluripotential theory, but
the methods to deduce the results are different than usually.
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