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RELATION-THEORETIC COUPLED FIXED POINT THEOREMS

FARUK SK, FAIZAN AHMAD KHAN*, QAMRUL HAQ KHAN

Abstract. In this paper, we introduce mixedR-monotone property of a map-

ping and utilize the same to investigate existence and uniqueness of coupled

fixed points in a metric space endowed with a binary relation R. Moreover, we
present some coupled fixed point results for mappings without mixed mono-

tone property using relation-theoretic approach. Our results generalize some

well-known coupled fixed points theorems. Further, we give some illustrative
examples in support of our results.

1. Introduction

In 1922, S. Banach [3] proved a fundamental result in metric fixed point theory
called Banach contraction principle (BCP) which states that “every contraction
mapping in complete metric space has a unique fixed point”. Several researchers
generalized this result in various directions. In 1986, Turinici [29] reported fixed
point theorems in ordered metric spaces. Coupled fixed points (in short, CFP) was
introduced by Opoitsev, see [21, 22, 23] and it is further studied by Guo et al.[11].
CFP theorems made a vital chapter in metric fixed theory in recent times.

Definition 1.1. [10] Consider (M,�) as a partial ordered set. Then a mapping
F :M×M→M is said to satisfy mixed monotone property(in short, MMP) if

ξ1 � ξ2 =⇒ F(ξ1, η) � F(ξ2, η) ∀ξ1, ξ2, η ∈M

and

η1 � η2 =⇒ F(ξ, η2) � F(ξ, η1) ∀η1, η2, ξ ∈M.

In 2006, Bhaskar and Lakshmikantham [10] proved the following result concerning
a contractive type condition:

Theorem 1.2. [10] Consider a continuous mapping F : M×M → M on a com-
plete ordered metric space (M, d,�) with the following hypotheses :

(a) F satisfies mixed monotone property,
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(b) there exist ξ0, η0 ∈ M such that

ξ0 � F(ξ0, η0) and η0 � F(η0, ξ0),

(c) there eists k ∈ [0, 1) with

d(F(ξ, η),F(r, s)) ≤ k

2
[d(ξ, r) + d(η, s)] ∀ ξ � r, η � s.

Then F has coupled fixed points.

Using variants of the mixed monotone condition, many authors established nu-
merous CFP theorems in partial ordered metric spaces, which are useful in applied
mathematics, see [6, 12, 13, 15, 18, 24, 26]. Two elements ξ, η in a partial ordered
set (M,�) is said to be comparable if ξ � η or η � ξ. We denote it by ξ � η.
In 2012, Doric et al.[8] established the following result without mixed monotone
property:

Theorem 1.3. [8] Let (M, d,�) a complete partial ordered metric space and F :
M×M→M be a mapping. Suppose that the following conditions hold:

(a) for all ξ, η, s ∈M if ξ � F(ξ, η) then F(ξ, η) � F(F(ξ, η), s),
(b) there exist ξ0, η0 ∈M such that ξ0 � F(ξ0, η0) and η0 � F(η0, ξ0),
(c) there exists k ∈ [0, 1) such that

d(F(ξ, η),F(r, s)) ≤ k max{d(ξ, r), d(η, s)}

for all ξ, η, r, s ∈M satisfying ξ � r and η � s,
(d) F is continuous or if ξn → ξ when n → ∞ inM, then ξn � ξ for n sufficiently

large.

Then F has a coupled fixed point.

This paper aims to introduce the concept of mixed R-monotone property of a
mapping and prove coupled fixed point theorems for such mappings in a complete
metric space endowed with a binary relation R. Also, we investigate existence and
uniqueness of coupled fixed points for mappings without mixed monotone property
in a complete metric space endowed with a binary relation R. Further, we give
examples to substantiate the usefulness of our findings where existing results cannot
be applied.

2. Preliminaries

We will go over some basic definitions in this section, which will be needed to run
our primary findings. We refer to N ∪ {0} as N0 in the whole paper.

Definition 2.1. [10, 7] Consider the mapping F : M×M → M, where M is a
nonempty set. Then an element (ξ, η) is said to be “coupled fixed point”(in short,
CFP) if

F(ξ, η) = ξ and F(η, ξ) = η.

A coupled fixed point (ξ, η) is said to be a strong CFP if ξ = η.

Definition 2.2. [17] Let M 6= ∅ be a set. A “binary relation” is a subset R of
M2. The subsets, M2 and ∅ of M2 are termed as “universal relation” & “empty
relation” respectively.
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Definition 2.3. [1] Let M 6= ∅ be a set with a binary relation R. If either
(ξ, η) ∈ R or (η, ξ) ∈ R for ξ, η ∈ M, then ξ and η are called as R-comparative.
[ξ, η] ∈ R is the notion for it.

Definition 2.4. [17, 20, 9, 27, 28, 25] Let M 6= ∅ be a set with a binary relation
R. Then, the relation R is called

(a) “amorphous” if R has no precise attribute,
(b) “reflexive” if (ξ, ξ) ∈ R ∀ ξ ∈M,
(c) “symmetric” if (ξ, η) ∈ R =⇒ (η, ξ) ∈ R,
(d) “anti-symmetric” if (ξ, η) ∈ R and (η, ξ) ∈ R =⇒ ξ = η,
(e) “transitive” if (ξ, η) ∈ R and (η, w) ∈ R =⇒ (ξ, w) ∈ R,
(f) “partial order” if R is “reflexive”, “anti-symmetric” and “transitive”.

Definition 2.5. [17] Let R be a binary relation on a set M 6= ∅. Then,

R−1 = {(ξ, η) ∈M2 : (η, ξ) ∈ R} and Rs = R∪R−1.

Proposition 2.6. [1] For a binary relation R defined on a non-empty set M,

(ξ, η) ∈ Rs =⇒ [ξ, η] ∈ R.

Definition 2.7. [1] LetM 6= ∅ be a set with a binary relation R. A sequence {ξk}
⊂ M is called R-preserving if

(ξk, ξk+1) ∈ R ∀ k ∈ K0.

Definition 2.8. [1] Let M 6= ∅ be a set with a metric d together with a binary

relationR. Consider theR-preserving sequence {ξk} ⊂ M such that ξk
d−→ ξ. Then,

R is called “d-self-closed” if there exists a subsequence {ξkp} of {ξk} with [ξkp , ξ] ∈
R ∀ p ∈ K0.

Definition 2.9. [2] Let M be a nonempty set and R a binary relation on M.
Then, S ⊆ M is called “R-directed” if for each ξ, η ∈ S, there exists ρ ∈ M such
that (ξ, ρ) ∈ R and (η, ρ) ∈ R.

Definition 2.10. [14] Let R be a binary relation defined on a nonempty set M.
Then, for ξ, η ∈ M, a finite sequence {ξ0, ξ1, ..., ξp} ⊂ M satisfying the following
conditions:

• (ξ`, ξ`+1) ∈ R for each ` (0 ≤ ` ≤ p− 1),
• ξ0 = ξ and ξp = η,

is said to be a path of length p in R from ξ to η.

Definition 2.11. [2] LetM 6= ∅ be a set equipped with a binary relation R. Then,
S ⊆ M is called “R-connected” if for each ξ, η ∈ M, there exist a path in R from
ξ to η.

Inspired by Bhaskar and Lakshmikantham, we introduce a relation-theoretic vari-
ant of mixed monotone property as follows:

Definition 2.12. Let M 6= ∅ be a set equipped with a binary relation R. Then a
mapping F :M×M→M is said to have a mixed R-monotone property if

(ξ1, ξ2) ∈ R =⇒ (F(ξ1, η),F(ξ2, η)) ∈ R ∀ξ1, ξ2, η ∈M
and

(η1, η2) ∈ R =⇒ (F(ξ, η2),F(ξ, η1)) ∈ R ∀η1, η2, ξ ∈M.
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Note that if a mapping F satisfies mixed monotone property then it automati-
cally satisfies mixed R-monotone property, but not conversely.

Example 2.13. Let M = [1, 4] be a partial ordered set with usual partial order.
Consider the function F :M×M→M given by

F(ξ, η) =

{
2 if ξ ∈ {2, 4}
4 otherwise.

Notice that F(1, 2) ≥ F(2, 2) but 1 ≤ 2. So, F does not satisfy MMP. Now take
a binary relation R on M defined by

R = {(2, 4), (4, 2), (2, 2), (4, 4)}.

Then, F satisfy the conditions of Definition 2.12. Hence, F satisfies mixed R-
monotone property.

3. Coupled fixed point theorems with mixed R-monotone property

In this section, we give some results on the existence and uniqueness of CFPs
for a mapping with mixed R-monotone property.

Theorem 3.1. Let (M, d) be a complete metric space endowed with a transitive
binary relation R on M and let F :M×M→M be a mapping. Suppose that the
following conditions hold:

(a) there exist ξ0, η0 ∈ M such that (ξ0,F(ξ0, η0)) ∈ R and (F(η0, ξ0), η0) ∈ R,
(b) F satisfies mixed R-monotone property,
(c) either F is continuous or R is “d-self-closed”,
(d) there exist k ∈ [0, 1) such that

d(F(ξ, η),F(r, s)) ≤ k max{d(ξ, r), d(η, s)}

for all ξ, η, r, s ∈ M with (r, ξ) ∈ R and (η, s) ∈ R.

Then F has a CFP.

Proof. Assumption (a) confirms the availability of ξ0, η0 ∈M such that

(ξ0,F(ξ0, η0)) ∈ R and (F(η0, ξ0), η0) ∈ R. (3.1)

Suppose F(ξ0, η0) = ξ1 and F(η0, ξ0) = η1. Then we can choose ξ2, η2 ∈ M such
that F(ξ1, η1) = ξ2 and F(η1, ξ1) = η2. We denote

F2(ξ0, η0) = F(F(ξ0, η0),F(η0, ξ0)) = F(ξ1, η1) = ξ2

F2(η0, ξ0) = F(F(η0, ξ0),F(ξ0, η0)) = F(η1, ξ1) = η2.

In a similar manner, we develop inductively sequences {ξn} and {ηn} such that

ξn = Fn(ξ0, η0) and ηn = Fn(η0, ξ0). (3.2)

Now, we will show that

(ξn, ξn+1) ∈ R and (ηn+1, ηn) ∈ R ∀ n ∈ N0. (3.3)

Now, mathematical induction is to be used to prove this fact.
From (3.1), (ξ0, ξ1) ∈ R and (η1, η0) ∈ R. So, (3.3) is true for n = 0. Suppose that
for t > 0,

(ξt, ξt+1) ∈ R and (ηt+1, ηt) ∈ R.
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Now, we confirm that (3.3) remains true for n = t+ 1 also.
Since (ξt, ξt+1) ∈ R, using assumption (b) we get,

(F(ξt, ηt),F(ξt+1, ηt+1)) ∈ R

=⇒ (F(F t(ξ0, η0),F t(η0, ξ0)),F(F t+1(ξ0, η0),F t+1(η0, ξ0))) ∈ R

=⇒ (F t+1(ξ0, η0),F t+2(ξ0, η0)) ∈ R

=⇒ (ξt+1, ξt+2) ∈ R.

Similarly, we can show (ηr+2, ηr+1) ∈ R. Hence, (3.3) holds for all n ∈ N0. Now,
using assumption (d), we get

d(ξn+1, ξn) = d(Fn+1(ξ0, η0),Fn(ξ0, η0))

= d(F(Fn(ξ0, η0),Fn(η0, ξ0)),F(Fn−1(ξ0, η0),Fn−1(η0, ξ0)))

≤ k max{d(Fn(ξ0, η0),Fn−1(ξ0, η0)), d(Fn(η0, ξ0),Fn−1(η0, ξ0))}
...

≤ kn max{d(F(ξ0, η0), ξ0), d(F(η0, ξ0), η0))}.

Similarly,

d(ηn+1, ηn) ≤ kn max{d(F(η0, ξ0), η0), d(F(ξ0, η0), ξ0))}.

For m > n, we obtain

d(ξn, ξm) ≤ d(ξn, ξn+1) + d(ξn+1, ξn+2) + ....+ d(ξm−1, ξm)

≤ (kn + kn+1 + ...+ km−1) max{d(F(ξ0, η0), ξ0), d(F(η0, ξ0), η0)}

=
kn

1− k
max{d(F(ξ0, η0), ξ0), d(F(η0, ξ0), η0)}

→ 0, when n,m→∞.

Therefore, {ξn} is a Cauchy sequence. Similarly, the sequence {ηn} is also a Cauchy.
Completeness of M affirms the availability of ξ, η ∈M such that

lim
n→∞

ξn = ξ and lim
n→∞

ηn = η

which means that,

lim
n→∞

Fn(ξ0, η0) = ξ and lim
n→∞

Fn(η0, ξ0) = η.

Now, let ε > 0. Since F is continuous at (ξ, η), for a given ε
2 > 0, there exist a

δ > 0 such that max{d(ξ, r), d(η, s)} < δ implies

d(F(ξ, η),F(r, s)) <
ε

2
.

Since {Fn(ξ0, η0)} → ξ and {Fn(η0, ξ0)} → η, for ε
′

= min( ε2 ,
δ
2 ) > 0, there exists

n0,m0 such that for n ≥ n0, m ≥ m0,

d(Fn(ξ0, η0), ξ) < ε
′

and d(Fm(η0, ξ0), η) < ε
′
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Now, for n ∈ N, n ≥ max{n0,m0},
d(F(ξ, η), ξ) ≤ d(F(ξ, η),Fn+1(ξ0, η0)) + d(Fn+1(ξ0, η0), ξ)

= d(F(ξ, η),F(Fn(ξ0, η0),Fn(η0, ξ0))) + d(Fn+1(ξ0, η0), ξ)

<
ε

2
+ ε

′

≤ ε.

This proves that F(ξ, η) = ξ. In this manner, we obtain F(η, ξ) = η.
Alternately, since {ξn} converges to ξ, then by assumption (c), there exists a sub-
sequence {ξnk

} of {ξn} such that

[ξnk
, ξ] ∈ R ∀ k ∈ N0. (3.4)

Similarly, for the sequence {ηn}, there exists a subsequence {ηnk
} of {ηn} satisfying

[ηnk
, η] ∈ R ∀ k ∈ N0. (3.5)

Let ε > 0. Since {Fn(ξ0, η0)} → ξ and {Fn(η0, ξ0)} → η, there exists n1 ∈ N,
n2 ∈ N such that ,

d(Fn(ξ0, η0), ξ) <
ε

2
and d(Fm(η0, ξ0), η) <

ε

2

for all n ≥ n1 and m ≥ n2. Taking n ∈ N, n ≥ max{n1, n2} and using (3.4) and
(3.5), we obtain

d(F(ξ, η), ξ) ≤ d(F(ξ, η),Fnk+1(ξ0, η0)) + d(Fnk+1(ξ0, η0), ξ)

= d(F(ξ, η),F(Fnk(ξ0, η0),Fnk(η0, ξ0))) + d(Fnk+1(ξ0, η0), ξ)

≤ k max{d(ξ,Fnk(ξ0, η0)), d(η,Fnk(η0, ξ0))}+ d(Fnk+1(ξ0, η0), ξ)

<
ε

2
+
ε

2
= ε.

This insinuates that F(ξ, η) = ξ. In the same manner, we obtain that F(η, ξ) = η
which ends the proof. �

The above theorem only guarantees the existence of coupled fixed points. For
uniqueness, we require an additional condition to be hold. This is the purpose of
the next theorem.

Theorem 3.2. In addition to the conditions of Theorem 3.1, assume that

(e) F(M2) is “Rs-connected”.

Then F has a unique CFP.

Proof. Theorem 3.1 confirms us the availability of at least one coupled fixed point.
Suppose that (ξ, η), (ξ∗, η∗) are two CFPs of F . Then we have,

F(ξ, η) = ξ ; F(η, ξ) = η and F(ξ∗, η∗) = ξ∗ ; F(η∗, ξ∗) = η∗

We show that ξ = ξ∗ and η = η∗. By assumption (e), there exist a path {ρ0, ρ1, ......, ρk1}
of length k1 in Rs from ξ to ξ∗ so that

ρ0 = ξ, ρk1 = ξ∗, [ρi, ρi+1] ∈ R ∀ i (0 ≤ i ≤ k1 − 1).

Similarly, there exist a path {ρ′

0, ρ
′

1, ......, ρ
′

k2
} of length k2 in Rs from η to η∗ so

that

ρ
′

0 = η, ρ
′

k2 = η∗, [ρ
′

i, ρ
′

i+1] ∈ R ∀ i (0 ≤ i ≤ k2 − 1).
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Using assumption (b) we get,

[Fn(ρi, ρ
′

i),Fn(ρi+1, ρ
′

i+1)] ∈ R ∀ i (0 ≤ i ≤ k1 − 1) and ∀ n ∈ N

and

[Fn(ρ
′

i, ρi),Fn(ρ
′

i+1, ρi+1)] ∈ R ∀ i (0 ≤ i ≤ k2 − 1) and ∀ n ∈ N.

For m = min{k1, k2},

d(ξ, ξ∗) = d(Fn(ρ0, ρ
′

0),Fn(ρk1 , ρ
′

k2)) (3.6)

≤
m−1∑
i=0

d(Fn(ρi, ρ
′

i),Fn(ρi+1, ρ
′

i+1))

≤ kn
m−1∑
i=0

[d(ρi, ρi+1) + d(ρ
′

i, ρ
′

i+1)]

→ 0 as n →∞

Hence, ξ = ξ∗. Similarly, we can show that η = η∗. Therefore, F has a unique
CFP. �

Corollary 3.3. Theorem 3.2 conveys the same if we utilize the below condition
instead of using condition (e).

(e′) F(M2) is “Rs-directed”.

Proof. Suppose (e′) holds. Then for each ρ, σ ∈ F(M2), there exists µ ∈ M such
that [ρ, µ] ∈ R and [µ, σ] ∈ R, which means there exists a path {ρ, σ, µ} of length
2. Then, from Theorem 3.2, the conclusion is immediate. �

Corollary 3.4. Along with the conditions of Theorem 3.1, if for terms of the
sequences {ξn}, {ηn} defined by ξn = Fn(ξ0, η0) and ηn = Fn(η0, ξ0), [ξn, ηn] ∈ R
for n sufficiently large, then F will have a strong coupled fixed point.

Proof. We need to only show that ξ = η. Suppose that [ξn, ηn] ∈ R for n sufficiently
large. Notice that

d(F(ξn, ηn),F(ηn, ξn)) ≤ k max{d(ξn, ηn), d(ηn, ξn)}
= kd(ξn, ηn),

i.e.,

d(F(ξn, ηn),F(ηn, ξn)) ≤ kd(ξn, ηn).

By triangle inequality, we have

d(ξ, η) ≤ d(ξ, ξn+1) + d(ξn+1, ηn+1) + d(ηn+1, η)

= d(ξ, ξn+1) + d(F(ξn, ηn),F(ηn, ξn)) + d(ηn+1, η)

≤ d(ξ, ξn+1) + k max{d(ξn, ηn), d(ηn, ξn)}+ d(ηn+1, η)

= d(ξ, ξn+1) + kd(ξn, ηn) + d(ηn+1, η).

Now when we tend n to∞, we get ξn → ξ and ηn → η, implying thereby d(ξn, ηn)→
d(ξ, η).
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Therefore,

d(ξ, η) ≤ d(ξ, ξ) + kd(ξ, η) + d(η, η)

≤ kd(ξ, η)

(1− k)d(ξ, η) ≤ 0

d(ξ, η) ≤ 0

Hence, d(ξ, η) = 0 which gives ξ = η. �

Remark 3.5. Notice that for l,m ≥ 0 and l +m < 1, we have

ld(x, u) +md(y, v) ≤ max{d(ξ, r), d(η, s)}.
So, Theorem 3.1 stands valid if the right-hand side of condition (d) in Theorem

3.1 is replaced by ld(x, u) + md(y, v), where x, y, u, v ∈ M, for some l,m ≥ 0,
l + m < 1, which reduces to the contractive condition of Theorem 1.2 if l = m.
Therefore, using a particular binary relation R = {(ξ, η) ∈ M×M : ξ ≤ η} with
the metric space M in Theorem 3.1, we can obtain Theorem 1.2.

Example 3.6. LetM = [1, 4] be a complete partial ordered set with usual metric
d and endowed with partial order ≤. Now, define F :M×M→M by

F(ξ, η) =

{
2 if ξ ∈ {2, 4}
4 otherwise.

Notice that we cannot use the mixed monotone property of F , since 1 ≤ 2 but
F(1, 2) ≥ F(2, 2). So, we cannot apply the existing Theorem 1.2 in this case. Now,
consider the metric space (M, d) endowed with the binary relation given by

R = {(2, 4), (4, 2), (2, 2), (4, 4)}.
By routine calculation, we obtain the following

(a) for 2, 4 ∈M, (2,F(2, 4)) ∈ R and (F(4, 2), 4) ∈ R,
(b) F satisfies mixed R-monotone property,
(c) R is d-self-closed,
(d) for k = 1

2 , we have

d(F(ξ, η),F(r, s)) ≤ kmax{d(ξ, r), d(η, s)}
for all ξ, η, r, s ∈M such that (r, ξ) ∈ R and (η, s) ∈ R,

(e) F(M2) is Rs connected.

Now, applying Theorem 3.2, we confirm that F has a unique CFP (namely, (2, 2)).

4. Coupled fixed point theorems without mixed monotone property

Inspired by Doric et al.[8], we present CFP theorems for mappings without MMP
in a complete metric space endowed with a binary relation R.

Theorem 4.1. Let (M, d) be a complete metric space endowed with a binary re-
lation R on M, and F :M×M→M be a mapping. Suppose that the following
conditions hold:

(a) there exist ξ0, η0 ∈ M such that [ξ0,F(ξ0, η0)] ∈ R and [η0,F(η0, ξ0)] ∈ R,
(b) for all ξ, η, s ∈ M, if [ξ,F(ξ, η)] ∈ R then [F(ξ, η),F(F(ξ, η), v)] ∈ R,
(c) either F is continuous or if ξn → ξ in M, then there exist a subsequence {ξnk

}
of {ξn} such that [ξnk

, ξ] ∀ n ∈ N0,
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(d) there exist k ∈ [0, 1) such that

d(F(ξ, η),F(r, s)) ≤ k max{d(ξ, r), d(η, s)}

for all ξ, η, r, s ∈ M with [ξ, r] ∈ R and [s, η] ∈ R.
Then F has a CFP.

Proof. Assumption (a) confirms the availability of ξ0, η0 ∈M such that

[ξ0,F(ξ0, η0)] ∈ R and [η0,F(η0, ξ0)] ∈ R. (4.1)

On similar consideration in Theorem 3.1, we have

ξn = Fn(ξ0, η0) and ηn = Fn(η0, ξ0). (4.2)

Now, we will show that

[ξn, ξn+1] ∈ R and [ηn, ηn+1] ∈ R ∀ n ∈ N0. (4.3)

Now, mathematical induction is to be used to prove this fact.
From (4.1) we get, [ξ0, ξ1] ∈ R and [η0, η1] ∈ R.
Now, suppose

[ξt, ξt+1] ∈ R and [ηt, ηt+1] ∈ R.

Now we have to show that (4.3) holds for n = t+ 1 also.
From (4.2) we get,

[ξt, ξt+1] = [F t(ξ0, η0), F t+1(ξ0, η0)] ∈ R.

Then by assumption (b),

[F t+1(ξ0, η0),F(F t+1(ξ0, η0),F t+1(η0, ξ0))] ∈ R

=⇒ [F t+1(ξ0, η0),F t+2(ξ0, η0)] ∈ R

=⇒ [ξt+1, ξt+2] ∈ R.

Hence, (4.3) is true for n = t+ 1 also. Thus, [ξn, ξn+1] ∈ R. Similarly, we can show
that [ηn, ηn+1] ∈ R. Now, in a similar process as in Theorem 3.1, we can claim
that F has a CFP. �

Now, we prove that the CFPs in Theorem 4.1 is in fact unique under some
additional conditions. This is the purpose of our next theorem. To do this, for the
given binary relation R on M, we equip the set M×M with the binary relation
R′ given by

“((ξ, η), (ξ′, η′)) ∈ R′ ⇐⇒ (ξ, ξ′) ∈ R and (η′, η) ∈ R”

Theorem 4.2. Suppose that Theorem 4.1 satisfy the following condition addition-
ally:
(e) for any two elements (ξ, η), (ξ∗, η∗) ∈ M ×M, there exists (ρ, σ) ∈ M ×M
such that

(i) [(F(ρ, σ),F(σ, ρ)), (F(ξ, η),F(η, ξ))] ∈ R′,
(ii) [(F(ρ, σ),F(σ, ρ)), (F(ξ∗, η∗),F(η∗, ξ∗))] ∈ R′.

Then F has a unique CFP.
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Proof. Suppose that (ξ, η) and (ξ∗, η∗) are two CFPs of F . We need to show that
ξ = ξ∗ and η = η∗. By assumption (e), there exists (ρ, σ) ∈M×M such that

[(F(ρ, σ),F(σ, ρ)), (F(ξ, η),F(η, ξ))] ∈ R′,

[(F(ρ, σ),F(σ, ρ)), (F(ξ∗, η∗),F(η∗, ξ∗))] ∈ R′.
Using the same lines as in Theorem 3.1, we can construct sequences {ρn}, {σn}
such that ρn = Fn(ρ0, σ0) and σn = Fn(σ0, ρ0) where ρ0 = ρ and σ0 = σ. Also,
considering ξ0 = ξ, η0 = η, we can construct sequences {ξn}, {ηn} such that

ξn = Fn(ξ0, η0) ; ηn = Fn(η0, ξ0).

Since [(F(ρ, σ),F(σ, ρ)), (F(ξ, η),F(η, ξ))] ∈ R′, we have

[(F(ρ0, σ0),F(σ0, ρ0)), (ξ, η)] ∈ R′

which gives [(ρ1, σ1), (ξ, η)] ∈ R′, i.e. [ξ, ρ1] ∈ R and [η, σ1] ∈ R. In a similar
process, [ξ, ρn] ∈ R and [η, σn] ∈ R. Now, using assumption (d), we get

d(ξ, ρn) = d(F(ξ, η),Fn(ρ0, σ0))

= d(F(ξ, η),F(Fn−1(ρ0, σ0),Fn−1(σ0, ρ0)))

≤ kmax{d(ξ,Fn−1(ρ0, σ0)), d(η,Fn−1(σ0, ρ0))}
= kmax{d(ξ, ρn−1), d(η, σn−1)}

d(η, σn) = d(F(η, ξ),Fn(σ0, ρ0))

= d(F(η, ξ),F(Fn−1(σ0, ρ0),Fn−1(ρ0, σ0)))

≤ kmax{d(η,Fn−1(σ0, ρ0)), d(ξ,Fn−1(ρ0, σ0))}
= kmax{d(η, σn−1), d(ξ, ρn−1)}.

Hence, max{d(ξ, ρn), d(η, σn)} ≤ kmax{d(ξ, ρn−1), d(η, σn−1)},
and by induction

max{d(ξ, ρn), d(η, σn)} ≤ kn max{d(ξ, ρ0), d(η, σ0)}.

Now, when we tend n to ∞, we get

lim
n→∞

d(ξ, ρn) = 0 ; lim
n→∞

d(η, σn) = 0.

Similarly, we can get

lim
n→∞

d(ξ∗, ρn) = 0 ; lim
n→∞

d(η∗, σn) = 0.

Using triangle inequality on the above four relations, we get ξ = ξ∗ and η = η∗.
Therefore, F has a unique CFP. �

Now we will use an example to demonstrate the importance of our results in a
situation where we can’t use the previous ones.

Example 4.3. Let M = R with usual metric. Now, equip M with the binary
relation R = {(ξ, η) ∈ R× R : ξ < η}. Consider a mapping F : M×M →M by

F(ξ, η) =
ξ

7
+
η

9
.

Here, R is not a partial order. Moreover, F does not satisfy MMP. So, Theorem 1.2
and Theorem 1.3 cannot be utilized here to comment on the availability of CFPs
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of the mapping.
Now,

d(F(ξ, η),F(r, s)) =

∣∣∣∣ξ7 +
η

9
− r

7
− s

9

∣∣∣∣
=

∣∣∣∣17(ξ − r) +
1

9
(η − s)

∣∣∣∣
≤ 1

7
(| ξ − r | + | η − s |)

≤ 2

7
max{| ξ − r |, | η − s |}

=
2

7
max{d(ξ, r), d(η, s)}.

So, the contractive condition of Theorem 4.1 is satisfied with k = 2
7 . Also, all the

hypotheses of Theorem 4.1 and Theorem 4.2 are met. Hence, we can conclude that
F has a unique CFP which is (0, 0).
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