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A GENERAL AND OPTIMAL DECAY RESULT FOR A

VISCOELASTIC EQUATION WITH A STRONG TIME

DEPENDENT DELAY

HAMDAN AL SULAIMANI, KHALEEL ANAYA, CYRIL DENNIS ENYI, SOH EDWIN
MUKIAWA

Abstract. In this paper, we establish an optimal and general decay result
for the energy of a viscoelastic equation exhibiting a strong time-dependent
delay. This is achieved by considering a minimal condition on the relaxation
function g. The exponential and polynomial decay rates are obtained as special
cases.The theoretical computations are supported with a numerical analysis of
the problem under consideration. This work extends and generalizes some

recent results in the literature.

1. Introduction

In this work, we consider the following problem






utt −∆u+

∫ t

0

g(t− s)∆u(s)ds− µ1∆ut − µ2∆ut(·, t− τ(t)) = 0,

in Ω× (0,+∞),

u|
∂Ω

= 0, u|
t=0

= u0, ut|t=0
= u1,

ut(x, t) = f0(x, t), t ∈ [−τ(0), 0), x ∈ Ω,

(1.1)

where Ω is a bounded domain of Rn, n ≥ 1, with a smooth boundary ∂Ω, µ1, µ2 are
constants, τ(t) > 0 is the time-dependent delay and g is the relaxation function to
be specified. In the past decade, various researchers have studied the effect of delay
damping in the wave equation. For instance, Nacaise and Pignotti [17] considered
the following delay equation with internal feedback

utt −∆u+ a(x)[µ1ut + µ2ut(t− τ)] = 0 (1.2)

and established an exponential decay result when 0 < µ2 < µ1. Nacaise and Pignotti
[18, 19] investigated an abstract evolution equation and established similar results
as in [17]. Kafini et al. [10] looked at the nonlinear wave equation

utt +Au+G(ut) + µG(ut(t− τ)) = F (u) (1.3)

and proved that under suitable conditions, solutions blow up in finite time. For
wave equation with strong delay, Messaoudi et al. [15] considered

utt −∆u− µ1∆ut − µ2∆ut(t− τ) = 0 (1.4)
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and established a well posedness and exponential stability result. Liu [12] looked
at the time-dependent delay equation

utt −∆u+

∫ t

0

g(t− s)∆u(s)ds+ µ1ut + µ2ut(t− τ(t)) = 0 (1.5)

and proved a general decay result when |µ2| <
√
1− dµ1. The decay result in

[12] was improved by Dia and Yang [5] under weaker conditions on the relaxation
function. Kirane and Said- Houari [11] investigated the delay equation

utt −∆u+

∫ t

0

g(t− s)∆u(s)ds+ µ1ut + µ2ut(t− τ) = 0 (1.6)

and established the well-posedness as well as a general decay estimate when 0 <
µ2 ≤ µ1. In [9], Feng investigated a wave equation similar to (1.6), however with
strong time dependent delay term and viscoelastic memory, that is

utt −∆u+

∫ t

0

g(t− s)∆u(s)ds+ µ1∆ut + µ2∆ut(t− τ(t)) = 0. (1.7)

The well posedness of equation (1.7) was established, furthermore, an exponential
stability result for the associated energy functional was proved, under the assump-
tion that |µ2| <

√
1− dµ1 holds. Benaissa et al.[3] studied the delay equation

utt −∆u+

∫ t

0

h(t− s)∆u(s)ds+ µ1g1(ut) + µ2g2(ut(t− τ)) = 0 (1.8)

and proved the well-posedness in addition to a general decay result for the cor-
responding energy functional. Liu and Zhang [14] looked at the nonlinear wave
equation with infinite memory and delay

utt − α∆u+

∫ t

−∞

µ(t− s)∆u(s)ds+ µ1ut + µ2ut(t− τ) + f(u) = h (1.9)

and established the well-posedness without any restrictions on µ1 and µ2. Moreover,
they showed that the energy functional decay exponentially when 0 < |µ2| < µ1.
Alabau-Boussouira et al. [1] studied the nonlinear wave equation

utt −∆u+

∫ +∞

0

g(s)∆u(t− s)ds+ kut(t− τ) = 0 (1.10)

and proved that the equation is exponentially stable for k small enough. For more
related results concerning the wave equation with a weak time delay term under
appropriate assumption on µ1 and µ2, we refer the reader to Mukiawa [7], Enyi and
Mukiawa [8], Benaissa et al. [4], Datko et al.[6], Liu [13], Nicaise and Valein [20, 21]
and references therein.

Remark. The problem (1.1) we considered in this paper is an improvement and
generalization over the problem (1.7) of Feng [9]. This is obvious because if in
particular, we take M to be the identity map in our assumption (A2) (2.3) for
the kernel g in the finite memory term, we get the assumption (1.2) of Feng [9].
Furthermore, we have presented a numerical analysis of the problem to validate our
theoretical analysis, this was also lacking in the work of Feng [9].

This work is organized as follows: In Section 2, we set the problem and state some
basic assumptions. In Section 3, we present some strategic lemmas needed. Again,
in section 4 we state and prove our main results. Also, section 5 is devoted to giving
numerical results concerning our considered problem. Finally, in section 6 we give
a conclusion statement.
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2. Setting of the problem

We consider the following problem






utt −∆u+

∫ t

0

g(t− s)∆u(s)ds− µ1∆ut − µ2∆ut(·, t− τ(t)) = 0,

in Ω× (0,+∞),

u|
∂Ω

= 0, u|
t=0

= u0, ut|t=0
= u1,

ut(x, t) = f0(x, t), t ∈ [−τ(0), 0), x ∈ Ω,

(2.1)

where Ω is a bounded domain of Rn, n ≥ 1, with smooth boundary ∂Ω.

Assumptions:

(A1) The relaxation function g : [0,∞) → (0,∞) is a C1 increasing function and
satisfies

g(0) > 0, 1−
∫

∞

0

g(s)ds = l > 0. (2.2)

(A2) There exists a C1−function M : [0,∞) → (0,∞), which is either linear or
is a strictly increasing and strictly convex C2 function on [0, α], α > 0,
α ≤ g(0), with M(0) =M ′(0) = 0, such that

g′(t) ≤ −ξ(t)M(g(t)), ∀t ≥ 0, (2.3)

where ξ is a positive nonincreasing differentiable function.
(A3) There exist τ0, τ1 > 0 such that

0 < τ0 ≤ τ(t) ≤ τ1, ∀t > 0, (2.4)

(A4)
τ(t) ∈W 2,∞(0, T ) and τ ′(t) ≤ d < 1, ∀t, T > 0. (2.5)

We can deduce from (A1) and (A2) the following:

(I) From (A1), it follows that lim
t→∞

g(t) = 0. Thus, there exists t0 ≥ 0 large

enough, such that

g(t0) = α and g(t0) ≤ α, ∀t ≥ t0. (2.6)

(II) Since g and ξ are positive, nonincreasing and continuous functions, in ad-
dition to M being a positive continuous function, it follows that, for all
t ∈ [0, t0],

0 < g(t0) ≤ g(t) ≤ g(0)

0 < ξ(t0) ≤ ξ(t) ≤ ξ(0)

}

⇒ a ≤ ξ(t)M(g(t)) ≤ b

for some positive constants a and b. Hence,

g′(t) ≤ −ξ(t)M(g(t)) ≤ − a

g(0)
g(0) ≤ − a

g(0)
g(t), ∀t ∈ [0, t0]. (2.7)

(III) M has an extension M , which is a strictly increasing and strictly convex
C2 function on (0,∞). As an example, given that M(α) = a1, M

′(α) = a2
and M ′′(α) = a3, then we can define M by

M(t) =
a3
2
t2 + (a2 − a3α)t+

(

a1 +
a3
2
α2 − a2α

)

, ∀t > α. (2.8)

We will as well make use of the Jensen’s inequality:

Given that G is a convex function on [a, b], f : Ω → [a, b] and h are integrable
functions on Ω, h(x) ≥ 0, and

∫

Ω
h(x)dx = ̺ > 0, then

G

[
1

̺

∫

Ω

f(x)h(x)dx

]

≤ 1

̺

∫

Ω

G[f(x)]h(x)dx.
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We have the following well-possedness result, which is obtained by using the Clas-
sical Faedo-Galerkin method, see , e.g [15].

Theorem 2.1. Assume that µ2 ≤ µ1 and assumptions (A1)-(A4) hold. If (u0, u1) ∈
H1

0 (Ω) × L2(Ω) and f0 ∈ H1(Ω × (−τ(0), 0)), then (2.1) possesses a unique weak
solution (u, ut) ∈ C([0,+∞), H1

0 (Ω)× L2(Ω)).

3. Strategic lemmas

For convenience, we will denote the norm ‖ · ‖2 of the Lebesgue space L2(Ω) by
‖ · ‖. The constants c > 0 and C > 0 are generic constants which may change
in value from one line to the other or within the same line. We define the energy
functional of problem (2.1) as

E(t) =
1

2
‖ut‖2 +

1

2

(

1−
∫ t

0

g(s)ds

)

‖∇u(t)‖2 + 1

2
(g ◦ ∇u)

+
ζ

2

∫ t

t−τ(t)

∫

Ω

e−λ(t−s)‖∇ut(s)‖2dxds,
(3.1)

where ζ, λ > 0 are constants satisfying, (see [9, 18])

µ2
2e

λτ1

µ1(1− d)
< ζ < µ1. (3.2)

and

0 < λ <
2

τ1
loge

(
µ1

|µ2|
√
1− d

)

, (3.3)

while

(g ◦ v)(t) =
∫

Ω

∫ t

0

g(t− s)|v(t)− v(s)|2dsdx.

Lemma 3.1. Assume that |µ2| < µ1

√
1− d, then the energy functional satisfies,

along with the solution of Problem (2.1), the inequality

E′(t) ≤ 1

2
(g′ ◦ ∇u)− 1

2
g(t)‖∇u‖2 +

(
ζ

2
− µ1

2

)

‖∇ut‖2

+

[
µ2
2

2µ1
− ζ

2
e−λτ1(1 − d)

]

‖∇ut(t− τ(t))‖2

− λζ

2

∫ t

t−τ(t)

∫

Ω

e−λ(t−s)‖∇ut(s)‖2dxds ≤ 0, ∀t ≥ 0. (3.4)

Proof. Differentiating the energy functional, we have

E′(t) =

∫

Ω

ututtdx+
1

2

d

dt

[(

1−
∫ t

0

g(s)ds

)∫

Ω

|∇u(t)|2dx
]

+
1

2

d

dt
(g ◦ ∇u)

+
ζ

2
‖∇ut‖2 −

ζ

2
e−λτ(t)(1− τ ′(t))‖∇ut(t− τ(t))‖2

− λζ

2

∫ t

t−τ(t)

∫

Ω

e−λ(t−s)‖∇ut(s)‖2dxds. (3.5)

Also, multiplying (2.1)1 by ut and integrating over Ω yields
∫

Ω

ututtdx+
1

2

d

dt

[(

1−
∫ t

0

g(s)ds

)∫

Ω

|∇u(t)|2dx
]

+
1

2

d

dt
(g ◦ ∇u)

=
1

2
(g′ ◦ ∇u)− 1

2
g(t)

∫

Ω

|∇u(t)|2dx− µ1

∫

Ω

|∇ut(t)|2

− µ2

∫

Ω

∇ut(t) · ∇ut(t− τ(t))dx. (3.6)
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By Young’s inequality, we have

− µ2

∫

Ω

∇ut(t) · ∇ut(t− τ(t))dx ≤ µ1

2
‖∇ut‖2 +

µ2
2

2µ1
‖∇u(t− τ(t))‖2. (3.7)

Now, substituting (3.6) into (3.5), then making use of (3.7), assumptions (A3) and
(A4), we obtain

E′(t) ≤ 1

2
(g′ ◦ ∇u)− 1

2
g(t)‖∇u‖2 +

(
ζ

2
− µ1

2

)

‖∇ut‖2

+

[
µ2
2

2µ1
− ζ

2
e−λτ1(1 − d)

]

‖∇ut(t− τ(t))‖2

− λζ

2

∫ t

t−τ(t)

∫

Ω

e−λ(t−s)‖∇ut(s)‖2dxds. (3.8)

Therefore (3.4) follows from (3.8) and (3.2). �

Lemma 3.2. Let u be the solution of Problem (2.1). The functional defined by

Φ(t) =

∫

Ω

uutdx, (3.9)

satisfies

Φ′(t) ≤− l

2
‖∇u‖2 + ‖ut‖2 +

3µ1

2l
‖∇ut‖2 +

3µ2

2l
‖∇ut(t− τ(t))‖2

+
3Cκ

2l
(η ◦ ∇u)(t),

(3.10)

for any κ ∈ (0, 1), where

Cκ =

∫
∞

0

g2(s)

κg(s)− g′(s)
ds and η(t) = κg(t)− g′(t). (3.11)

Proof. From (3.9), by taking into account (2.1)1, (2.2) and Young’s inequality, we
obtain

Φ′(t) =‖ut‖2 − ‖∇u‖2 −
∫

Ω

u

(∫ t

0

g(t− s)∆u(s)ds

)

dx− µ1

∫

Ω

∇u · ∇utdx

− µ2

∫

Ω

∇u · ∇ut(t− τ(t))dx

=‖ut‖2 −
(

1−
∫ t

0

g(s)ds

)

‖∇u‖2 +
∫

Ω

∇u ·
(∫ t

0

g(t− s)(∇u(s) −∇u(t))ds
)

dx

− µ1

∫

Ω

∇u · ∇utdx− µ2

∫

Ω

∇u · ∇ut(t− τ(t))dx

≤− l

2
‖∇u‖2 + ‖ut‖2 +

3µ1

2l
‖∇ut‖2 +

3µ2

2l
‖∇ut(t− τ(t))‖2

+
3

2l

∫

Ω

(∫ t

0

g(t− s)|∇u(s)−∇u(t)|ds
)2

dx. (3.12)

Now, using Cauchy-Schwarz inequality, we obtain
∫

Ω

(∫ t

0

g(t− s)|∇u(s)−∇u(t)|ds
)2

dx

=

∫

Ω

(
∫ t

0

g(t− s)
√

κg(t− s)− g′(t− s)

√

κg(t− s)− g′(t− s)|∇u(s)−∇u(t)|ds
)2

dx

≤
(∫ t

0

g2(s)

κg(s)− g′(s)
ds

)∫

Ω

∫ t

0

(

κg(t− s)− g′(t− s)

)

|∇u(s)−∇u(t)|2dsdx

≤ Cκ(η ◦ ∇u)(t). (3.13)
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Substituting (3.13) into (3.12), we get (3.10). �

Lemma 3.3. Let u be the solution of Problem (2.1). The functional defined by

Ψ(t) = −
∫

Ω

ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx, (3.14)

satisfies

Ψ′(t) ≤−
(∫ t

0

g(s)− σ

)

‖ut‖2 + σ‖∇u‖2 + σ‖∇ut‖2 + σ‖∇ut(t− τ(t))‖2

+
C0

σ
(Cκ + 1)(η ◦ ∇u)(t),

(3.15)

for any σ ∈ (0, 1).

Proof. Using (2.1)1 and integration by parts, we obtain

Ψ′(t) =

(

1−
∫ t

0

g(s)ds

)∫

Ω

∇u ·
(∫ t

0

g(t− s)
(
∇u(t)−∇u(s)

)
ds

)

dx

︸ ︷︷ ︸

I1

+

∫

Ω

(∫ t

0

g(t− s)
(
∇u(t)−∇u(s)

)
ds

)2

ds

︸ ︷︷ ︸

I2

−
(∫ t

0

g(s)ds

)∫

Ω

u2tdx

+ µ1

∫

Ω

∇ut ·
(∫ t

0

g(t− s)
(
∇u(t)−∇u(s)

)
ds

)

︸ ︷︷ ︸

I3

+ µ2

∫

Ω

∇ut(t− τ(t)) ·
(∫ t

0

g(t− s)
(
∇u(t)−∇u(s)

)
ds

)

dx

︸ ︷︷ ︸

I4

−
∫

Ω

ut

(∫ t

0

g′(t− s)
(
u(t)− u(s)

)
ds

)

dx

︸ ︷︷ ︸

I5

.

(3.16)
Using Young’s inequality, Poincaré’s inequality, Cauchy-Schwatz inequality and sim-
ilar calculations as in (3.13), we estimate the terms I1 − I5 as follows:

I1 ≤σ‖∇u‖2 + Cκ

4σ
(η ◦ ∇u)(t)

I2 ≤Cκ(η ◦ ∇u)(t)

I3 ≤σ‖∇ut‖2 +
µ2
1

4σ
Cκ(η ◦ ∇u)(t)

I4 ≤σ‖∇ut(t− τ(t))‖2 + µ2
2

4σ
Cκ(η ◦ ∇u)(t)

I5 =

∫

Ω

ut

∫ t

0

η(t− s)
(
u(t)− u(s)

)
dsdx−

∫

Ω

ut

∫ t

0

κg(t− s)
(
u(t)− u(s)

)
dsdx

≤σ‖ut‖2 +

(∫ t

0 η(s)ds
)

σ
(η ◦ ∇u)(t) + κ2

2σ
Cκ(η ◦ ∇u)(t)

≤σ‖ut‖2 +
c

σ
(η ◦ ∇u)(t) + c

σ
Cκ(η ◦ ∇u)(t).
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Now, making use of the estimates above on I1 − I5, (3.16) yields

Ψ′(t) ≤−
(∫ t

0

g(s)ds− σ

)

‖ut‖2 + σ‖∇u‖2 + σ‖∇ut‖2 + σ‖∇ut(t− τ(t))‖2

+
1

σ

[
Cκ

4
+ σCκ +

µ2
1Cκ

4
+
µ2
2Cκ

4
+ c(1 + Cκ)

]

(η ◦ ∇u)(t).
(3.17)

Estimate (3.15) follows from (3.17), where C0 ≥ max

{
1

4
, σ,

µ2
1

4
,
µ2
2

4
, c

}

. �

Lemma 3.4. Let u be the solution of Problem (2.1). The functional defined by

Θ(t) =

∫

Ω

∫ t

0

h(t− s)|∇u(s)|2dsdx, (3.18)

where h(t) =
∫
∞

t
g(s)ds satisfies

Θ′(t) ≤ −3

4
(g ◦ ∇u)(t) + 5(1− l)‖∇u‖2. (3.19)

Proof. We notice that h′(t) = −g(t), therefore

Θ′(t) =h(0)

∫

Ω

|∇u|2dx−
∫

Ω

∫ t

0

g(t− s)|∇u(s)|2dsdx

≤h(0)‖∇u‖2 −
∫

Ω

∫ t

0

g(t− s)|∇u(s)−∇u(t)|2dsdx

− 2

∫

Ω

∇u(t) ·
∫ t

0

g(t− s)
(
∇u(s)−∇u(t)

)
dsdx. (3.20)

It follows from Young’s inequality, Cauchy-Schwatz inequality as well as (2.2), we
have






− 2

∫

Ω

∇u(t) ·
∫ t

0

g(t− s)
(
∇u(s)−∇u(t)

)
dsdx ≤ 4(1− l)‖∇u‖2 + 1

4
(g ◦ ∇u)(t),

h(0) = 1− l,

then substituting this in (3.20), we obtain (3.19). �

Lemma 3.5. Given t0 > 0. Then, the functional L defined by

L (t) := KE(t) + ε1Φ(t) + ε2Ψ(t)

with K, ε1, ε2 > 0 appropriately chosen, satisfies for all t ≥ t0,

L
′(t) ≤− 21

4
(1− l)‖∇u‖2 − 1

4
‖ut‖2 +

1

2
(g ◦ ∇u)(t)

− λζ

4κ0

∫ t

t−τ(t)

∫

Ω

e−λ(t−s)‖∇ut‖2dxds. (3.21)

In addition, there exist β1, β2 > 0 such that

β1E(t) ≤ L (t) ≤ β2E(t), (3.22)

i.e., L (t) ∼ E(t).
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Proof. We set g0 =
∫ t0

0 g(s)ds and recall that g′ = κg − η. Making use of (3.4),

(3.10) and (3.15), in addition to taking σ =
l

4ε2
, we find that for all t ≥ t0,

L
′(t) ≤−

(

ε1
l

2
− l

4

)

‖∇u‖2 −
(

ε2g0 −
l

4
− ε1

)

‖ut‖2

+

[
l

4
+ ε1

3µ1

2l
+K

(
ζ

2
− µ1

2

)]

‖∇ut‖2

+

[
l

4
+ ε1

3µ2

2l
+K

(
µ2
2

2µ1
− ζ

2
e−λτ1(1− d)

)]

‖∇ut(t− τ(t))‖2

+K
κ

2
(g ◦ ∇u)(t)−

[
K

2
− 4C0

l
ε22 − Cκ

(

ε1
3

2l
+ ε22

4C0

l

)]

(η ◦ ∇u)(t)

−K
λζ

2

∫ t

t−τ(t)

∫

Ω

e−λ(t−s)‖∇ut(s)‖2dxds. (3.23)

Now, we choose ε1 large enough so that

ε1
l

2
− l

4
>

21

4
(1 − l), (3.24)

then choose ε2 large enough so that

ε2g0 −
l

4
− ε1 >

1

4
. (3.25)

Observe that
κg2(s)

κg(s)− g′(s)
< g(s) and lim

κ→0

κg2(s)

κg(s)− g′(s)
= 0, hence by the Lebesgue

dominated convergence theorem, we have that

κCκ =

∫
∞

0

κg2(s)

κg(s)− g′(s)
ds→ 0 as κ→ 0.

Therefore, there exists κ0 ∈ (0, 1) such that for all κ < κ0, we have

κCκ <
1

2

(

ε1
3
2l + ε22

4C0

l

) .

We now choose K large enough and choose κ satisfying

K

6
− 4C0

l
ε22 > 0 and κ =

1

K
, (3.26)

which yields, on account of (3.2) and (3.3), that

l

4
+ ε1

3µ1

2l
+K

(
ζ

2
− µ1

2

)

< 0, (3.27)

l

4
+ ε1

3µ2

2l
+K

(
µ2
2

2µ1
− ζ

2
e−λτ1(1− d)

)

< 0 (3.28)

and

K

2
− 4C0

l
ε22 − Cκ

(

ε1
3

2l
+ ε22

4C0

l

)

> 0. (3.29)

Combining (3.24)-(3.29), we obtain

L
′(t) ≤− 21

4
(1− l)‖∇u‖2 − 1

4
‖ut‖2 +

1

2
(g ◦ ∇u)(t)

− λζ

4κ0

∫ t

t−τ(t)

∫

Ω

e−λ(t−s)‖∇ut(2)‖2dxds.
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Now, we establish that L ∼ E. On account of Poincarè inequality and Cauch-
Schwars inequality, we have

|L (t)−KE(t)|
≤ ε1|Φ(t)|+ ε2|Ψ(t)|

≤ c

∫

Ω

[

|∇u|2 + |ut|2 +
(∫ t

0

g(t− s)|u(t)− u(s)|ds
)2
]

dx

≤ c

∫

Ω

[

|∇u|2 + |ut|2 +
(∫ t

0

g(s)ds

)∫ t

0

g(t− s)|∇u(t)−∇u(s)|2ds
]

dx

≤ c

[(

1−
∫ t

0

g(s)ds

)∫

Ω

|∇u|2dx+

∫

Ω

|ut|2dx+ (g ◦ ∇u)(t)
]

+
cζ

2

∫ t

t−τ(t)

∫

Ω

e−λ(t−s)‖∇ut(s)‖2dxds

≤ cE(t).

Therefore, (3.22) follows immediately. �

4. Main results

Lemma 4.1. There exists β3 > 0 such that, the functional defined by

F(t) = L (t) + β3E(t),

satisfies

F ′(t) ≤ −β4E(t) +

∫ t

t0

g(s)

∫

Ω

|∇u(t)−∇u(t− s)|2dxds, ∀t ≥ t0, (4.1)

for some β4 > 0. Moreover, F ∼ E.

Proof. From (2.7) and (3.4), we deduce that for any t ≥ t0,
∫ t0

0

g(s)

∫

Ω

|∇u(t)−∇u(t− s)|2dxds

≤ −g(0)
a

∫ t

0

g′(t− s)

∫

Ω

|∇u(t)−∇u(t− s)|2dxds

≤ −β3E′(t). (4.2)

Now, from (3.21), we have

L
′(t) ≤− β4E(t) + (g ◦ ∇u)(t)

≤− β4E(t)− β3E
′(t) +

∫ t

t0

g(s)

∫

Ω

|∇u(t)−∇u(t− s)|2dxds.

Hence (4.1) follows immediately, and since L ∼ E, then F ∼ E. �

Now, we state and prove our main decay result.

Theorem 4.2. Assume that |µ2| < µ1

√
1− d. There exist constants ω1 ∈ (0, 1]

and ω2 > 0 such that the energy functional satisfies

E(t) ≤ ω2M
−1
2

(

ω1

∫ t

g−1(α)

ξ(s)ds

)

, (4.3)

where M2(t) =

∫ α

t

1

sM ′(s)
ds and M2 is convex and strictly decreasing on (0, α]. In

addition, lim
t→0

M2(t) = +∞.
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Proof. To prove Theorem 4.2, we shall adopt the method of [16] and consider two
cases.

Case 1. M is linear.

We multiply (4.1) by ξ(t), then on account of (2.3) and (3.4), we get

ξ(t)F ′(t) ≤− β4ξ(t)E(t) +

∫ t

t0

ξ(s)g(s)

∫

Ω

|∇u(t)−∇u(s)|2dxds

≤− β4ξ(t)E(t) −
∫ t

t0

g′(s)

∫

Ω

|∇u(t)−∇u(s)|2dxds

≤− β4ξ(t)E(t) −
∫ t

0

g′(s)

∫

Ω

|∇u(t)−∇u(s)|2dxds

≤− β4ξ(t)E(t) − E′(t).

Hence,
(ξF + E)′(t) ≤ −β4ξ(t)E(t), ∀t ≥ t0. (4.4)

Since ξ > 0,F > 0 and F ∼ E, there exists β5 > 0 such that

L′

1(t) ≤ −β5ξ(t)L1(t), ∀t ≥ t0, (4.5)

where L1 = ξF + E. Combining (4.4) and (4.5), there exists β6 > 0 such that,

E(t) ≤ ce
−β6

∫
t

t0
ξ(s)ds

= ω2M
−1
2

(

ω1

∫ t

t0

ξ(s)ds

)

, ∀t ≥ t0.

Case 2. M is nonlinear.

We define the functional
L(t) = L (t) + Θ(t).

Clearly, L ≥ 0, moreover by (3.19) and (3.21) there exists β7 > 0 such that

L(t) ≤− 1

4

[

(1− l)‖∇u‖2 + ‖ut‖2 + (g ◦ ∇u)(t) + λζ

κ0

∫ t

t−τ(t)

e−λ(t−s)‖∇ut(s)‖2ds
]

≤− β7E(t). (4.6)

Integrating (4.6) over (t0, t), we get

β7

∫ t

t0

E(s)ds ≤ L(t0)− L(t) ≤ L(t0),

and we deduce that ∫
∞

0

E(s)ds <∞. (4.7)

Now, we define the functional

ϕ(t) := γ

∫ t

0

∫

Ω

|∇u(t)−∇u(s)|2dxds,

and observe that on account of (4.7), we can choose 0 < γ <
1

2
∫
∞

0
E(s)ds

such

that
0 < ϕ(t) < 1, ∀t ≥ t0. (4.8)

We also define the functional

ψ(t) := −
∫ t

t0

g′(s)

∫

Ω

|∇u(t)−∇u(t− s)|2dxds.

Clearly, ψ(t) ≤ −cE′(t). Recalling that M(0) = 0 and M is strictly convex on
[0, α], r > 0, then for any ρ ∈ (0, 1) and t ∈ (0, α]

M(ρt) < ρM(t). (4.9)
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Using assumptions (A1)-(A2), (4.8), (4.9) and Jensen’s inequality, as well as (2.8),
we have

ψ(t) =
1

γϕ(t)

∫ t

t0

ϕ(t)(−g′(s))
∫

Ω

γ|∇u(t)−∇u(t− s)|2dxds

≥ 1

γϕ(t)

∫ t

t0

ϕ(t)ξ(s)M(g(s))

∫

Ω

γ|∇u(t)−∇u(t− s)|2dxds

≥ ξ(t)

γϕ(t)

∫ t

t0

M(ϕ(t)g(s))

∫

Ω

γ|∇u(t)−∇u(t− s)|2dxds

≥ξ(t)
γ
M

(
1

ϕ(t)

∫ t

t0

ϕ(t)g(s)

∫

Ω

γ|∇u(t)−∇u(t− s)|2dxds
)

=
ξ(t)

γ
M

(

γ

∫ t

t0

g(s)

∫

Ω

|∇u(t)−∇u(t− s)|2dxds
)

=
ξ(t)

γ
M

(

γ

∫ t

t0

g(s)

∫

Ω

|∇u(t)−∇u(t− s)|2dxds
)

,

where M is the extension of M , see (2.8). Therefore,

∫ t

t0

g(s)

∫

Ω

|∇u(t)−∇u(t− s)|2dxds ≤ 1

γ
M

−1
(
γψ(t)

ξ(t)

)

,

then due to (4.1), we get

F ′(t) ≤ −β4E(t) + cM
−1
(
γψ(t)

ξ(t)

)

, ∀t ≥ t0. (4.10)

Let α0 < α, and define the functional F1 by

F1(t) :=M
′

(t)

(

α0
E(t)

E(0)

)

F(t) + E(t).

Recalling that E′ ≤ 0, M
′

> 0, M
′′

> 0 as well as making use of (4.10), we obtain
that F1 ∼ E and

F
′

1(t) =M
′

(

α0
E(t)

E(0)

)

F ′(t) + α0
E′(t)

E(0)
M

′′

(

α0
E(t)

E(0)

)

F(t) + E

≤− β4E(t)M
′

(

α0
E(t)

E(0)

)

+ CM
′

(

α0
E(t)

E(0)

)

M
−1
(
γψ(t)

ξ(t)

)

+ E′(t).

(4.11)

We denote by M
⋆

the convex conjugate of M in the sense of Young. Thus,

M
⋆
(y) = y(M

′

)−1(y)−M [(M
′

)−1(y)] (4.12)

and M
⋆

satisfies the following Young inequality

pq ≤M
⋆
(p) +M(q). (4.13)

We set p =M
′

(

α0
E(t)

E(0)

)

and q =M
−1
(
γψ(t)

ξ(t)

)

, then on account of (4.11)-(4.13),

we obtain

F
′

1(t) ≤− β4E(t)M
′

(

α0
E(t)

E(0)

)

+ cM
⋆
(

M
′

(

α0
E(t)

E(0)

))

+ c
γψ(t)

ξ(t)

≤− β4E(t)M
′

(

α0
E(t)

E(0)

)

+ cα0
E(t)

E(0)
M

′

(

α0
E(t)

E(0)

)

+ c
γψ(t)

ξ(t)
. (4.14)
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Now, using (3.4) we have α0
E(t)

E(0)
< α which implies by (2.8) that

M
′

(

α0
E(t)

E(0)

)

=M ′

(

α0
E(t)

E(0)

)

.

Hence, multiplying (4.14) by ξ(t), and making use of ψ(t) ≤ −cE′(t), we get

ξ(t)F ′

1(t) ≤− β4ξ(t)E(t)M ′

(

α0
E(t)

E(0)

)

+ cα0
E(t)

E(0)
ξ(t)M ′

(

α0
E(t)

E(0)

)

+ cγψ(t).

≤− β4ξ(t)E(t)M ′

(

α0
E(t)

E(0)

)

+ cα0
E(t)

E(0)
ξ(t)M ′

(

α0
E(t)

E(0)

)

− cE′(t).

(4.15)

Again, defining F2 = ξF1 + cE, then since F1 ∼ E, there exist ̟1, ̟2 > 0 such
that

̟1F2 ≤ E(t) ≤ ̟2F2. (4.16)

Now, from (4.15) and choosing α0 <
β4E(0)

c
, there exists β8 > 0 such that for all

t ≥ t0, we have

F
′

2(t) ≤ −β8ξ(t)
(
E(t)

E(0)

)

M ′

(
E(t)

E(0)

)

= −β8ξ(t)M1

(
E(t)

E(0)

)

. (4.17)

Let

H(t) =
̟1F2(t)

E(0)
,

then recalling, from (A2), that M is strictly increasing and strictly convex on (0, α]
and that M ′

1(t) =M ′(α0t)+α0tM
′′(α0t), we deduce that M1(t),M

′

1(t) > 0. Again,
from (4.16), we obtain that

H(t) ∼ E(t). (4.18)

It follows due to (4.17) that there exists ω1 > 0, such that

H ′(t) ≤ −ω1ξ(t)M1(H(t)), ∀t ≥ t0. (4.19)

We finally define

M2(t) =

∫ α

t

1

sM ′(s)
ds,

M2 is strictly decreasing on (0, α] and lim
t→0

M2(t) = ∞. We integrate (4.19) over

(t0, t), to obtain

M2(α0H(t))−M2(α0H(t0)) =

∫ α0H(t)

α0H(t0)

1

sM ′(s)
ds ≥ ω1

∫ t

t0

ξ(s)ds,

which implies that

M2(α0H(t)) ≥ ω1

∫ t

t0

ξ(s)ds.

It follows that

H(t) ≤ 1

α0
M−1

2

(

ω1

∫ t

g−1(α)

ξ(s)ds

)

, (4.20)

hence, using (4.18) and (4.20), estimate (4.3) follows immediately. �
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5. Numerical study

In this section, we illustrate numerically the result in Theorem 4.2. We establish
a numerical scheme for our problem (2.1) using finite difference method in time and
finite element method in space.

To discretize in time, we truncate the interval (0,∞) into (0, T ] where T is large
enough. Divide [0, T ] uniformly into N subintervals with size k each and nodes
{tn}Nn=0, i.e., tn = nk for 0 ≤ n ≤ N, where k = T/N. For the grid function wn, let

δtw
n =

wn − wn−1

k
, δttw

n =
wn+1 − 2wn + wn−1

k2
.

For the spatial discretization, we choose Ω = (a, b)× (c, d) and then divide both
(a, b) (in the x-direction) and (c, d) (in the y-direction) into a family of uniform
cells. Let xi = i hx for 0 ≤ i ≤ Mx with hx = (b − a)/Mx and let yj = j hy for
0 ≤ j ≤My with hy = (d − c)/My. Then, the C2 Galerkin finite dimensional space
Sh := Shx

⊗ Shy
, where

Shx
= {v ∈ H1(a, b) : v|[xi−1,xi] ∈ P3 for 1 ≤ i ≤ Nx, with v(x)|x=a,b = 0},

where P3 is the space of polynomials of degree at most 3 in x, Shy
is defined similarly.

Usually, continuous Galerkin finite element schemes are motivated by the weak
formulation of the model problem. So, we take the inner product of (2.1) with
φ ∈ H1

0 (Ω) then using Green’s formula. This leads to

〈u′′, φ〉+〈∇u,∇φ〉−
∫ t

0

g(t−s)〈∇u(s),∇φ〉 ds+µ1〈∇u′,∇φ〉+µ2〈∇u′(t− τ(t)),∇φ〉 = 0.

(5.1)

Replacing u′(t− τ(t)) by u′(t)−
∫ t

t−τ(t)
u′′(s)ds, we have

〈u′′, φ〉+ 〈∇u,∇φ〉 −
∫ t

0

g(t− s)〈∇u(s),∇φ〉 ds+ µ1〈∇u′,∇φ〉

+ µ2

〈

∇
(

u′ −
∫ t

t−τ(t)

u′′(s)ds

)

,∇φ
〉

= 0. (5.2)

Consequently, for each t > 0, the semi-discrete finite element solution uh(t) ∈ Sh is
defined by

〈u′′h, φ〉+ 〈∇uh,∇φ〉 −
∫ t

0

g(t− s)〈∇uh(s),∇φ〉 ds+ µ1〈∇u′h,∇φ〉

+ µ2

〈

∇
(

u′h −
∫ t

t−τ(t)

u′′h(s)ds

)

,∇φ
〉

= 0. (5.3)

Our fully-discrete numerical solution Un
h approximates u(tn) is defined by

〈δttUn
h , φ〉 + 〈∇Un

h ,∇φ〉 −
∫ tn+1

0

g(tn+1 − s)〈∇Un
h (s),∇φ〉ds+ µ1〈∇δtUn

h ,∇φ〉

+ µ2

〈

∇
(

δtU
n
h −

∫ t

t−τ(t)

δttU
n
h (s)ds

)

,∇φ
〉

= 0, (5.4)

∀φ ∈ Sh, and for 1 ≤ n ≤ N − 1.
For computing purposes, we need to write our scheme in a matrix form. let

dhx := dimShx = Nx − 1 and let {φpx
}dhx

p=1 denote the basis functions of Shx
. We

define dhx × dhx matrices:

Mx =

[
∫ b

a

φqφpdx

]

and Gx =

[
∫ b

a

φ′qφ
′

pdx

]

.
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In the y-direction, we use similar notations but with y in place of x.
The (dhx × dhy)-dimensional column vector b

n is the transpose of the vector

[bn1,1, b
n
1,2, · · · , bn1,dhy

, · · · , bndhx,1, · · · , b
n
dhx,dhy

].

Therefore, through tensor products of one-dimensional C2 splines, the fully-discrete
scheme (5.4) has the following matrix representation, for 1 ≤ n ≤ N − 1,

(Mx ⊗My − µ2τ(tn)Gx ⊗Gy)b
n+1 =

(
2Mx ⊗My − k2Gx ⊗Gy − k(µ1 + µ2)Gx ⊗Gy − 2µ2τ(tn)Gx ⊗Gy

)
b
n

+k2Gx⊗Gy

n∑

j=0

gjn+1b
j+(k(µ1 + µ2)Gx ⊗Gy + µ2τ(tn)Gx ⊗Gy −Mx ⊗My)b

n−1,

with gjn+1 :=
∫ tj+1

tj
g(tn+1 − s) ds.

Therefore, at each time level tn+1, we solve a finite square linear system, where
the unknown is the column vector b

n+1.
Furthermore, from the matrix form, it is clear that our scheme (5.4) is a three-

time level scheme, so the approximate solutions U0
h and U1

h need to be determined

first, and then U j
h for 2 ≤ j ≤ N can be computed by solving the above linear system

recursively. We choose U0
h ∈ Sh to be the bicubic spline polynomial interpolates u0

at the interior nodal nodes. However, we choose U1
h ∈ Sh to be the bicubic spline

polynomial interpolates u0 + t1u1 at the interior nodal nodes.
For the computer implementation of the linear system, it is important to consider

discretization of spatial Galerkin-type integrals in the scheme. To this end, on each
cell of our two-dimensional partition, the integrals are approximated using 2-point
Gauss quadrature rule in each direction.

In our test problem, we choose Ω = (0, 1) × (0, 1), the time interval is (0, 80),
the initial data u0(x, y) = 210xy(1− x)(1− y), u1(x, y) = 0, the relaxation function
g(t) = e−t, τ(t) = 1

2e
−2t and the coefficients µ1 = 1, µ2 = 2. The spatial mesh

consists of 400 (square) cells of equal areas, while the time domain consists of 80000
subintervals. In this example, we expect that the energy decays exponentially. On
the other hand, if the relaxation function g(t) = 1

(1+t)2 , we expect that the energy

decays polynomially, which is confirmed Figuers 1–4.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6
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0.8

0.9

g(t)=1/(1+t)2

g(t)=e-t

Figure 1. The graphical plot of the approximated energy E(t)
against t in the interval [0, 5].
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Figure 2. The graphical plot of the approximated energy E(t)
against t in the interval [0, 10].
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Figure 3. The graphical plot of the approximated energy E(t)
against t in the interval [0, 20].
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Figure 4. The graphical plot of the approximated energy E(t)
against t in the interval [0, 50].

6. Conclusion

In the present work, we have established an exponential decay result for a wave
equation with finite memory and strong time dependent delay, with a more general
condition on the kernel in the memory term. The recent work of Feng [9] is a
particular case. We also presented numerical analysis of the problem in other to
validate our theoretical result.
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