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DYNAMIC ANALYSIS OF A CHAOTIC 3D QUADRATIC
SYSTEM USING PLANAR PROJECTION.

ABDELLAH MENASRI

Abstract. The theory of dynamical systems is one of the most important
theorems of scientific research because it relies heavily on most of the major
fields of applied mathematics to give a sufficiently broad view of reality, but
it still poses some problems, especially with regard to the modeling of certain
physical phenomena. Since most of these systems are designed as continuous or
discrete dynamic systems with large dimensions and multiple bifurcation pa-
rameters, researchers face major problems in qualitative study. In this paper,
we propose a method to study bifurcations of continuous three-dimensional
dynamic systems in general and chaotic systems in particular, which contains
many bifurcation parameters. This method is mainly based on the projection
on the plane and on the appropriate bifurcation parameter.

1. Introduction

The development of chaos theory begins in the late XXe century. This repre-
sents a new approach to problems scientists in all disciplines, as well in mathematics
or physics as in medicine or biology. Indeed, the traditional science is based on
notions such as determinism and seeks first and foremost, predictability. Chaos
theory, for its part, aims to find an order in the apparent chaos. To do this, she re-
lies on theconcepts of non-linearity and auto-similarity and has as an experimental
tool computer predilection. Chaos theory, with its new approach, not only helps us
to better understand the world around us, but also provides applications concrete
and topical in fields as varied as physics, biology, astronomy, medicine, radio com-
munication and computer science.

The purpose of this paper is to provide a new method for the study of a three-
dimensional continuous quadratic chaotic dynamic system with multiple bifurcation
parameters [1]. This method gives important results on the dynamic behavior of
the latter, stability, bifurcations and chaos. This method consists of two steps, a
projection on the plane to obtain a dynamic system of lower dimension [2], then
the choice of the appropriate parameter, to simplify, we choose a three-dimensional
dynamic system with seven parameters. We will examine a subsystem of the original
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system by analyzing its dynamic behavior in a lower dimension. This will be useful
for the final study of the dynamic behaviour of the original system.

1.1. Dynamic analysis of a nonlinear system in three dimensions. Let the
dynamic system defined as follows

dx1

dt = a1x1 + a2x2 + a3x3
dx2

dt = x1x3 + b
dx3

dt = c1x1 + c2x2x3 + c

(1.1)

Where, ai 6= 0, (1 ≤ i ≤ 3) ci 6= 0, b 6= 0 and c 6= 0 are real parameters. When
projecting onto the plane (x1 − x2), the following new system is obtained{

dx1

dt = a1x1 + a2x2 + a3x3
dx2

dt = x1x3 + b
(1.2)

Where, x3 is considered as a known function of the time variable t. When t = t0
the system (2) becam linear and bi-dimensional with constant coefficient [1]. The
Jacobian matrix of the system (2) is given by

J =

(
a1 a2
x3 0

)
.

The determinant of matrix J is

det(J) = −a2x3.
Notice that for x3 6= 0, det(J) is not zero.

1.1.1. The fixed point of the system (2). The fixed point of the system (2) obtained
from

dx1
dt

=
dx2
dt

= 0,

hence, we have {
a1x1 + a2x2 + a3x3 = 0
x1x3 + b = 0

. (1.3)

With a simple calculation, we get

xe1 = − b

x3
and xe2 =

a1b− a3x23
a2x3

.

Thus the system (2) has a single fixed point e
(
− b
x3
,
a1b−a3x2

3

a2x3

)
. Using the transla-

tion (x = x1 − xe1, y = x2 − xe2) the point e can be reduced to the origin O .

1.1.2. Fixed point classification according to eigenvalues. To perform a clacification
of the fixed points of (2), we calculate the eigenvalues of the matrix J .

det(λI − J) = λ2 − a1λ− a2x3,
we put

det(λI − J) = 0,

hence
λ2 − a1λ− a2x3 = 0, (1.4)

we will study only the case a2 > 0, as for the case a2 < 0, it will be studied in the
same method.

For a2 > 0, we have the following cases
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1.: For x3 > 0, the equation (4) has two solutions λ1 and λ2 such that,
λ1 < 0 < λ2 then the fixed point e is a "saddle point". The curve of the
solution in the plane (x1 − x2) is represented in (Figure 1.a) where, the
directions of the orbits are represented by arrows when time t increases.
When t tend to infinity only two orbits tend towards the fixed point e and
the others diverge towards infinity in two different directions.

2.: For a1 < 0, when x3 < − a21
4a2

: The equation (4) has two solutions λ1 and
λ2 such that, λ1 < λ2 < 0, so the fixed point e is a "Node", which explains
the tendency of solution curves on the plane (x1 − x2) to infinity with the
exception of two orbits that tend towards point e. This is shown in (Figure
1.b), where the direction of the orbits is represented by arrows.

3.: For a1 < 0, when − a21
4a2

< x3 < 0: The equation (4) has two complex
solutions conjugated with a negative real part, the fixed point e is a "focus".
The curve of the solutions on the plane (x1 − x2) is shown in (Figure 1.c),
where the direction of the arrow is the direction of the orbit when the time
t increases. When t tends to infinity, all the orbits move in spiral around
to point e.

Figure 1. (a): the fixed point e is a saddle point. (b): The fixed
point e is a "node". (c): the fixed point e is a "focus".

1.1.3. The relationship between the time variable t and the function x3(t ). When
t tends to infinity, The orbit x3(t ) intersects the two straight lines x3 = − a21

4a2
and x3 = 0 alternately and several times. Hence, the division of the x3 axis into
three disjoint domains

(
−∞ , − a21

4a2

)
,
(
− a21

4a2
, 0
)
and (0 , +∞), Which implies

the possession of the system (2) of different dynamic behaviors in the three domains
above. When t tends to infinity the system (2) changes its dynamic behavior and
x3(t ) passes through these domains repeatedly, leading to complex dynamics such
as the appearance of bifurcations and chaos. It is noticed that the system (2)
depends on time t when x3(t ) varies over time. The two systems (1) and (2) can
be verified that are chaotic when the function x3(t ) passes through the straight
lines x3 = − a21

4a2
and x3 = 0 alternately [1] , [2].

1.1.4. The relationship between the time variable t and the function x3(t ). When
t tends to infinity, The orbit x3(t ) intersects the two straight lines x3 = − a21

4a2
and x3 = 0 alternately and several times. Hence, the division of the x3 axis into
three disjoint domains

(
−∞ , − a21

4a2

)
,
(
− a21

4a2
, 0
)
and (0 , +∞), Which implies
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the possession of the system (2) of different dynamic behaviors in the three domains
above. When t tends to infinity the system (2) changes its dynamic behavior and
x3(t ) passes through these domains repeatedly, leading to complex dynamics such
as the appearance of bifurcations and chaos. It is noticed that the system (2)
depends on time t when x3(t ) varies over time. The two systems (1) and (2) can
be verified that are chaotic when the function x3(t ) passes through the straight
lines x3 = − a21

4a2
and x3 = 0 alternately [1] , [2].

1.2. The fixed point of the system (1). The system fixed point (1) results from
the first and second equation, so we have

x3 = − b

x1
, (1.5)

and

x2 =
a3b− a1x21

a2x1
, (1.6)

by substituting (5) and (6) in the third system equation (1), we obtain the following
equation (7)

a2c1x
3
1 + (a1bc2 + a2c)x

2
1 − a3c2b = 0 (1.7)

To obtain a single fixed point, you must take the case

a1bc2 + a2c = 0 or c = −a1c2
a2

b (1.8)

Then, under the condition (8), the equation (7) has a unique real root x1 = 3

√
a3c2
a2c1

b.

therefore the fixed point of system (1) is given by E( 3

√
a3c2
a2c1

b,
a3b−a1x2

1

a2x1
,− b

x1
).

1.2.1. linearization of the system (2) at fixed point E(x1, x2, x3). The stability of
the equilibrium state (point E ), is analyzed by linearizing the system (1) to point
E under the linear transformation [2] , [3] , [5]. x = x1 − x0

y = x2 − y0
z = x3 − z0

Where 
x0 = 3

√
a3c2
a2c1

b

y0 =
a3b−a1x2

1

a2x1

z0 = − b
x1

(1.9)

The system (1) becomes in the form
dx
dt = a1x+ a2y + a3z
dy
dt = z0x+ x0z + xz
dz
dt = c1x+ c2z0y + c2y0z + c2yz

, (1.10)

the Jacobian matrix A(E) of the system (10) is given as follows

A(E) =

 a1 a2 a3
z0 0 x0
c1 c2z0 c2y0

 , (1.11)

its characteristic polynomial is given by
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P (λ) = λ3 +Aλ2 +Bλ+ C (1.12)
Where  A = −(c2y0 + a1)

B = bc2 − a3c1 + a1c2y0 − a2z0
C = a2c1x0

(1.13)

Then, the conditions of Routh-Hurwitz lead to the condition that the real parts of
the roots are λ−négative if A > 0, C > 0 and AB − C > 0. It is noticed that
the coefficients of the polynomial (12) are all positive, so P (λ) > 0 for all λ > 0,
therefore the only fixed point is unstable (rel(λ) > 0) If P (λ) has two conjugate
complex eigenvalues [1]. It is noticed that λ1 = +iω and λ2 = −iω, because the
sum of the three roots of the cubic P (λ) is

λ1 + λ2 + λ3 = −A (1.14)
So, we have λ3 = −A = a1 + c2y0 which is located on the system stability margin
(10), hence

λ3 =
−c2a1x20 + a1a2x0 + c2a3b

a2x0
, (1.15)

on the other hand, we have

P (λ3) = −AB + C = 0, (1.16)

where 
A =

a2a3c1c2x
2
0+a1a3bc

2
2x0−a1a2a3c2b

a2a3c2b

B =
(a1a2a3c1c2+a

3
2c1)x

2
0−a

2
1a3bc

2
2x0+a3bc2(a2bc2−a2a3c1)

a2a3c2b

C = a2c1x0

, (1.17)

and

x0 = 3

√
a3c2
a2c1

b.

A substitution of (17) in (16) we obtain

(a22a3bc1c
3
2 − a22a23c21c22 − a31a3bc41 − a21a22a3c1c2 − a1a42c1)x20

+(−a1a2a23bc1c32−a32a3bc1c22+a1a2a3b2c42−a1a2a23bc1c22+a31a2a3bc22+a32a3bc1c22)x0
− a21a23b2c42 + a1a

2
3b

2c1c
4
2 + a1a

2
2a3bc

3
2 − a1a22a3b2c22 + a1a

2
2a

2
3bc1c2 = 0, (1.18)

or
αa31 + βa21 + γa1 + δ = 0, (1.19)

where
α = −a3bc41x20 + a2a3bc

2
2x0

β = −a22a3c1c2x20 − a23b2c42
γ = −a42c1x20 + (−a2a23bc1c32 + a2a3b

2c42 − a2a23bc1c22)x0
+a23b

2c1c
4
2 + a22a3bc

3
2 − a22a3b2c22 + a22a

2
3bc1c2

δ = (a22a3bc1c
3
2 − a22a23c21c22)x20 + (−a32a3bc1c22 + a32a3bc1c

2
2)x0

(1.20)

Assume that α > 0 and the equation (19) has only one solution a1 = a0,hence for
a1 = a0 the fixed point E will lose its stability, so a hopf bifurcation can occur
[2] , [6] , [7]. Using the two conditions (14), (16) and a1 = a0, the polynomial P (λ)
can be written in the form

P (λ) = (λ− a0 − c2y0)(λ2 +
∼
B), (1.21)
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where

∼
B =

(a0a2a3c1c2 + a32c1)x
2
0 − a20a3bc22x0 + a3bc2(a2bc2 − a2a3c1)

a2a3c2b
. (1.22)

It is obvious that, the equation P (λ) = 0 has three roots, one negative, λ3 =
a0 + c2y0 and a pair of conjugated purely imaginary roots

λ1,2 = ±i

√
(a0a2a3c1c2 + a32c1)x

2
0 − a20a3bc22x0 + a3bc2(a2bc2 − a2a3c1)

a2a3c2b
= ±id

(1.23)
Differentiate the two sides of equation (12) with respect to a, we obtain

dλ

dt
=

(
1− c2x0

a2

)
λ2 +

(
2a1bc2x0−a2c1x2

0

a2b

)
λ

3λ2 + 2Aλ+B
, (1.24)

hence

dReλ

da1
|a1=a0= −

1

2

(
c2x0

a2
− 1
)
d2 + (a0 + c2y0)

(
2a0bc2x0−a2c1x2

0

a2b

)
d2 + (a0 + c2y0)

2 < 0, (1.25)

and

d Imλ

da1
|a1=a0= −

1

2
d

(
2a0bc2x0−a2c1x2

0

a2b

)
+ (a0 + c2y0)

(
1− c2x0

a2

)
d2 + (a0 + c2y0)

2 . (1.26)

Conclusion:

(1) According to the hopf bifurcation theorem, it can be concluded that a0 is
the critical value.

(2) The fixed point E is stable, when a1 < a0, and there are a periodic solutions
when a1 > a0.

(3) When a1 crosses the value a0, the system (1) undergoes a Hopf bifurcation
at fixed point E.

2. Property of Hopf bifurcation

In this section we will give the explicit formulas to determine the direction,
stability and period of these periodic bifurcation solutions at point E for the critical
value a1 = a0, using regular form techniques [1] , [9] , [14].

2.1. Supercritical and subcritical bifurcation. Let the eigenvectors correspond-
ing to the eigenvalues λ3 = a0 + c2y0 and λ2 = id are v1 and v2 + iv3.

By a direct calculations, we obtain
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

v1

 1
a2c1x

2
0−a0a2b

−a20c2x2
0+(a20a2+a2bc2)x0+a0a3bc2

(a22c1+a0bc
2
2)x

2
0−a3b

2c22
a0a22x

2
0−a2a3bc2x0


v2

 1
−a0a2x2

0+a3d
2x0−a2a3b

a22x
2
0+a

2
3d

2

c2b
2(bc2−d2)−c1c22x0y0

((bc2−d2)x0)2+(c2dx0y0)2


v3

 0
d(a3b

2c2+a0a3c1x0+a
2
3bc1)

a2a3b2c2+a23c1d
2x0

(c1c2b−c1d2)x2
0+c

2
2b

2y0
((bc2−d2)x0)2+(c2dx0y0)2



(2.1)

We put

P = (v1, v2, v3) =

 1 1 0
a2c1x

2
0−a0a2b

−a20c2x2
0+(a20a2+a2bc2)x0+a0a3bc2

−a0a2x2
0+a3d

2x0−a2a3b
a22x

2
0+a

2
3d

2

d(a3b
2c2+a0a3c1x0+a

2
3bc1)

a2a3b2c2+a23c1d
2x0

(a22c1+a0bc
2
2)x

2
0−a3b

2c22
a0a22x

2
0−a2a3bc2x0

c2b
2(bc2−d2)−c1c22x0y0

((bc2−d2)x0)2+(c2dx0y0)2
(c1c2b−c1d2)x2

0+c
2
2b

2y0
((bc2−d2)x0)2+(c2dx0y0)2


(2.2)

To simplify the calculation, we will replace the matrix (28) by the matrix (29) 1 1 0
α1 α2 α3

β1 β2 β3

 , (2.3)

where 
α1 =

a2c1x
2
0−a0a2b

−a20c2x2
0+(a20a2+a2bc2)x0+a0a3bc2

α2 =
−a0a2x2

0+a3d
2x0−a2a3b

a22x
2
0+a

2
3d

2

α3 =
d(a3b

2c2+a0a3c1x0+a
2
3bc1)

a2a3b2c2+a23c1d
2x0

. (2.4)

Then, perform the following transformation on the system (10) x
y
z

 = P

 u1
u2
u3

 ,

hence  u1
u2
u3

 = P−1

 x
y
z

 ,

in order to obtain  u1 = m1x+m2y +m3z
u2 = n1x+ n2y + n3z
u3 = k1x+ k2y + k3z

, (2.5)

therefore
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
du1

dt = −du2 + F (u1, u2, u3)
du2

dt = du1 +G(u1, u2, u3)
du3

dt = λu3 +H(u1, u2, u3)

, (2.6)

where 
F (u1, u2, u3) = m2f(u1, u2, u3) +m3c2g(u1, u2, u3)
G(u1, u2, u3) = n2f(u1, u2, u3) + n3c2g(u1, u2, u3)
H(u1, u2, u3) = k2f(u1, u2, u3) + k3c2g(u1, u2, u3)
f(u1, u2, u3) = (u1 + u2)(β1u1 + β2u2 + β3u3)
g(u1, u2, u3) = (α1u1 + α2u2 + α3u3)(β1u1 + β2u2 + β3u3)

m1 =
(
1 + α1β3−α3β1

(β3−α3)(α2−α1)

)
m2 = − β3

(β3−α3)(α2−α1)

m3 = α3

(β3−α3)(α2−α1)
n1 = α3β1−α1β3

β3(α2−α1)−α3(β2−β1)

n2 = β3

β3(α2−α1)−α3(β2−β1)

n3 = − α3

β3(α2−α1)−α3(β2−β1)
k1 = α1β2−β1α2

β3(α2−α1)−α3(β2−β1)

k2 = β1−β2

β3(α2−α1)−α3(β2−β1)

k3 = α2−α1

β3(α2−α1)−α3(β2−β1)

.

By now applying the method of Auchmuty and Nicolas in [1] from the system (32),
the following quantities can be calculated in a1 = a0 and O(0, 0, 0).

g11 =
1

4

[
∂2F

∂u21
+
∂2F

∂u22
+ i

(
∂2G

∂u21
+
∂2G

∂u22

)]
,

=
1

2
[(m2β1 +m2β2 +m3c2α1β1 +m3c2α2β2)] +

1

2
i [(n2β1 + n2β2 + n3c2α1β1 + n3c2α2β2)] .

g02 =
1

4

∂2F

∂u21
− ∂2F

∂u22
− 2

∂2G

∂u1∂u2
+ i

(
∂2G

∂u21
− ∂2G

∂u22
+ 2

∂2F

∂u1∂u2

)
,

=
1

2
[m2 (β1 − β2) +m3c2 (α1β1 − α2β2)− n2 (β1 + β2)− n3c2 (α2β1 + α1β2)] +

1

2
i [n2 (β1 − β2) + n3c2 (α1β1 − α2β2) +m2 (β1 + β2) +m3c2 (α2β1 + α1β2)] .

g20 =
1

4

[
∂2F

∂u21
− ∂2F

∂u22
+ 2

∂2G

∂u1∂u2
+ i

(
∂2G

∂u21
− ∂2G

∂u22
− 2

∂2F

∂u1∂u2

)]
,

=
1

2
[m2 (β1 − β2) +m3c2 (α1β1 − α2β2) +m2 (β1 + β2) +m3c2 (α2β1 + α1β2)] +

1

2
i [n2 (β1 − β2) + n3c2 (α1β1 − α2β2)−m2 (β1 + β2)−m3c2 (α2β1 + α1β2)] .
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G21 =
1

8

[
∂3F

∂u31
+

∂3F

∂u1∂u22
+

∂3G

∂u21∂u2
+
∂3G

∂u32
+ i

(
∂3G

∂u31
+

∂3G

∂u1∂u22
− ∂3F

∂u21∂u2
− ∂3F

∂u32

)]
= 0.

h11 =
1

4

(
∂2H

∂u21
+
∂2H

∂u22

)
,

=
1

2
[k2 (β1 + β2) + k3c2(α1β1 + α2β2)] .

h20 =
1

4

(
∂2H

∂u21
− ∂2H

∂u22
− 2i

∂2H

∂u1∂u2

)
,

=
1

2
[k2 (β1 − β2) + k3c2(α1β1 − α2β2)− i (k2 (β1 + β2) + k3c2(α2β1 + α1β2))] .

: Then, we get the following system{
λ1ω11 = −h11
(λ1 − 2id)ω20 = −h20

(2.7)

The solution of the system (33) is{
ω11 = −h11

λ1

ω20 = − h20

λ1−2id
,

therefore


ω11 = −K2(β1+β2)+K3c2(α1β1+α2β2)

2λ1

ω20 = −K2λ1(β1−β2)+K3c2(α1β1−α2β2)+2d(K2(β1+β2)+K3c2(α2β1+β2α1))

2(λ2
1+4d2)

+

i 2d(K2(β1−β2)+K3c2(α1β1−α2β2))−λ1(K2(β1+β2)+K3c2(α2β1+α1β2)

2(λ2
1+4d2)

On the other hand, we have the following quantities

therefore


ω11 = −K2(β1+β2)+K3c2(α1β1+α2β2)

2λ1

ω20 = −K2λ1(β1−β2)+K3c2(α1β1−α2β2)+2d(K2(β1+β2)+K3c2(α2β1+β2α1))

2(λ2
1+4d2)

+

i 2d(K2(β1−β2)+K3c2(α1β1−α2β2))−λ1(K2(β1+β2)+K3c2(α2β1+α1β2)

2(λ2
1+4d2)

On the other hand, we have the following quantities

G110 =
1

2

[
∂2F

∂u1∂3u
+

∂2G

∂u2∂3u
+ i

(
∂2G

∂u1∂3u
− ∂2F

∂u2∂3u

)]
,

=
1

2
[β3 (m2 + n2) + α3c2 (m3β1 + n3β2) + c2β3 (m3α1 + n3α2)] +

1

2
i [β3 (n2 −m2) + α3c2 (n3β1 −m3β2) + c2β3 (n3α1 −m3α2)] .
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g21 = G21 + (2G110ω11 +G110ω20)

= [β3 (m2 + n2) + c2α3 (m3β1 + n3β2) + c2β3 (m3α1 + n3α2)]

×
[
−k2 (β1 + β2) + k3c2 (α1β1 + α2β2)

2λ1

]
− 1

4
[β3 (m2 − n2) + α3c2 (m3β1 − n3β2) + c2β3 (m3α1 − n3α2)]

×
[
k2λ1 (β1 − β2) + k3c2λ1 (α1β1 − α2β2) + 2d (k2 (β1 + β2) + k3c2)

λ21 + 4d2

]
− 1

4
[β3 (m2 + n2) + α3c2 (n3β1 +m3β2) + c2β3 (n3α1 +m3α2)]

×
[
2d(k2 (β1 − β2) + k3c2 (α1β1 − α2β2))− λ1 (k2 (β1 + β2) + k3c2 (α2β1 + α1β2))

λ21 + 4d2

]
+

1

4
i [(β3 (m2 − n2) + α3c2 (m3β1 − n3β2) + c2β3 (m3α1 − n3α2)]

×
[
2d (k2 (β1 + β2) + k3c2 (α1β1 − α2β2))− λ1 (k2 (β1 + β2) + k3c2 (α2β1 + α1β2))

λ21 + 4d2

]
+

1

4
i [(β3 (m2 + n2) + α3c2 (n3β1 +m3β2) + c2β3 (n3α1 +m3α2))]

×
[
−λ1(k2 (β1 − β2) + k3c2 (α1β1 − α2β2)) + 2d (k2 (β1 + β2) + k3c2)

λ21 + 4d2

]
: also, we put

C1(0) =
1

2d

(
g20g11 − 2 |g11|2 −

1

3
|g02|2

)
+
g21
2
,

: then

µ2 = −Re(C1(0))

Re(λ′(a0))

τ2 = − Im(C1(0)) + µ2 Im(λ′(a0))

d
,

and
γ2 = 2Re(C1(0)).

We note that [1] .
1.: µ2 determines the direction of the Hopf bifurcation.
i.: If µ2 > 0, the hopf bifurcation is subcritical.
ii.: If µ2 < 0, the hopf bifurcation is supercritical and the bifurcated periodic

solution exists for a1 > a0 and a1 < a0.
2.: γ2 determines the bifurcated periodic solution stability.
i.: If γ2 < 0, the bifurcated periodic solutions on the central collector are

stable.
ii.: If γ2 > 0, the bifurcated periodic solutions on the central collector are

unstable.
3.: τ2 determines the periods of the bifurcation of the periodic solutions.
i.: If τ2 > 0, the periods increase.
ii.: If τ2 < 0, the periods decrease.
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2.2. Numerical simulation. The numerical simulation confirms the results ob-
tained by this method, for two different values of the parameter a1, we have two
different chaotic attractors.

For a2 = 1, 5, a3 = 2 , b = −1, 3 , c1 = −1, 5 and c2 = −1.
Case.1: a1 = −1, 2.

The attractor generated by the chaotic system (1) as shown in (Figure 2).
Case.2: a1 = −1, 4.

The attractor generated by the chaotic system (1) as shown in (Figure 3).

Figure 2. The chaotic attractor of the system (1), for a1 =
−1, 221, a2 = 1, 5, a3 = 2, b = −1, 3, c1 = −1, 5 and c2 = −1.

Figure 3. The chaotic attractor of the system (1), for a1 = −1, 44,
a2 = 1, 5, a3 = 2, b = −1, 3, c1 = −1, 5 and c2 = −1.
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Figure 4. Diagramme de bifurcation du sysème (1): (a, x(n))
avec −2 ≤ a1 ≤ 0.

3. Conclusion

In this paper, a three - dimensional quadratic system with seven bifurcation
parameters has been studied. Using a projection on the plane and choosing a
suitable bifurcation parameter, this method has been proved that can help us to
simplify the study of bifurcations and in particular the Hopf bifurcation, which
have been demonstrated that it occurs when the bifurcation parameter crosses
the critical value. The direction of the Hopf bifurcation and the stability of the
bifurcated periodic solutions are analyzed in detail.
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