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APPROXIMATION BY GENERALIZED ¢-SZASZ-MIRAKJAN
OPERATORS

TAQSEER KHAN, MOHD SAIF AND SHUZAAT ALI KHAN

ABSTRACT. In this article, we introduce generalized ¢g—Szész-Mirakjan oper-
ators and study their approximation properties. Based on the Voronovskaja’s
theorem, we obtain quantitative estimates for these operators.

1. INTRODUCTION

Approximation theory is an interesting branch of Mathematics which deals with
approximating a function with simple calculative functions. The concept of g—calculus
has emerged as a new interest in the area of approximation theory. Applications of
g—calculus have accelerated research in this area. In recent times, the g—calculus
has been extensively used in approximation theory (e.g. Aral [3], Aral and Gupta
M], Gal et al. [6], Mahmudov [12], Ostrovska [20], Rao et al. [23], Singh and
Gairola [24] etc.). Using g—calculus, more suitable and useful generalizations of
many classical operators have been obtained and investigated. The g-analogues of
operators have better rate of convergence than classical ones as proved by Lupas
[11] and Phillips [22].

We will use the abbreviations N, R, R for the set of natural numbers, positive
real numbers and real numbers respectively.

Let us recall rudiments of g-calculus. The g-integer, factorial and binomial coef-
ficient are defined by

Yho1d* 7t g#1, neN

[n] l_{(1+q)(1+q+q2)(1+q+q2+q3+)-~-(1+q+q2+q3~-~+q"‘1)7 neN
g =
1, n = 0.
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respectively. For |¢| < 1, we give two g—analogues of classical exponential function
as

For a € (0,00) \ 1 and |g| < 1, we introduce the following generalized g—analogues
of the exponential function

2 (zloga)” 1
ez o=y o = : 1.1
@1 n;) [n]g! EO 1—g"(1—g)zloga (1)
" e n(n—1) " e n
By = ;qu i 11(1 +¢"(1 - g)zloga) (1.2)

for |z| < m. It is observed that for a = e, the generalized exponential

functions reduce to the classical ones. Making use of (1.1f), (1.2]), we obtain the
following exponential function

)zloga

x loga x 105 a ]_ + q
El,=¢€q? = e (1.3)
,q H 1—q"(1-q) lzg
The classical Szdsz -Mirakjan operators are given by [26]
o= (n2)F (K
Sn(h =e h|— 14
) =30 Sgn (14)

where h € C[0,00),n € N. In recent years, many generalizations and modifications
of these operators have been defined and studid (e.g. Altomare [I], Ansari et al.
[2], I¢6z and Cekim [7], Kajla and Agrawal [8| [0], Kajla [10], Mediha and Dogru
[13], Mursaleen et al. [I4l [15] [I6] [I7], Nasiruzzaman [I8] [I9], Srivastava et al. [25]
and Sucu [27] etc.). In the present work, we will introduce a generalization of these
operators and explore approximation properties.

The rest of the paper is organized as follows. In Section 2, a new generalization of
operators in is defined and moments are computed. Section 3 studies some
uniform convergence results. Section 4 contains the proof of Voronvskaja type
theorem for our operators and Section 5 gives the conclusion.

2. CONSTRUCTION OF OPERATORS AND MOMENTS

Using g—integers, we propose a new generalization of the operators in (1.4) as
follows

o0

Snng()(a) = 3 Mlalrloge) (1), @)

gl = (k]! [2]q
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where, n € N, g € (0,1) and 0 < z < (m) ,a € (0,00) \ 1, and gyft]lqz
q
the g—analogue of the exponential function in (1.3 given by
e _ 1= (120)5 oo
a.q 1+ (1—g)% "o
and call them as generalized g—Széasz-Mirakjan operators. Observe that the op-
erators in (2.1) are positive and linear. We compute moments of test functions

em(t) = t™, m € N. We obtain some recurrence formulae useful in the sequel. We
have

Lemma 2.1. The following recurrence formulae hold for n,m e Nand 0 < ¢ < 1:

M1y () — 1 ™Y (o 1_(1_q)qu% ™) (zloga
Snaq(t )(x) = ], (1 —q) [Sn,a,q(t )(z) — 1+(17q)[ ]qzlogasn’a’q(t )(xlogagq)

m

B Z( )xlogaq

[n] T
1 - ]. - q - .
( C[I'Z] a:210g a Snya»q (t])(x IOg QQ)]
14 (1 — q) o522

1 " /m\ zloga m—j ) iy
S () S el S g0 o 0™ )

ol =G ) [l

S7L7a7q(tj)(x loga) —

—l—S([[f(]Iq“qule Sn,a,q (tj )(z log agm It )} .

Proof. We have

iy 1S [nlh(loga)® ( [k
Snaalt ) = Cos 2 T ([nw’ﬂ!)

~ar s () ()
_ &E’,};qm il (i — (i:: [n]g(é]lj!ga)k Eg B ki) [n}g(ﬂ[c]:]cfaq)k %g)
D B TR

which establishes the first formula. The second expression is derived by using the

relation b (ol — (140 <11_:]kql> _ <11—_qqk) |

In fact, we have

1 X [nfg(wloga)* [K]"

Sh.a, (thrl)(x) = -
q A Rl bl

k—1

1 & /m\ zloga <X [n]i~!(zloga)k~* (k=13 .
:5[7]qwz(‘>2[n}mﬂ'z [k —1],! il ¢+

q k=1 q




12 TAQSEER KHAN, MOHD SAIF AND SHUZAAT ALI KHAN
k—1 —1

L & )\ logag’ [ I (wloga)* ; o (a:logaq>k—1 k-1
= €(£7};qmloga Z (]> 2[n]mfj [Z [k — 1]q! + Z [n]] ‘|

=0 q k=1 k=1

_ Z ( )Jclog aq’ i mlog a)k [LE N ghilar 1 i [n]k (zlog aq)* [LE
i 5“‘“ = R = P T

giving us the second formula. The proof of the third recurrence relation is based
n [I2]. The following relation is useful:

B 1qu71 B 1*(]]6
Kl o =[k—1 klzi k1: -1 ).
[klq = [ lo+a 1—gq T4 1—¢q

One obtains S, o 4(t™ 1) (z)

= [n]t(z loga)* (K"
]

1
= n Z m+1

5@)(]1,191: =0 (k]! [n]g

R SR 0 ) P P B
= 2 T, Rl

B 1 & /m\ zloga (<[]t (xlogag™ 7)1 [k —1)]
- gmﬂzma[n]“(z [k =1 [l

=0 q k=1 1
LNl @logag™ — ) [k - ;];')
— [k — 1]4! [n]3
_ i( ) 2 ( £y S g™ ) 1
< 7,7. ax = 5(&77‘(]1(127‘1(""7]‘) P [k - 1](1' [n]lj}
>, [n]f=Y(zlogag™ — j + 1)*1 [k —1)7
+Z[]q '(zlogag |J | j]q>7
2 T, il

proving the last expression and hence the lemma.

Lemma 2.2. Let n € N;0 < ¢ < 1 and m € N. Then the following formula holds
true

(oo}

m 1 :z:loga)
Sn’a’Q(t )(I) - m—1 zloga Z m,j m 7
k=0 (1+(1_Q) [nlgzloga ) j=1 q
where
] qj—l(l + qm—j-',-l ]
am+1,5(q) = [Flqam.;(@) + 5 )am,jq(Q),m >20,j=>1

and ao0(q) =1, am,0(¢) =0,m > 0,ap,,;(¢g) =0, >m.

Proof. We use the recurrence formula to facilitate the induction on m.
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We have S, 4,4(t™ 1) ()

1 [ 1_ (1 . q) [n]qx loga
= 7 |Snaq(t")(@) — . Sn,a,q(t™)(qz loga)
— o [n]qz loga a4
[nlg(1 —q) 14 (1 — g)Matlose,
_ 1
TTiolt + q*(1 — g)Iegeee
s (xloga)’ 1 ( [n]qx loga 4 4 [n]q
X U, (@) = I+¢"(1-q¢)—F— ¢+ (1-q)—~
2 om0 e =) 2 2
_ 1
TTiolt + q*(1 — g)Iegeee
rloga  ~~ _ P71+ g™\ (xloga)!
X am,l(q) m + (amhj (Q)Jq + am,j—l(Q) mail—g
[ [n]q gz=:2 2 [n]q M
+  amm(9)q" (z loga)erl}
and after simple steps of calculations, we arrive at the desired result.
Lemma 2.3. The following formulas hold for n € N and 0 < ¢ < 1:
Snaq(D)(z) =1,
zloga
Snoaq(t)(z) = )
q 1+ (1 _ q) [n]qzzloga
9 1 5 zloga
Snaa(P)@) = — — (¢ loga)’q + ,
| (1 + (1 — )52z log a) [nlq
1 1 23¢(1
Sn,a,q(t?))(x) _ ; T ((xloga)3q3 + (!,l? oga) q( 2+ Q)
[Ti=o (1 +(1- Q)qkquﬂog@ [l
xloga
T T )
1 1 3,3
Snag(t)(@) = — — ((x log a)*q® + u;ﬁ‘”i(m? +10g
[Lizo (1 +(1- q)qkqfxloga) q
(rloga)? 9 zloga
+ T+ —5—q2¢ +3¢+2+ .
[n]3 [n]}
Proof. Making use of Lemmas the proof follows. O

[n]qzloga

Remark. The quantities Qnax = 1+ ¢"(1 — q)—*5—=, where n,k € N and
0 < g < 1, can be rewritten as Quar = 1 + qk%. We want to study the
convergence of the operators S, 4,4 to the identity operator. To do this end we have

the following.
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I4qp—"
Lemma 2.4. Let = € [0, T=q)Toga

(0,1) YVneN, g, — 1 and ¢ — b as n — oo, where 0 < b < 1. Then the following
formulas are obtained:

) and (¢n)nen be a sequence such that g, €

n— oo

A, S D@ = 7577 zlnlJ(r)g(;l ol —a)" o8
A {Sna0 (@)} = +(:1c ;;gac)jl — g 1o8)
i {Sn0a ()@} = 7 +(:lc i(_);iil —op @les s
lm {800, (1) (@)} = ¢ (1+a) (zlog)*.

1+a+zxloga(l —a)*

Proof. On utilizing Lemmaand the fact lim ( 1 ) = 0, the proof follows.
n—oo

[n]qn
3. UNIFORM APPROXIMATION RESULTS

In present section, we discuss uniform approximation of generalized ¢-Szasz-
Mirakjan operators on compact intervals of [0,00). Let us denote by C[0,c0), the
space of all continuous functions on [0,00) and Cg[0,c0), that of bounded and
continuous functions on [0,00). Define Cs[0,00) = {h € C[0,00) : IM > 0 :
|h(z)]| < M(1+2)2Y2 > 0}. Let (X,d) be a metric space and d, : X — R be
the function defined by d.(y) = d(x,y) Vy € X and F(X) the linear space of all
real valued functions on X.

Theorem 3.1. Let (X, d) be a locally compact metric space. Consider a lattice
subspace E of F(X) containing the constant function 1 and all functions d2(z € X),
where d2 = ey — 2ze; + 22.1. Let (Ly)n>1 be a sequence of linear operators from
E into F(X) and such that

lim L, (h)=h,

n—oo
and
lim L,d%(z) =0
n—oo
uniformly on compact subsets of X. Then for every h € ENCpg(X), we have
lim L,(h)=h
n— oo

uniformly on compact subsets of X.
We prove the following.

Theorem 3.2. Let ¢, € (0,1) be any sequence (¢n)nen such that ¢” — b as
n — 00,0 < b < 1. Then the sequence S,, 4,4, (h) converges uniformly to h on any
compact interval of [0, 00), for any h € C3[0,00) N Cp[0, 00).

Proof. For x € [O, (l—qn)loga[n]qn) , as the expression — 00 as

2
(1_Qn) log a[n]qn
n — oo there exists a rank Ny such that [0, d]C [O ) where d € Ry

From lemma [2.4] with d = 1, we have,
i Spa.q,(1)(2) =1,

n—oo

2
> (1—gqn) log a[n]gn

lim 8,44, (t)(x) = zloga,

n—oo



APPROXIMATION BY GENERALIZED q—SZASZ—MIRAKJAN OPERATORS

15
lim Sp.a.q, (t°)(2) = (vloga)?.
n—oo
We prove the uniform convergence of the moment of order one. We have
1-q, 2
xloga (1+qﬁ71> (xloga)
1—q*zloga n xloga - 1—qrxzloga
(1 T ) (1 T g )
<1—qy|d—0,n— oc.
The uniform convergence of the moment of order 2 results in the following way:
(rloga)?q, + x:loga
o — (zloga)? (3.1)
1+ 1—qrzloga 1+ q l1—qnzloga
I+qn~" "o14qn!
zloga 2 1—qp 5 (1-qp)? s
< —(zloga)*(1—¢y) — —— "5 (1 +qn)(zlog a)” —gn——— "9 (zloga)
7], L+gn ! (L+an )2
d 1+4qn 2 n
< +’(1—qn) d%—‘(l—qﬁ) 7+371d3+’1—q2 7(]”71 2d4 — 0, n — oo.
[n]QH ]' + qn (]‘ + qn )

The following convergence holds for x € [0,d] as n — oo
Sng. (1)(z) = 1,
Snq. () (x) = =,

Snia,q.(t)(z) = zloga.
We further have,

nl;n;o {Sn.a.q, (t* — 2zlogat + (zloga)?)(z)}

li_>m [Sn,a,qntQ (x) — 2zlogaSy a.q, (t) () + (zlog a)28n7a7qn (H)(z)] =0,

and then in view of Theorem [3.1] our theorem is proved.

Remark. Let ¢ € (0,1) be fixed and x € {0, %) . Then we have

Snaq()(z) =1,

Snaalt)a) » { T Tome

1+zloga
as n — o0o.

Proof. The proof that S, q,4(1)(z) = 1 is obvious. Next, since g € (0,1), one has
li_>m q" = 0. From the second formula of Lemma it follows that for n — oo,

. zloga
1 — —_—
Jim 8y, 0,4(1)(2) = [ rloga
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Moreover, one obtains

g
1 (i)
I+gn !

xloga zloga
1—qrzloga - 1+zloga ‘(xloga)2‘ 1—qnzloga
n—1
" (1+q)
< |2? Tre 1
o T4 g04g"
- (1—qn)?

— 0asn— o

which proves the uniform convergence.
In the following we will consider only the case when ¢ depends on n, that is ¢ = ¢,
and such that ¢ - basn — 00,0 <b< 1

4. VORONOVSKAJA TYPE THEOREM

The Voronovskaja theorem estimates the rate of convergence in terms of deriva-
tives [5]. We first prove the following.

Lemma 4.1. Let ¢, € (0,1)Vn € N be such that ¢, — 1, and ¢} — b where
0<b<1asn— oco. Then following formulas hold good:

Tim {[nlg, Sna.q, (£ — 2loga)(z)} =0, (4.1)
nl;n;o{ inSnaqn (t —zloga)?(z)} = zloga, (4.2)
lim {[n)2 Snaq, (t —zloga)!(z)} = 3(zloga)’. (4.3)

n—oo

Moreover, the convergence is uniform on any compact interval [0,d], d > 0.

Proof. First we calculate

n—oo (l—qn) n— oo n n-
= lm (L+gn+-+qr_ +qr— g~ —qh,_y) =0, (4.4)
n—00

because ¢, — 1 and ¢! = 5,0 <b <1, as n — oo, and

1— n\3
lim M: lim { —q) (1+Qn+"'+QZ—1)}

n— 00 (1 —qn) n— 00
=lm (1 +qgu++aq 1 +6¢ — @1~ —qon1) =0,
n—oo

so that

2n—1

I {14 g+ gy =2+ ) g T =0, (45)

because ¢, = 1,¢7 — 0,0 < b <1, as n — o0o. The calculation holds true for
] ) Since the expression 0 — 00 as n — 00, there

2 2
T € [Ov T=qmlogally, T=gm)log alilm
exists a rank Ng such that if n > Ny, then [0, d] C [0, m
Then (4.1]) is proved in the following way:

1714, Sn.aan (¢ = 2108 @)| = |[W]g, (Sn.aar (@) = (2108010, (1))

), where d € Ry.
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zloga (1= gn[nl3,) zloga)?
[n]q" [n]g, zloga loga = o R ( [n)] zloga
o (1= g Pl 21 (1 - g Pgee
2
_ |1-an 1—qpn (zloga)?
2 l—qn.l_s_q% 14+ 1:§’?lxloga
_ 120 -gp)*(L—gn)  (zloga)®
- n—1\2 1—qn
1+qgn ) 1+1+q2,1xloga
1 — g™ 2
< 2d2{(qn)}—>0, as n — oo.
(1 - qn)
The proof of the limit in (4.2]) is demonstrated in the following.
[n]qnsn,a,qn ((t — xlog a)2) (5’7) = [n]qn [Sn,a,qn (tZ)(x) —2rlogaSn a,q, (t)(x) + Sn,a,qn(l)(m)]

zloga

(rloga)?q, + o
TL] an
qn { [n]gnzloga n]g,zloga
[1+(1_Qn) 2 ][1+Qn(1_Qn) ) ]

zloga
— 2zloga o woga T (xloga)Z}
1+ (1 - Qn) P)
[n]q { 4 2 [nﬁ
= ——2|(xloga)*q.(1 — gn -
Qma,O Qn,a,l ( & ) ¢ ( 4 ) 4

[nl2.,
+ (z loga)gqn(l — qn)2 2q + (z loga)Qqn(l — qn)

i)

1 qn(l—qn)2<1—q" 2 )3
= —— |(zloga)? =,
Qn,a,OQn,l |:( & ) 4 ]-_Qn (1+q2_1)
n 2
e (12
2 I_Qn (1"‘(]271)
1—ql 2
+ (zloga)*(q, —1 e +zxloga
(zloga)”(q )1—qn1+qﬁ—1 g}
1 (1—q")3 2
_ 1 4 n
Qn,a,O Qn,a,l |:(x Oga) i 17(111 (1+Q;Ll_1)3
2
+ (zloga)®(1— 227
( g ) ( q ) (1+q2—1)2
" 2
— (xloga)Q(l—qn)(1+qn_1)+x10ga}

Then, we have ’[n]qn&,,a,qn ((t — zloga)?)(z) — zloga

1 (1—qn)? 2
= |—— |(zloga)q, n
‘Qn,a,OQn,a,l |:( s ) 1*% (1+q3_1)3
2
+ (zloga)? 1—q; 2#— zloga)? 1—gq; n}
1 —qg" 3
< 2Bl ooy - g,

1_Qn
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which tends to zero by as n — oo, which proves the limit (4.2). The third
limit is similarly proved and hence the lemma. which tends to zero by as
n — 00, which proves the limit . The third limit is similarly proved and hence
the lemma.

Remark. Under the conditions of Lemmald.1] the limit (£.2)) implies that ||Sy,a,q, (t—
)?|| = 0 as n — oo, uniformly on compact intervals.

Recall that if I C R is an interval, and h : I — R a bounded function then for
0 > 0, the modulus of continuity of first order is defined as [21]:

w(h,d) = sup{|h(u) — h(v)| s u,v € I, |u —v| < d}. (4.6)

Moreover, the inequality w(h,d) < [1+ (%)ﬂw(h7 1), ¥ d, n > 0 holds for h bounded.
Below we prove the Voronovskaja theorem.

Theorem 4.2. Let ¢, € (0,1) be a sequence such that ¢, — 1,¢7 = b0<b <1
as n — oo and h be any continuous and bounded function on [0,00) (such that
B and h” are continuous and bounded on [0,00)). Then the convergence of the
operators Sy q.q, is uniform on every compact interval [0,d], d > 0,

and we have
x .

i {[n]g, [Sna, (h)(@) = h(2)]} = T4 (@)

Proof. Let h,h’, h” be continuous and bounded on [0, 00) and x € [0, 00) be fixed.
We use Taylor’s formula with integral remainder as
t

h(t) = h(z) + b (z)(t — x) + / (t —u)h" (u)du.

x

Let’s use the notation
t t
Ry(t,x) = / (t —u)h" (u)du = / (t —u)(h'(u) — b (x))du

(t— =)

=h"(x) + / (t —u)(h'(u) — h'(z))du.
and r(t;x) = ﬁ f;(t —u)[h”(u) — h"(x)]du. Then it follows that

(t —xloga)?

h(t) = h(z) + h(z)(t — =) + h"(z) 5

Let’s rewrite (4.7) by denoting as

+7(t;2)(t — 2 loga)?. (4.7)

A0 — ) (e — o) + ) ks
(t — xloga)? :

r(t,a;x) =

Then, we shall prove that flim r(t,a;z) = 0. Let’s show that r(t,a;x) is bounded

r
and continuous for ¢ € [0, d]. We have

, h(t) = h(z) — W (@)(t — wloga) + B (x) =2 lose)
lim r(¢,a; ) = lim .
t—ax to (t —xloga)?
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because h” is continuous. Boundedness results from the formula

e = e /:logau—u)[h"(u)—h"(x)du]
Mlloga)z/ig (=) |1 @) + 5" (@)]] du
e L ] O L

For continuity, if ¢ = x, by convention r(z,x) = 0. If t # x, then we have

Togay? /. (¢~ I ) @)

ta;z)| = ————0
02 = T ora

By means of modulus of continuity of first order, we obtain
" (u) = B (2)] < wh"|(u—2)]) < w(h"|t —2|).

It follows that |r(¢;x)| < Jw(h”|t — z|) for t # x. By applying Sp,a,q, to both sides

of , we have
Snaqn (h)(@) = 1(2)Sna.q, (1)(@) + B (2)Sn,a,q, (t — xloga)(z)

+h//2(x) Sn,a,qn (t — Z‘)Q(l") + Sn,a,qn (T(t7 a; l‘) (t - xlOg a)2(l‘)-
Then
o ) s gy
[Mgn [Sn.a,q, (1) (2) = W()] = B (@) [P g, Sn,0.q, (=) () +——5 =" 5,04, (= log a)

+ [n]gnSnaq (r(t, a;2)(t — xlog a)2) (z). (4.8)
By applying Cauchy-Schwartz inequality, one gets

|Sn.a.qn (7"(t7 a;x)(t — xlog a)2) (2)] < \/Sn’a’qn (r2(t,a;2))(x) \/[n]gnsw,qn (t — xloga)*(z).
(4.9)

By (4.3)), we have
lim /[n]2 Snaq,(t —2)*(z) = /3(xloga)?. (4.10)

n—oo

Then
|Sn,a,q0 (7(t; a52)) ()] < Snaq, (|7t a;2))(2) < Spag, [w(R")|t — zlog al](x)
(t — xloga)? w
< S | (14 ST Yt ()]

w(h, nn)
Tn
On considering 1, = ||\/Sn.a,q, (t — xloga)?(z)||, one obtains

= w(h,1n)Sn,a,q, (1) (@) + Snaq, ((t = wloga)?)(z).

|Sn.a.q,7 () (x)] < 2w <h, 11/ Sn.a,q, (t —zlog a)Q(x)H) ) (4.11)

Combining (4.8)), (4.9), (4.10) and (4.11)), the proof is completed.
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5. CONCLUSION

In this manuscript we introduced a generalized ¢- Szdsz-Mirakjan operators.
These operators are more flexible (depending on the selection of ¢) than the clas-
sical Szasz-Mirakjan operators while retaining approximation properties. Also, we
investigated the shape preserving and convergence properties using modulus of con-
tinuity and proved Voronovskaja theorem.
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