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P -NORMALITY

LUTFI KALANTAN AND MAI MANSOURI

Abstract. A topological space X is called P -normal if there exist a normal

space Y and a bijective function f : X −→ Y such that the restriction f|A :

A −→ f(A) is a homeomorphism for each paracompact subspace A ⊆ X.

We will investigate this property and produce some examples to illustrate the

relation between P -normality and other weaker kinds of normality.

1. Introduction

We introduce a new weaker version of normality and call it P -normality. The
purpose of this paper is to investigate this property. We present some examples
to show relationships between P -normality and other weaker versions of normality
such as C-normality, L-normality, and epinormality. Throughout this paper, we
denote an ordered pair by 〈x, y〉, the set of positive integers by N and the set of
real numbers by R. A T4 space is a T1 normal space and a Tychonoff space is a T1

completely regular space. We do not assume T2 in the definition of compactness,
paracompactness and countable compactness. We do not assume regularity in the
definition of Lindelöfness. For a subset A of a space X, intA and A denote the
interior and the closure of A, respectively. An ordinal γ is the set of all ordinal α
such that α < γ. The first infinite ordinal is ω0, the first uncountable ordinal is ω1,
and the successor cardinal of ω1 is ω2.

2. P -normality

Recall that a topological space (X , τ ) is paracompact if any open cover has a
locally finite open refinement. For a subspace A of X, A is paracompact if (A , τA )
is paracompact, i.e., any open (open in the subspace) cover of A has a locally finite
open (open in the subspace) refinement. We do not assume T2 in the definition of
paracompactness.
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Definition 1. A topological space X is called P -normal if there exist a normal
space Y and a bijective function f : X −→ Y such that the restriction f|A : A −→
f(A) is a homeomorphism for each paracompact subspace A ⊆ X.

The Independence of P -normality

Obviously, any normal space is P -normal, just by taking, in the definition, Y = X
and the identity function. It is also clear that any paracompact P -normal space
has to be normal. Here is an example of a P -normal space which is not normal.

Example 2. We know that (R , CC ) where CC is the countable complement topol-
ogy is not normal because it is hyper-connected and T1, [9, Example 20]. We will
show that (R , CC ) is P -normal.
Claim: C ⊆ R is paracompact if and only if C is countable.
Proof of Claim: If C is countable, then C as a subspace is discrete and hence
paracompact. On the other hand, assume that C is paracompact and suppose C is
uncountable to get a contradiction. Let { an : n ∈ N } ⊂ C. So { an : n ∈ N }
is a countably infinite subset of distinct elements of C. For each n ∈ N let
Vn = (C \ { an : n ∈ N })

⋃
{an}. Then the collection {Vn : n ∈ N} is an open

cover for C. Let {Ws : s ∈ S} be an open refinement of {Vn : n ∈ N}. Pick s∗ ∈ S
then there exists ns∗ ∈ N such that Ws∗ ⊆ Vn∗s . We will show that the subfamily
{Wsn : n ∈ N} cannot be locally finite, which in turn shows that {Ws : s ∈ S}
cannot be locally finite. Now, without loss of generality, we can assume the sets
in the subfamily are all non empty. Thus, by being open sets in (C, CC) we have
for every n ∈ N, C \Wsn must be countable. Therefore,

⋃
(C \Wsn) is countable.

C \ (
⋂
Wsn) is countable. So

⋂
Wsn is uncountable. Pick y ∈

⋂
Wsn , any open

neighborhood of y must intersect all of the Wsn . That is, any open neighborhood
of y intersects infinitely many members of {Ws : s ∈ S}. Thus the claim is proved.

Consider idR : (R, CC) −→ (R,D), where D is the discrete topology on R. Let
A be any arbitrary paracompact subset of R. Then by the above discussion A is
countable. Which means A as a subspace is discrete and id|A : (A , CCA ) −→
(A , D ) is a homeomorphism.

Now, we study the independence of P -normality with respect to paracompact-
ness. Any paracompact non-normal space cannot be P -normal. To see this, let X
be any paracompact non-normal space. Suppose X is P -normal. Pick a normal
space Y and bijection f : X −→ Y such that f|A : A −→ f(A) is a homeomor-
phism for every paracompact A ⊆ X. But X is paracompact and f : X −→ Y is a
homeomorphism which makes X normal, and that is a contradiction. So (R, CF),
where CF is the finite complement topology, [9, Example 19], cannot be P -normal.
Observe that (R, CC) is an example of a P -normal space which is not paracompact.

Let us recall some definitions:

Definition 3. A topological space X is called C-normal if there exist a normal
space Y and a bijective function f : X −→ Y such that the restriction f|A : A −→
f(A) is a homeomorphism for each compact subspace A ⊆ X, [6]. X is called
L-normal if there exist a normal space Y and a bijective function f : X −→ Y
such that the restriction f|A : A −→ f(A) is a homeomorphism for each Lindelöf
subspace A ⊆ X, [7].
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It is clear that P -normality implies C-normality. The Dieudonné plank is an
example of a C-normal space, see [6], which is not P -normal.

Example 4. Let us recall the Dieudonné plank. The ground set is

X = ((ω1 + 1)× (ω0 + 1)) \ {〈ω1, ω0〉},
see [9, Example 89]. Let N = {〈γ, k〉 : γ < ω1, k < ω0}, A = {〈ω1, k〉 : k < ω0}
, and B = {〈γ, ω0〉 : γ < ω1}. Observe that N , A, and B form a partition of
X. The topology τ on X is generated by the neighborhood system: For each
〈γ, k〉 ∈ N , let B(〈γ, k〉) = {{〈γ, k〉}}. For each 〈ω1, k〉 ∈ A, let B(〈ω1, k〉) =
{Vγ(k) = (γ, ω1]× {k} : γ < ω1}. For each 〈γ, ω0〉 ∈ B, let B(〈γ, ω0〉) = {Vk(γ) =
{γ} × (k, ω0] : k < ω0}.

Claim 1: N ∪A and N ∪B are paracompact.
Proof of Claim 1: First, we show that N ∪ A is paracompact. Let W = {Ws ⊆
(N∪A) : s ∈ S} be any open (open in the subspace N∪A) cover for N∪A. For each
k ∈ ω0 there exists sk ∈ S such that 〈ω1, k〉 ∈ Wsk . For each k ∈ ω0 there exists
γk < ω1 such that Vγk(k) ⊆ Wsk . The family {Vγk(k), {〈η,m〉 } : k ∈ ω0, 〈η,m〉 ∈
(N ∪A)\ (∪k∈ω0

Vγk(k)) } is a locally finite open refinement ofW. Similarly, N ∪B
is paracompact and Claim 1 is proved.

Indeed, by similar idea of the proof of Claim 1, we have that any basic open set
from the neighborhood system is paracompact . . . (?).

Suppose that the Dieudonné plank X is P -normal. Pick a normal space Y and
a bijection function f : X −→ Y such that f|C : C −→ f(C) is a homeomorphism
for each paracompact subspace C of X. Observe that f(N), f(A), and f(B) form
a partition of Y because f is a bijection function.

Claim 2: Y is T1.
Proof of Claim 2: Let y1 and y2 be any two distinct elements of Y . Consider the
unique elements x1, x2 ∈ X such that f(x1) = y1 and f(x2) = y2. The subspace
{x1, x2 } ⊂ X is paracompact, being finite, and discrete, because X is T1. Thus
f|{x1,x2} : {x1, x2} −→ f({x1, x2}) = {y1, y2} is a homeomorphism. Since {x1} is

open in {x1, x2}, then {y1} is open in {y1, y2}. Thus, there exists an open subset
U1 of Y such that U1 ∩ {y1, y2} = {y1} which gives that y1 ∈ U1 63 y2. Similarly,
{y2} is open in {y1, y2}. Thus, there exists an open subset U2 of Y such that
U2 ∩ {y1, y2} = {y2} which gives that y1 6∈ U1 3 y2. Therefore, Y is T1 and Claim
2 is proved.

Claim 3: For each k < ω0 and γ < ω1 we have that { f(〈γ, k〉) } is open in Y ,
i.e., f(N) is consisting of isolated points in Y .
Proof of Claim 3: N consists of isolated points of X, thus N is a paracompact
subspace of X. So, f|NN −→ f(N) is a homeomorphism. Now, let k ∈ ω0 and
γ ∈ ω1 be arbitrary. We have { f(〈γ, k〉) } is open in f(N) ⊂ Y , thus there exists
an open subset U of Y such that

U ∩ f(N) = { f(〈γ, k〉) } . . . (??).

Suppose that there exists y ∈ U such that y 6= f(〈γ, k〉). Then y 6∈ f(N), hence
either y ∈ f(A) or y ∈ f(B). If y ∈ f(A), then there exists a unique m ∈ ω0 such
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that y = f(〈ω1,m〉). By (?), f|V0(m)
: V0(m) −→ f(V0(m)) is a homeomorphism.

Now, we have 〈ω1,m〉 ∈ V0(m) and U is an open neighborhood of y = f(〈ω1,m〉)
and f|V0(m)

is continuous. Thus, there exists a basic open set Vβ(m), for some

β < ω1, such that 〈ω1,m〉 ∈ Vβ(m) and f|V0(m)
(V0(m)) ⊆ U . This means that U

contains elements of f(N) distinct from f(〈γ, k〉) which contradicts (??). Similarly,
if y ∈ f(B). Claim 3 is proved.

Now, N ∪ A and N ∪ B are both open in X. Also, by Claim 1, N ∪ A is
paracompact, hence f|N∪A : N ∪ A −→ f(N ∪ A) ⊂ Y is a homeomorphism, in
particular f|N∪A is continuous. Similarly, f|N∪B is continuous. By gluing theorem
[3, Theorem 9.4], we get f : X −→ Y is continuous.

Claim 4: f(N ∪A) and f(N ∪B) are both open in Y .
Proof of Claim 4: First, we show that f(N ∪ B) is open. To get a contradiction,
suppose that f(N ∪B) is not open in Y . This means that there exists an element
y ∈ f(N ∪ B) such that for any open neighborhood W ⊆ Y of y we have that
W 6⊂ f(N ∪ B). By Claim 3, y should be in f(B). So, there exists 〈α, ω0〉 ∈ B
such that each open neighborhood W of f(〈α, ω0〉) contains elements of f(A). By
Claim 2, Y is T1. Since in a T1-space, any finite subset is closed and if W is open
and Z is closed, then W \ Z is open, thus we have
any open neighborhood W of f(〈α, ω0〉) contains infinitely many elements of f(A),
. . . (? ? ?)
Take this element 〈α, ω0〉 ∈ B, and consider the subspace { 〈α, ω0〉 } ∪N ∪A = H,
then H is a paracompact subspace of X. To see this, let W = {Ws ⊂ H : s ∈ S }
be any open (open in H) cover for H. Fix s′ ∈ S such that 〈α, ω0〉 ∈ Ws′ , then
fix m ∈ ω0 such that Vm(α) ⊆ Ws′ . For each k ∈ ω0, fix sk ∈ S such that
〈ω1, k〉 ∈ Wsk . For each k ∈ ω0, fix γk < ω1 such that α < γk for each k ∈ ω0

and 〈ω1, k〉 ∈ Vγk(k) ⊆ Wsk . The family {Vm(α), Vγk(k) : k ∈ ω0 }
⋃
{ { 〈β, n〉 } :

〈β, n〉 ∈ H \ ((Vm(α)) ∪ (∪k∈ω0
Vγk(k))) } is a locally finite open refinement of

W. Thus, f|H : H −→ f(H) ⊂ Y is a homeomorphism. Since any basic open
neighborhood of 〈α, ω0〉 in H is the same as in X and H ∼= f(H) ⊂ Y , then this
contradict (? ? ?). Thus f(N ∪B) is open in Y .
Observe that for any m ∈ ω0, similar technique as H is a paracompact subspace of
X can be used to show that the subspace K = { 〈ω1,m〉 } ∪N ∪B is paracompact.
So, similarly, f(N ∪A) is open in Y and Claim 4 is proved.

Now, f(N ∪ A) and f(N ∪ B) are both open in Y . Also, f|N∪A : N ∪ A −→
f(N ∪A) ⊂ Y is a homeomorphism, in particular f−1

|f(N∪A)
is continuous. Similarly,

f−1
|f(N∪B)

is continuous. By gluing theorem [3, Theorem 9.4], we get f−1 : Y −→ X is

continuous. Hence f is a homeomorphism which is a contradiction as the Dieudonné
plank is not normal, [9, Example 89]. Therefore, the Dieudonné plank is not P -
normal.

So any P -normal space is C-normal but the converse is not always true as shown
in the previous example. We will also give another example later that shows a
C-normal space need not be P -normal. This example is (R,RS) where RS is
the rational sequence topology [9, Example 65]. But before this, we show the
independence of P -normality with other related properties. We start with this
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useful theorem. Recall that a space X is Fréchet if for any subset A of X and any
element a ∈ A there exists a sequence (an)n∈N of members of A, i.e., an ∈ A for
each n ∈ N, such that an −→ a, [4].

Observe that a function f : X −→ Y witnessing the P -normality of X need not
be continuous. For example, (R, CC) is P -normal with witness idR : (R, CC) −→
(R,D) is not continuous. But the witness function will be continuous if X is Fréchet.

Theorem 5. If X is Fréchet and P -normal, then any function witnesses the P -
normality of X is continuous.

Proof. Assume that X is P -normal and Fréchet. Let f : X −→ Y be a witness of
the P -normality of X. Let A ⊆ X and pick y ∈ f(A). Pick the unique x ∈ X such
that f(x) = y. Thus x ∈ A. Since X is Fréchet, there exist a sequence (an) ⊆ A
such that an −→ x. The subspace B = {x, an : n ∈ N} of X is paracompact being
compact , thus f|B : B −→ f(B) is a homeomorphism. Now, let W ⊆ Y be any
open neighborhood of y, then W ∩ f(B) is open in the subspace f(B) containing
y. By continuity of the homeomorphism f|B , f−1(W ∩ f(B)) = f−1(W ) ∩ B
is an open neighborhood of x in B. Then,(f−1(W ) ∩ B) ∩ {an : n ∈ N} 6= ∅.
So (f−1(W ) ∩ B) ∩ A 6= ∅. Therefore we have, ∅ 6= f((f−1(W ) ∩ B) ∩ A) ⊆
f(f−1(W )∩A) = W∩f(A) then W∩f(A) 6= ∅. Hence y ∈ f(A), thus f(A) ⊆ f(A).
Therefore, f is continuous. �

Example 6. For each x ∈ P, fix a sequence (xn)n∈N ⊂ Q such that xn −→ x,
where the convergency is taken in (R , U ), and let An(x) denote the nth-tail of the
sequence. For each x ∈ P, let B(x) = {Un(x) : n ∈ N}, where Un(x) = An(x) ∪{x}.
For each x ∈ Q, let B(x) = {{x}}. The collection {B(x)}x∈R satisfies the conditions
of a neighborhood system. The unique topology on R generated by {B(x)}x∈R is
called the Rational Sequence Topology, see [9, Example 65]. Let us denote it by
RS. It is clear that (R , RS ) first countable. We will show that (R,RS) is not
P -normal. Suppose it is P -normal. Then there exists a normal space Y and a
bijection f : (R,RS) −→ (Y,τ ) such that the restriction f|A : A −→ f(A) is
a homeomorphism for each paracompact subspace A ⊆ R. Now, we know that
(R,RS) is first countable and hence Fréchet. So by Theorem 5 f is continuous. We
also know that (R,RS) is separable. The continuous image of a separable space is
separable, so (Y,τ ) is separable. Our aim is to show that (Y,τ ) has a discrete, closed
uncountable subspace which means by Jone’s Lemma it cannot be normal. Both Q
and P are discrete subspaces in (R,RS) which means they are both paracompact.
So f|Q : Q −→ f(Q) and f|P : P −→ f(P) are both homeomorphisms. Our claim
is that f(P) ⊆ Y is the uncountable, discrete closed subset of the separable space
Y . It is of course uncountable since f is a bijection. To see that f(P) is discrete
we want to show that every singleton is open. let y ∈ f(P) be arbitrary. Then
there exists a unique x ∈ P such that y = f(x). But P is discrete in (R,RS) so
{x} ∈ RSP. f|P is a homeomorphism and hence open, so f|P({x}) = {y} ∈τ f(P). In
other words {y} is open in f(P). Since y was arbitrary, then every singleton is open
in f(P). That means it is indeed discrete. It remains to show that f(P) is closed in
(Y,τ ). We will do this by showing thatY \ f(P) is open in Y . Now, Q∪ P = R and
Q∩P = ∅. Since f is a bijection then f(Q)∪ f(P) = Y and f(Q)∩ f(P) = ∅. That



6 L. KALANTAN AND M. MANSOURI

is, Y \ f(P) = f(Q). That means our goal is to show that f(Q) is open in (Y,τ ) .
We will do this by contradiction. Suppose f(Q) is not open in Y . Then there exists
q ∈ f(Q) such that for every open neighborhood V ∈τofq, q ∈ V 6⊆ f(Q), where
q = f(q∗) for unique q∗ ∈ Q. Which means V ∩ f(P) 6= ∅ −→ (1). Notice that in
a similar fashion to what we did above, we can show that f(Q) is also discrete in
(Y,τ ). Which means there exists Vq ∈τ such that Vq ∩ f(Q) = {q} −→ (2). By
(1): since for every V ∈τ of q, V ∩ f(P) 6= ∅ then Vq ∩ f(P) 6= ∅. This implies
that f−1(Vq)∩ f(P) 6= ∅ −→ (3). By (2) f−1(Vq)∩ f(Q) = f−1({q}), which means
f−1(Vq) ∩ f(Q) = f−1({f(q∗)}) and therefore f−1(Vq) ∩ f(Q) = {q∗} −→ (4). So
combining(3) and (4) we get that f−1(Vq) contains at least one irrational number
p. Now, Vq ∈τ and f is continuous, since (R,RS) is Fréchet so f−1(Vq) ∈ RS. But
if f−1(Vq) has an irrational number p, it must contain a basic open set of p, call it
U , which is of the form U = Am∪{p} where Am is a tail of a a sequence of rational
numbers converging to p. Then we must have p ∈ U = {p} ∪ Am ⊆ f−1(Vq) but
f−1(Vq) ∩Q = {q∗}, that is, the intersection only consists of one rational number.
So it is impossible for f−1(Vq) to be open, but this contradicts the continuity of f .
Our assumption that f(Q) is not open lead to a contradiction. Therefore, it must
be open and f(P) = Y \ f(Q) is closed. Hence, f(P) ⊆ Y (where Y is separable)
is uncountable, discrete and closed. By Jone’s Lemma that means Y cannot be
normal and we get a contradiction. So (R,RS) is not P -normal. This is another
example of a Tychonoff space that is not P -normal just like the Dieudonné Plank.

While T2 local compactness implies C-normality [6, 1.8], notice that (R,RS) is
not P -normal but it is T2, locally compact and zero-dimensional. This gives us
that neither zero-dimensionality implies P -normality nor being T2 locally compact
implies P -normality.

Example 7. We modify the Dieudonné Plank [9] to define a new topological space.
Let

X = ((ω2 + 1)× (ω0 + 1)) \ {〈ω2, ω0〉}
where ω0 is the first infinite ordinal number and ω2 is the successor cardinal of ω1,
the first uncountable ordinal. Write X = A∪B∪N , where A = {〈ω2, n〉 : n < ω0},
B = {〈α, ω0〉 : α < ω2}, and N = {〈α, n〉 : α < ω2 and n < ω0}. The topology τ
on X is generated by the following neighborhood system: For each 〈α, n〉 ∈ N , let
B(〈α, n〉) = {{〈α, n〉}}. For each 〈ω2, n〉 ∈ A, let B(〈ω2, n〉) = {Vα(n) = (α, ω2] ×
{n} : α < ω2}. For each 〈α, ω0〉 ∈ B, let B(〈α, ω0〉) = {Vn(α) = {α} × (n, ω0] : n <
ω0}. Then X is Tychonoff non-normal space which is not locally compact. This
is an L-normal space [7] which is not P -normal. It can be shown that it is not
P -normal in a similar fashion to Example 4. While (R, CC) is a P -normal space as
we’ve shown in Example 2 that is not L-normal. [7]. This shows the independence
of P -normality with regards to L-normality.

We have shown so far that P -normality is independent from: normality, para-
compactness, C-normality and L-normality.

3. More Results

Theorem 8. Any regular P -normal space is L-normal.
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Proof. Let (X, τ ) be a regular P -normal space. We want to show it is L-normal.
Let A ⊆ X be an arbitrary Lindelöf subset of X. Now, since X is P -normal
then there exists a normal space Y and a bijection f : X −→ Y such that for
every paracompact C ⊆ X the restriction f|C : C −→ f(C) is a homeomorphism.
X is regular and regularity is hereditary. That means A is regular as well. So
A is a regular Lindelöf subspace. We know that any regular Lindelöf space is
paracompact, hence, f|A : A −→ f(A) is a homeomorphism by P -normality. Since
A was an arbitrary Lindelöf subset, this gives us that (X,τ ) is L-normal. �

We conclude that in a T3 P -normal space, any Lindelöf subspace is paracompact.
Now, we have that “if X is L-normal and of countable tightness then any witness
function is continuous” [7, Theorem 1.2]. So, by Theorem 8, we get the following
corollary:

Corollary 9. If X is P -normal, regular and of countable tightness then any witness
function is continuous.

Theorem 10. P -normality is a topological property.

Proof. Let X be a P -normal space and let X ∼= Z. Let Y be a normal space and
let f : X −→ Y be a bijective function such that the restriction f|C : C −→ f(C)
is a homeomorphism for each paracompact subspace C ⊆ X. Let g : Z −→ X be a
homeomorphism. Then Y and f ◦ g : Z −→ Y satisfy the requirements. �

P -normality is not hereditary. Consider the Dieuodonné Plank X. X is a Ty-
chonoff space which means it has a compactification Y , where Y is both T2 and
compact. Then Y is T4 and hence normal. So Y is P -normal. Viewing X as a
subspace of Y , X is not P -normal. This shows there exists a space Y which is
P -normal and a subspace of it X which is not P -normal. Therefore, P -normality
is not hereditary in general. Now, consider (R,RS). It is not only Tychonoff but it
is a non compact locally compact space [9], which means it has a 1-point compact-
ification Y = R ∪ {p} where p 6∈ R. τ={V ∈ P(Y ) : V ∈ RS or Y \ V is a closed
compact subspace of R}. Since the universal set R ∈ RS then R ∈ τ . R is an open
subspace of its compactification. which shows that P -normality is not hereditary
with respect to open subsets either. Since the compactification Y is normal and
hence P -normal but (R,RS) is not P -normal.

Theorem 11. P -normality is an additive property.

Proof. Let Xα be a P -normal space for each α ∈ Λ. We show that their sum
⊕α∈ΛXα is P -normal. For each α ∈ Λ, pick a normal space Yα and a bijective
function fα : Xα −→ Yα such that fα|Cα

: Cα −→ fα(Cα) is a homeomorphism for

each paracompact subspace Cα of Xα. Since Yα is normal for each α ∈ Λ, then the
sum ⊕α∈ΛYα is normal, [4, 2.2.7]. Consider the function sum [4, 2.2.E], ⊕α∈Λfα :
⊕α∈ΛXα −→ ⊕α∈ΛYα defined by ⊕α∈Λfα(x) = fβ(x) if x ∈ Xβ , β ∈ Λ. Now, a
subspace C ⊆ ⊕α∈ΛXα is paracompact if and only if and C ∩Xα is paracompact
in Xα for each α ∈ Λ. If C ⊆ ⊕α∈ΛXα is paracompact, then (⊕α∈Λfα)|C is a
homeomorphism because fα|C∩Xα

is a homeomorphism for each α ∈ Λ. �
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In [7, 1.6], it was proved that “if X is T3, separable, L-normal, and of countable
tightness, then X is normal (T4)”. So, the Niemtyzki plane [9, Example 82] is not
L-normal, hence not P -normal, by Theorem 8. Similarly, any Mrówka space Ψ(A),
where A ⊂ [ω0]ω0 is mad [2]. These are examples of Tychonoff spaces which are
not P -normal alongside the previously shown ones in this paper: the Dieudonné
Plank and R with the rational sequence topology. We conclude that P -normality
is not multiplicative, for example, the Sorgenfrey line is T4 hence, P -normal. But
its square is a Tychonoff, separable, and first countable space (so of countable
tightness) which is not P -normal because it is not normal. The Niemtyzki plane
and the Sorgenfrey line square are examples that show us that a submetrizable
space need not be P -normal, recall that (X , τ ) is called submetrizable if there is
a coarser metrizable topology τ ′ on X, [5]. The same two examples work to show
us that an epinormal space need not be P -normal either. A topological space (X ,
τ ) is called epinormal if there is a coarser topology τ ′ on X such that (X , τ ′ ) is
T4, [6].

Also, by Theorem 8 and [7, 1.6] we have the following theorem:

Theorem 12. If X is T3, separable, P -normal, and of countable tightness then X
is normal (T4).
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