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THE ITERATIONS OF STRONGLY QUASI φ-NONEXPANSIVE

MAPPINGS IN BANACH SPACES

RASOUL JAHED, HAMID VAEZI AND HOSSEIN PIRI

Abstract. In this paper, we study the iterations of strongly (asymptotic)
quasi φ-nonexpansive mappings in Banach spaces. First, we prove weak con-

vergence of the generated sequence to a common fixed point of an infinite

family of strongly asymptotic quasi φ-nonexpansive mappings. Next we prove
strong convergence of the generated sequence by an additional assumption.

In the sequel, invoke of Halpern regularization method, we prove strong con-

vergence of the generated sequence to a common fixed point of the family of
mappings without any extra conditions. Finally, we give some applications of

our main results in convex minimization and equilibrium problems and present

numerical examples to illustrate and support them.

1. Introduction

We denote the dual of a real Banach space E with E∗, its norm with ‖.‖ and the
value of v ∈ E∗ at x ∈ E by 〈x, v〉. The mapping J : E → 2E

∗
defined by

Jx = {v ∈ E∗ : 〈x, v〉 = ‖x‖2 = ‖v‖2}
for all x ∈ E, is called the duality mapping.
A Banach space E for which ‖x+y2 ‖ < 1 for any x, y ∈ E with ‖x‖ = ‖y‖ = 1
and x 6= y, is called strictly convex. Also, it is called uniformly convex if for any
ε ∈ (0, 2], there exists δ > 0 such that ‖x+y2 ‖ < 1 − δ, for any x, y ∈ E with
‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε. We know that a uniformly convex Banach space
is reflexive and strictly convex. A Banach space E is called smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(1.1)

exists for all x, y ∈ U = {z ∈ E : ‖z‖ = 1}. If for all x, y ∈ U , the limit (1.1)
is attained uniformly, then E is called the uniformly smooth Banach space. For a
smooth Banach space E, we will use the following function

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 (1.2)
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for any x, y ∈ E which was used in [1] by Alber, in [8] by Kamimura and Takahashi
and in [15] by Reich. By the definition of the function φ, we have

0 ≤ (‖x‖ − ‖y‖)2 ≤ φ(x, y). (1.3)

If E is a Hilbert space, then φ(x, y) = ‖x− y‖2, because the duality mapping is the
identity operator in Hilbert spaces.

Proposition 1.1. [8] Suppose that {xk} and {yk} are two sequences in a uniformly
convex and smooth Banach space E. If φ(xk, yk) tends to zero, as k → ∞, and
either {xk} or {yk} is bounded, then limk→∞ ‖xk − yk‖ = 0.

Proposition 1.2. [8] Let C be a nonempty, closed and convex subset of a reflexive,
strictly convex and smooth Banach space E and x ∈ E. Then we can find a unique
element x0 ∈ C, such that

φ(x0, x) = inf{φ(z, x) : z ∈ C}.
Regarding Proposition 1.2, we denote the unique element x0 ∈ C by PC(x),

where the mapping PC is called the generalized projection from E onto C. It is
well known that the generalized projection mapping PC is coincident with the metric
projection from E onto C in Hilbert spaces. We need the following proposition to
prove the strong convergence in Section 3.

Proposition 1.3. [8] Let C be a convex subset of a smooth Banach space E, x ∈ E
and x0 ∈ C. Then

φ(x0, x) = inf{φ(z, x) : z ∈ C}
if and only if

〈z − x0, Jx− Jx0〉 ≤ 0, ∀z ∈ C.
Throughout this paper, the strong convergence of a sequence {xk} in E to x ∈ E

is denoted by xk → x and its weak convergence by xk ⇀ x. Let C be a closed and
convex subset of a Banach space E. We denote the set of all fixed points of a
mapping T : C → C by F (T ), i.e. F (T ) = {x ∈ C : Tx = x}.
Definition 1.4. A mapping T : C → C is called nonexpansive, if and only if for
any x, y ∈ C,

‖Tx− Ty‖ ≤ ‖x− y‖
and T is called quasi-nonexpansive, whenever F (T ) 6= ∅ and for any (q, x) ∈
F (T )× C,

‖Tx− q‖ ≤ ‖x− q‖.
Regarding the definitions of nonexpansive and quasi-nonexpansive mappings, we

define φ-nonexpansive and quasi φ-nonexpansive mappings in Banach spaces.

Definition 1.5. A mapping T : C → C is said to be φ-nonexpansive if and only if

φ(Tx, Ty) ≤ φ(x, y), ∀x, y ∈ C
and T is said to be quasi φ-nonexpansive, whenever F (T ) 6= ∅ and

φ(q, Tx) ≤ φ(q, x), ∀(q, x) ∈ F (T )× C.
Definition 1.6. The sequence {Tk} of quasi φ-nonexpansive mappings is called a
strongly quasi φ-nonexpansive sequence if and only if

⋂
k F (Tk) 6= ∅ and φ(Tkxk, xk)

tends to zero, whenever {xk} is a bounded sequence in C and φ(q, xk)−φ(q, Tkxk)→
0, for q ∈

⋂
k F (Tk). When Tk ≡ T , T is called strongly quasi φ-nonexpansive map-

ping.
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Definition 1.7. The sequence {Tk} is called asymptotically quasi φ-nonexpansive
mappings if and only if

⋂
k F (Tk) 6= ∅ and there exists a nonnegative sequence {µk}

with
∑∞
k=1 µk <∞ such that for all k ∈ N,

φ(q, Tkx) ≤ (1 + µk)φ(q, x), ∀(q, x) ∈ F (Tk)× C.

Definition 1.8. The sequence {Tk} of asymptotically quasi φ-nonexpansive map-
pings is called a strongly asymptotic quasi φ-nonexpansive sequence if and only if
φ(Tkxk, xk) → 0 for any bounded sequence {xk} in C and q ∈

⋂
k F (Tk) where

φ(q, xk)− φ(q, Tkxk)→ 0.

(Asymptotically) quasi φ-nonexpansive mappings and some related topics have
been studied in recent years for example in [6, 12, 14]. ∆-convergece of the iterations
for a sequence of strongly quasi-nonexpansive mappings to a common fixed point of
the mappings has been studied in Hadamard spaces by Khatibzadeh and Mohebbi
in [9]. They also used the Halpern regularization method to prove the strong
convergence of the generated sequence. A new iterative method for solving split
feasibility problems and also approximating common fixed points by a new faster
iteration process has been studied by Garodia and Uddin, respectively in [2] and
[3]. Convergence theorems for a hybrid pair of generalized nonexpansive mappings
in Banach spaces have been investigated by Uddin, Imdad and Ali in [20]. For
the iteration scheme of a family of multivalued mappings in CAT(0) spaces and
∆-convergence and strong convergence theorems, we refer the readers to [19].

In this paper, we investigate the iterations of strongly (asymptotic) quasi φ-
nonexpansive mappings in Banach spaces. In Section 2, we consider the iterations
of a sequence of strongly asymptotic quasi φ-nonexpansive mappings and prove
weak convergence of their iterations to a common fixed point of the sequence. Then
we prove strong convergence of the generated sequence by an additional assump-
tion. To achieve strong convergence without any additional assumption, we use the
Halpern regularization method which was used by Xu [21] in Hilbert spaces. In Sec-
tion 3, we will use the Halpern regularization method and prove strong convergence
of their iterations to a common fixed point of the sequence. Finally in Section 4, we
give some applications of the main results in convex minimization and equilibrium
problems and present numerical examples to illustrate and support them.

2. Weak and strong convergence

In this section, we first study the weak convergence of the sequence generated
by (2.2). Next we prove the strong convergence of the generated sequence by an
additional assumption. In order to study the convergence analysis of the gener-
ated sequence, we need the definition of demiclosedness for a sequence of quasi
φ-nonexpansive mappings. Nonexpansive mappings are demiclosed, but for quasi
φ-nonexpansive mappings, we have to assume this property even in Hilbert spaces.

Definition 2.1. A sequence {Tk} of quasi φ-nonexpansive mappings is said to be
demiclosed, whenever for each subsequence {xkn} of {xk} and {Tkn} of {Tk};

if xkn ⇀ p and lim
n→∞

‖Tknxkn − xkn‖ = 0, then p ∈
⋂
k

F (Tk). (2.1)

In the following, we give an example of a sequence of quasi φ-nonexpansive map-
pings which is demiclosed.
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Example 1. Assume that E is a uniformly smooth and uniformly convex Banach
space and B(0, r) denotes the closed ball of radius r centered at 0. We define a
sequence {Tk} from E to itself by Tk(x) = PB(0, k+1

2k ‖x‖)
(x) where P is the generalized

projection on B(0, k+1
2k ‖x‖). It is easy to see that

φ(q, Tkx) ≤ φ(q, x),

for all (q, x) ∈ F (Tk)× E and for all k ∈ N. Therefore {Tk} is a sequence of quasi
φ-nonexpansive mappings. Now, we show that {Tk} is demiclosed. Suppose that
xkn ⇀ p and limn→∞ ‖Tknxkn − xkn‖ = 0. This implies that

lim
n→∞

‖PB(0, kn+1
2kn
‖xkn‖)

(xkn)− xkn‖ = 0.

Therefore we obtain that xkn ⇀ 0, that is p = 0. It is easy to see that p ∈
⋂
k F (Tk),

i.e. {Tk} is demiclosed.

Throughout this paper, we assume that E is a uniformly smooth and uniformly
convex Banach space. Let Tk : C → C be a sequence of strongly asymptotic quasi
φ-nonexpansive mappings. In the following theorem, we show the weak convergence
of the sequence {xk} generated by

xk+1 = Tkxk (2.2)

to an element of
⋂
k F (Tk) 6= ∅. In order to prove uniqueness of the weak limit

point of the generated sequence in the following theorem, we need the following
condition on the Banach space E:
If {yk} and {zk} are sequences in C that converge weakly to y and z respectively
and y 6= z, then

lim inf
k→∞

|〈y − z, Jyk − Jzk〉| > 0. (2.3)

For example, it is known that `p spaces for 1 < p <∞ satisfy the above condition
(see [7]). It is also valuable to mention that when we prove the strong convergence
theorems in this paper we do not need the above condition.

Theorem 2.2. Suppose that C is a nonempty, closed and convex subset of a uni-
formly smooth and uniformly convex Banach space E, and Tk : C → C is a demi-
closed sequence of strongly asymptotic quasi φ-nonexpansive mappings and x1 ∈ C.
Let xk+1 = Tk · · ·T1x1. Then the sequence {xk} converges weakly to a point of⋂
k F (Tk).

Proof. Take x∗ ∈
⋂
k F (Tk). Since the sequence {Tk} is a sequence of asymptoti-

cally quasi φ-nonexpansive mappings, there is a sequence {µk} with∑∞
k=1 µk <∞ such that
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φ(x∗, xk+1) = φ(x∗, Tkxk) ≤ (1 + µk)φ(x∗, xk)

≤ (1 + µk)(1 + µk−1)φ(x∗, xk−1)

≤ · · · ≤ φ(x∗, xn)

i=k∏
i=n

(1 + µi)

≤ φ(x∗, xn)

∞∏
i=n

(1 + µi)

≤ φ(x∗, xn)e
∑∞

i=n µi . (2.4)

We take limsup in (2.4) as k →∞ and then we take liminf as n→∞, since

lim sup
k→∞

φ(x∗, xk) ≤ lim inf
k→∞

φ(x∗, xk),

limk→∞ φ(x∗, xk) exists for each x∗ ∈
⋂
k F (Tk). In addition, {xk} is bounded by

(1.3). Therefore, there exist {xkn} of {xk} and p ∈ C such that xkn ⇀ p ∈ C. On
the other hand, since the sequence {Tk} is strongly asymptotic quasi φ-nonexpansive
and limk→∞ φ(x∗, xk) exists for all x∗ ∈

⋂
k F (Tk), we get limk→∞ φ(Tknxkn , xkn) =

0. Then we have limn→∞ ‖Tknxkn−xkn‖ = 0 by Proposition 1.1. Now, (2.1) shows
that p ∈

⋂
k F (Tk).

In the sequel, we show that there exists only one weak limit point of {xk}. If q
is an other weak limit point of {xk}, then there exists a subsequence {xkj} such
that xkj ⇀ q. Similar to the above argument, we can prove that q is an element of⋂
k F (Tk), also limk→∞ φ(p, xk) and limk→∞ φ(q, xk) exist. Note that

2〈p− q, Jxkn − Jxkj 〉 = 2〈p, Jxkn〉 − 2〈q, Jxkn〉 − 2〈p, Jxkj 〉+ 2〈q, Jxkj 〉
= −φ(p, xkn) + φ(q, xkn) + φ(p, xkj )− φ(q, xkj ). (2.5)

Taking limit from (2.5) when n → ∞ and then when j → ∞, we obtain p = q by
(2.3). Therefore, {xk} converges weakly to a point of

⋂
k F (Tk). �

Theorem 2.3. Suppose that the assumptions of Theorem 2.2 hold. If the interior of⋂
k F (Tk) is nonempty, then the sequence {xk} is strongly convergent to an element

of
⋂
k F (Tk).

Proof. Note that {xk} is bounded by Theorem 2.2. Since int(
⋂
k F (Tk)) 6= ∅, there

exist r > 0 and x∗ ∈ int(
⋂
k F (Tk)) such that B̄r(x

∗) ⊂ int(
⋂
k F (Tk)). It is

known that since E is smooth, the duality mapping J is single-valued and since
E is uniformly convex, J is one to one and also E is reflexive. In addition, J is
surjective because E is reflexive (see [11, 12]). Hence, if ‖J−1(Jxk+1 − Jxk)‖ 6= 0

by letting x̃k = x∗ − r J−1(Jxk+1−Jxk)
‖J−1(Jxk+1−Jxk)‖ , we have x̃k ∈

⋂
k F (Tk) and

φ(x̃k, xk+1) = φ(x̃k, Tkxk) ≤ (1 + µk)φ(x̃k, xk).

We define M = supk∈N{φ(x̃k, xk), φ(x∗, xk)}. Therefore we have

φ(x̃k, xk+1) ≤ φ(x̃k, xk) +Mµk

or equivalently
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φ(x̃k, xk+1) = ‖x̃k‖2 − 2〈x∗ − r J−1(Jxk+1 − Jxk)

‖J−1(Jxk+1 − Jxk)‖
, Jxk+1〉+ ‖xk+1‖2

≤ ‖x̃k‖2 − 2〈x∗ − r J−1(Jxk+1 − Jxk)

‖J−1(Jxk+1 − Jxk)‖
, Jxk〉

+ ‖xk‖2 +Mµk. (2.6)

Since,

2r‖Jxk+1 − Jxk‖ =
2r

‖J−1(Jxk+1 − Jxk)‖
〈J−1(Jxk+1 − Jxk), Jxk+1 − Jxk〉,

therefore (2.6) implies that

2r‖Jxk+1 − Jxk‖+ ‖x∗‖2 − 2〈x∗, Jxk+1〉+ ‖xk+1‖2

≤ ‖x∗‖2 − 2〈x∗, Jxk〉+ ‖xk‖2 +Mµk.

Using (1.2), we can write the above inequality as

2r‖Jxk+1 − Jxk‖ ≤ φ(x∗, xk)− φ(x∗, xk+1) +Mµk. (2.7)

It is clear that if ‖J−1(Jxk+1 − Jxk)‖ = 0, then using (2.4), again (2.7) holds.
Summing up (2.7) from k = 1 to k = n, we obtain

2r

n∑
k=1

‖Jxk+1 − Jxk‖ ≤ φ(x∗, x1)− φ(x∗, xn+1) +M

n∑
k=1

µk.

Now, if n→ +∞, we get

+∞∑
k=1

‖Jxk+1 − Jxk‖ < +∞. (2.8)

It follows that {Jxk} converges strongly to an element in E∗. Since E is uniformly
convex, E∗ is uniformly smooth and so, the duality mapping J−1 is uniformly norm
to norm continuous on each bounded subset of E∗. Therefore, {xk} converges
strongly to an element of C. On the other hand by Theorem 2.2, since {xk} has a
weakly convergence subsequence to an element of

⋂
k F (Tk), we get {xk} converges

strongly to an element of
⋂
k F (Tk). �

3. Halpern regularization method

In this section, we study the Halpern type regularization of (2.2). Consider the
sequence {xk} given by the following process

xk+1 = J−1(αkJu+ (1− αk)JTkxk), (3.1)

where u, x1 ∈ E, {αk} ⊂ (0, 1) such that limk→∞ αk = 0 and
∑∞
k=1 αk = ∞.

We show that the strong convergence of the sequence generated by (3.1) to the
generalized projection of u on

⋂
k F (Tk). Let E be a strictly convex, smooth and

reflexive Banach space and J : E → E∗ be the duality mapping. Then J−1 is
single-valued, one-to-one and surjective and it is the duality mapping from E∗ into
E. We make use of the following mapping V studied by Alber in [1]
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V (x, v) = ‖x‖2 − 2〈x, v〉+ ‖v‖2 (3.2)

for all x ∈ E and v ∈ E∗ . In other words, V (x, v) = φ(x, J−1v) for all x ∈ E and
v ∈ E∗. In order to prove the main theorem of this section, we need the following
two lemmas.

Lemma 3.1. [11] Suppose that E is a strictly convex, smooth and reflexive Banach
space and V is as defined in (3.2). Then

V (x, v) ≤ V (x, v + w)− 2〈J−1(v)− x,w〉 (3.3)

for all x ∈ E and v, w ∈ E∗.

Lemma 3.2. [18] Suppose that {sk} is a sequence of nonnegative real numbers,
{ak} ⊂ (0, 1) where

∑∞
k=1 ak =∞ and {tk} ⊂ R. Let

sk+1 ≤ (1− ak)sk + aktk, ∀ k ≥ 1.

If lim supm→∞tkm ≤ 0 for each subsequence {skm} of {sk} satisfying
lim infm→∞(skm+1 − skm) ≥ 0, then limk→∞sk = 0.

Theorem 3.3. Assume that E is a uniformly convex and uniformly smooth Banach
space. Let Tk : C → C be a sequence of strongly quasi φ-nonexpansive mappings and
{Tk} be demiclosed. Then the sequence {xk} defined by (3.1), is strongly convergent
to P⋂

k F (Tk)u.

Proof. Since
⋂
k F (Tk) is nonempty, closed and convex, we set x∗ := P⋂

k F (Tk)u.
Note that

φ(x∗, xk+1) = φ(x∗, J−1(αkJu+ (1− αk)JTkxk))

= V (x∗, αkJu+ (1− αk)JTkxk) ≤ αkV (x∗, Ju) + (1− αk)V (x∗, JTkxk)

≤ αkφ(x∗, u) + (1− αk)φ(x∗, Tkxk) ≤ αkφ(x∗, u) + (1− αk)φ(x∗, xk)

≤ max{φ(x∗, u), φ(x∗, xk)} ≤ · · · ≤ max{φ(x∗, u), φ(x∗, x1)},

which follows {φ(x∗, xk)} is bounded. Thus, by (1.3), {xk} is bounded. On the
other hand, by Lemma 3.1, we have

φ(x∗, xk+1) = V (x∗, αkJu+ (1− αk)JTkxk)

≤ V (x∗, αkJu+ (1− αk)JTkxk − αk(Ju− Jx∗))
−2 〈J−1(αkJu+ (1− αk)JTkxk)− x∗,−αk(Ju− Jx∗)〉
= V (x∗, (1− αk)JTkxk + αkJx

∗) + 2〈xk+1 − x∗, αk(Ju− Jx∗)〉
≤ (1− αk)V (x∗, JTkxk) + αkV (x∗, Jx∗) + 2αk〈xk+1 − x∗, Ju− Jx∗〉
= (1− αk)φ(x∗, Tkxk) + 2αk〈xk+1 − x∗, Ju− Jx∗〉
≤ (1− αk)φ(x∗, xk) + 2αk〈xk+1 − x∗, Ju− Jx∗〉.

We want to prove φ(x∗, xk) → 0. By Lemma 3.2, it is enough to show that
lim supm→∞〈xkm+1 − x∗, Ju − Jx∗〉 ≤ 0 for each subsequence {φ(x∗, xkm)} of
{φ(x∗, xk)} satisfying lim infm→∞(φ(x∗, xkm+1)− φ(x∗, xkm)) ≥ 0. Suppose that
{φ(x∗, xkm)} is a subsequence of {φ(x∗, xk)} such that
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lim infm→∞(φ(x∗, xkm+1)− φ(x∗, xkm)) ≥ 0. Then

0 ≤ lim inf
m→∞

(φ(x∗, xkm+1)− φ(x∗, xkm))

= lim inf
m→∞

(V (x∗, αkmJu+ (1− αkm)JTkmxkm)− φ(x∗, xkm))

≤ lim inf
m→∞

(αkmV (x∗, Ju) + (1− αkm)V (x∗, JTkmxkm)− φ(x∗, xkm))

= lim inf
m→∞

(αkmφ(x∗, u) + (1− αkm)φ(x∗, Tkmxkm)− φ(x∗, xkm))

= lim inf
m→∞

(αkm(φ(x∗, u)− φ(x∗, Tkmxkm)) + φ(x∗, Tkmxkm)− φ(x∗, xkm))

≤ lim sup
m→∞

αkm(φ(x∗, u)− φ(x∗, Tkmxkm)) + lim inf
m→∞

(φ(x∗, Tkmxkm)− φ(x∗, xkm))

= lim inf
m→∞

(φ(x∗, Tkmxkm)− φ(x∗, xkm))

≤ lim sup
m→∞

(φ(x∗, Tkmxkm)− φ(x∗, xkm)) ≤ 0.

So, we have

lim
m→∞

(φ(x∗, Tkmxkm)− φ(x∗, xkm)) = 0. (3.4)

Hence, by the definition of strongly quasi φ-nonexpansive sequence,

lim
m→∞

φ(Tkmxkm , xkm) = 0. (3.5)

In the sequel, by Proposition 1.1, we have

lim
m→∞

‖Tkmxkm − xkm‖ = 0. (3.6)

Note that

φ(Tkmxkm , xkm+1) = V (Tkmxkm , αkmJu+ (1− αkm)JTkmxkm)

≤ αkmV (Tkmxkm , Ju) + (1− αkm)V (Tkmxkm , JTkmxkm)

= αkmφ(Tkmxkm , u).

Taking the limit we get,

lim
m→∞

φ(Tkmxkm , xkm+1) = 0.

Then Proposition 1.1 implies that

lim
m→∞

‖Tkmxkm − xkm+1‖ = 0. (3.7)

Now, (3.6) and (3.7) implies that

lim
m→∞

‖xkm − xkm+1‖ = 0. (3.8)

On the other hand, there exists a subsequence {xkmt
} of {xkm} and p ∈ E such

that xkmt
⇀ p and

lim sup
m→∞

〈xkm−x∗, Ju−Jx∗〉 = lim
t→∞
〈xkmt

−x∗, Ju−Jx∗〉 = 〈p−x∗, Ju−Jx∗〉. (3.9)

(2.1) implies that p ∈
⋂
k F (Tk) because xkmt

⇀ p and limt→∞ ‖Tkmt
xkmt

−xkmt
‖ =

0 by (3.6). Now, since
⋂
k F (Tk) is closed and convex and x∗ = P⋂

k F (Tk)u, by
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Proposition 1.3, we have 〈p− x∗, Ju− Jx∗〉 ≤ 0. From (3.8) and (3.9), we have

lim sup
m→∞

〈xkm+1 − x∗, Ju− Jx∗〉 = lim sup
m→∞

〈xkm+1 − xkm + xkm − x∗, Ju− Jx∗〉

≤ lim sup
m→∞

〈xkm+1 − xkm , Ju− Jx∗〉+ lim sup
m→∞

〈xkm − x∗, Ju− Jx∗〉

= 0 + 〈p− x∗, Ju− Jx∗〉 ≤ 0.

Now, Lemma 3.2 implies that φ(x∗, xk) → 0 and so, by Proposition 1.1, we get
xk → x∗ = P⋂

k F (Tk)u. �

4. Applications

In this section, we apply our main results to approximate a minimizer of a convex
function and a solution of an equilibrium problem. We also present some numerical
examples.

4.1. Application in convex minimization problems. Assume that E is a uni-
formly convex and uniformly smooth Banach space. Let f : E → (−∞,∞] be a
function, the domain of f is denoted by D(f) := {x ∈ E : f(x) <∞}. f is said to
be (weakly) lower semicontinuous at x ∈ D(f) whenever

f(x) ≤ lim inf
k→∞

f(xk)

for each sequence xk → x (xk ⇀ x). In addition, f is called convex whenever

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀ x, y ∈ E , 0 ≤ t ≤ 1.

It is known that lower semicontinuity together with convexity imply weak lower
semicontinuity. We denote the set of all minimizers of f by Argminf . It is well
known that if f is convex and lsc, then Argminf is closed and convex. We denote
the resolvent of f of order λ > 0 at x ∈ E by

Jfλx := Argminy∈E{f(y) +
1

2λ
‖y‖2 − 1

λ
〈y, Jx〉}. (4.1)

By Rockafellar’s theorem [16, 17], the subdifferential operator is maximal mono-

tone. Hence for each x ∈ E, Jfλx exists (see [11]). The proximal point method to

approximate a minimum point of f is obtained by the iterations of Jfλ on a given
point x ∈ E. In other words, for a given x0 ∈ E and a sequence {λk}, we have

xk+1 = Jfλk
xk. (4.2)

This algorithm was first introduced by Martinet [13]. He studied the weak con-
vergence of generated sequence to a minimixer of f( see also [4]). Xu [21] proved
the strong convergence of the proximal point algorithm by the Halpern regular-
ization method [5] in Hilbert spaces. Kohsaka and Takahashi [11] showed strong
convergence of the proximal point method

yk = Argminy∈E{f(y) +
1

2λk
‖y‖2 − 1

λk
〈y, Jxk〉} (4.3)

xk+1 = J−1(αkJu+ (1− αk)Jyk),

to a minimizer of f where u, x1 ∈ E and {αk} ⊂ (0, 1) such that limk→∞ αk = 0
and

∑∞
k=1 αk = ∞. (see Theorem 4.1 in [11]). In the sequel, we show that the

above result can be obtained as a consequence of Theorem 3.3.
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Lemma 4.1. Let E be a uniformly convex and uniformly smooth Banach space
and f : E → (−∞,∞] is a convex, proper and lsc function. If Argminf 6= ∅, then

Jfλ is a strongly quasi φ-nonexpansive mapping.

Proof. Since Jfλx solves the minimization problem in (4.1), we have:

Jfλx ∈ Argminy∈E{f(y) +
1

2λ
‖y‖2 − 1

λ
〈y, Jx〉}.

Therefore

0 ∈ ∂{f(·) +
1

2λ
‖ · ‖2 − 1

λ
〈·, Jx〉}(Jfλx).

Thus, there exist w ∈ ∂f(Jfλx) such that

0 = w +
1

λ
J(Jfλx)− 1

λ
Jx. (4.4)

On the other hand, we have

〈y − Jfλx,w〉 ≤ f(y)− f(Jfλx). (4.5)

By (4.4) and (4.5), we get

1

λ
〈y − Jfλx, Jx− J(Jfλx)〉 ≤ f(y)− f(Jfλx). (4.6)

Now, take p ∈ Argminf and set y = p in (4.6). Thus we have

0 ≤ f(Jfλx)− f(p) ≤ 1

λ
〈p− Jfλx, J(Jfλx)− Jx〉. (4.7)

In other words,

0 ≤ 2〈p− Jfλx, J(Jfλx)− Jx〉 = φ(p, x)− φ(p, Jfλx)− φ(Jfλx, x), (4.8)

which implies that Jfλ is a strongly quasi φ-nonexpansive mapping. �

Remark 1. If x ∈ F (Jfλ ), i.e. x is a fixed point of the strongly quasi φ-nonexpansive

mapping Jfλ , then x ∈ Argminf by (4.6). Also, if x ∈ Argminf , then by taking
y = x in (4.6), we have

〈x− Jfλx, Jx− J(Jfλx)〉 ≤ 0.

This implies that x = Jfλx, i.e. x ∈ F (Jfλ ) . Therefore Argminf = F (Jfλ ).

Lemma 4.2. Let E be a uniformly convex and uniformly smooth Banach space
and f : E → (−∞,∞] is a convex, proper and lsc function. If lim infk→∞ λk > 0,

then Jfλk
is demiclosed.

Proof. Suppose that the sequence {xk} is arbitrary such that xk ⇀ p and

‖Jfλk
xk − xk‖ → 0. We will show that p ∈

⋂
k F (Jfλk

). Note that

Jfλk
xk ∈ Argminy∈E{f(y) +

1

2λk
‖y‖2 − 1

λk
〈y, Jxk〉}.

Therefore

0 ∈ ∂{f(·) +
1

2λk
‖ · ‖2 − 1

λk
〈·, Jxk〉}(Jfλk

xk).

Thus, there exist wk ∈ ∂f(Jfλk
xk) such that

0 = wk +
1

λk
J(Jfλk

xk)− 1

λk
Jxk. (4.9)



THE ITERATIONS OF STRONGLY QUASI φ-NONEXPANSIVE MAPPINGS 33

On the other hand,

〈y − Jfλk
x,wk〉 ≤ f(y)− f(Jfλk

xk). (4.10)

By (4.9) and (4.10), we have

1

λk
〈y − Jfλk

xk, Jxk − J(Jfλk
xk)〉 ≤ f(y)− f(Jfλk

xk). (4.11)

Thus,

f(Jfλk
xk)− 1

λk
‖y − Jfλk

xk‖‖Jxk − J(Jfλk
xk)‖ ≤ f(y). (4.12)

Note that xk ⇀ p and ‖Jfλk
xk−xk‖ → 0 imply that Jfλk

xk ⇀ p. On the other hand,
since E is uniformly smooth, the duality mapping J from E into E∗ is uniformly

norm-to-norm continuous on bounded sets. Therefore, ‖Jfλk
xk − xk‖ → 0 implies

that ‖Jxk − J(Jfλk
xk)‖ → 0. Note that lim infk→∞ λk > 0 and f is weakly lower

semicontinuous. Taking liminf in (4.12) implies that f(p) ≤ f(y) for all y ∈ E and

so, p ∈ Argminf . Now, Remark 1 shows that p ∈
⋂
k F (Jfλk

). �

Theorem 4.3. Suppose that E is a uniformly convex and uniformly smooth Banach
space and f : E → (−∞,∞] is a convex, proper and lsc function.
If lim infk→∞ λk > 0 and Argminf 6= ∅, then the sequence {xk} generated by

xk+1 = J−1(αkJu+ (1− αk)J(Jfλk
xk)), (4.13)

is strongly convergent to PArgminfu, where u, x0 ∈ E and {αk} ⊂ (0, 1) such that
limk→∞ αk = 0 and

∑∞
k=0 αk =∞.

Proof. Lemma 4.2 implies that Jfλk
satisfies (2.1). Also by Lemma 4.1, Jfλk

is a
strongly quasi φ-nonexpansive sequence. Now, Theorem 3.3 and Remark 1 imply
that {xk} converges strongly to PArgminfu. �

Now, we give a numerical example to illustrate an application of Theorem 4.3.

Example 2. We define the function f : Rn → R by f(x) = xAxt + xB where
the matrix A is square matrix of order n such that A is positive semidefinite, the
matrix B is a matrix of order n × 1 and xt denotes the transpose of the matrix
x. Note that f is a convex function, because A is positive semidefinite. Also, f is
proper and continuous and Argminf 6= ∅.

Now, in order to illustrate the application of Theorem 4.3 for this example, we
take n = 3, λk = k+1

3k+1 , αk = 1
k+1 , u = (1,−2, 3) ∈ R3 and x0 = (0, 0, 0) ∈ R3. We

also consider

A =

 4 3 0
−3 2 1
0 −1 3

 B =

 −2
5
3


If {xk} is the sequence generated by (4.13), then Theorem 4.3 ensures that {xk}

converges to PArgminfu. We performed our numerical experiment for this example.
Our stopping criterion is ‖xk−1 − xk‖ < 10−6. The numerical results are displayed
in the following table:
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The sequence xk = (x
(1)
k , x

(2)
k , x

(3)
k ) generated by (4.13)

k x
(1)
k x

(2)
k x

(2)
k

1 0.666252888824739 -1.697935942128588 1.496124330268674
2 0.555500379244165 -1.599541316472595 0.999354063570689
3 0.480221068854458 -1.519447232569119 0.637470086251568
10 0.368013214249387 -1.412394122092918 0.122318208755844
100 0.287864300369334 -1.323884045982726 -0.268430483081751
200 0.254982343281192 -1.256991666280909 -0.474423108989319
1911 0.250628911992376 -1.251180446088091 -0.496413241298491

As we can see the sequence {xk} converges to the point (0.25,−1.25,−0.5) which
is the unique minimizer of the function f . Also, all tests for this problem corre-
sponding to each starting point were successful, meaning that the sequence {xk}
converges to (0.25,−1.25,−0.5), which is the unique solution of the problem.
This problem was solved by the Optimization Toolbox in Matlab R2020a and per-
formed on a Laptop with Intel(R) Core(TM) i3-4005U CPU @ 1.70 GHz, 1700 Mhz,
2 Core(s), 4 Logical Processor(s), Ram 4.00 GB.

4.2. Application in equilibrium problems. Let K be a nonempty, closed and
convex subset of the Banach space E. Suppose that f : K×K → R is a bifunction.
An equilibrium problem for f and K (shortly EP (f ;K)) is to find x∗ ∈ K such
that

f(x∗, y) ≥ 0, ∀y ∈ K. (4.14)

x∗ is called an equilibrium point. We denote the set of all equilibrium points
for (4.14) by S(f ;K). We now recall the definition of the monotone bifunction,
f : K ×K → R is called monotone, whenever f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ K.

In [7], has been shown that if f satisfies in the following conditions;
(P1): f(x, x) = 0 for all x ∈ K,
(P2): f(x, ·) is lower semi-continuous (lsc) and convex for all x ∈ K,
(P3): f(·, y) is upper semi-continuous for all y ∈ K,
(P4): f is monotone,

then for a given x ∈ E and λ > 0, there is a unique point Jfλx in K such that

f(Jfλx, y) + λ〈y − Jfλx, J(Jfλx)− Jx〉 ≥ 0, ∀y ∈ K. (4.15)

Jfλx is said to be the resolvent of f of order λ at x ∈ E (see also [10]). In (4.15), it

is easy to see that F (Jfλ ) ⊆ S(f,K) and since f is a monotone bifunction, we have

S(f,K) ⊆ F (Jfλ ).
Consider {λk} ⊂ (0, α], for some α > 0 and x0 ∈ E. The proximal point method

to approximate a solution of the problem is defined by xk+1 = Jfλk
xk. We will

prove weak convergence of the sequence generated by the algorithm to a solution
of the problem.

Lemma 4.4. Suppose that f : K ×K → R satisfies P1-P4. If S(f,K) 6= ∅, then

Jfλk
is a strongly quasi φ-nonexpansive sequence.

Proof. Take p ∈ S(f,K) and set y = p in (4.15). Then

f(Jfλk
xk, p) + λk〈p− Jfλk

xk, J(Jfλk
xk)− Jxk〉 ≥ 0.
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Since p ∈ S(f,K) and f is monotone, we have f(Jfλk
xk, p) ≤ 0. Hence we get

〈p− Jfλk
xk, J(Jfλk

xk)− Jxk〉 ≥ 0,

which implies that

φ(Jfλk
xk, xk) ≤ φ(p, xk)− φ(p, Jfλk

xk).

Therefore, Jfλk
is strongly quasi φ-nonexpansive. �

Lemma 4.5. Suppose that f : K ×K → R satisfies P1-P4, and f(·, y) is weakly

upper semicontinuous for all y ∈ K. If S(f,K) 6= ∅, then Jfλk
is demiclosed.

Proof. Take y ∈ K. Assume that the sequence {xk} is arbitrary such that xk ⇀ p

and ‖Jfλk
xk − xk‖ → 0. We will prove p ∈

⋂
k F (Jfλk

). We know that

0 ≤ f(Jfλk
xk, y) + λk〈y − Jfλk

xk, J(Jfλk
xk)− Jxk〉

≤ f(Jfλk
xk, y) + λk‖y − Jfλk

xk‖‖J(Jfλk
xk)− Jxk‖.

Note that limk→∞ ‖J(Jfλk
xk) − Jxk‖ = 0 and the sequences {xk} and {λk} are

bounded. Taking liminf, we have

0 ≤ lim inf
k→∞

f(Jfλk
xk, y), ∀y ∈ K. (4.16)

On the other hand, since limk→∞ ‖Jfλk
xk −xk‖ = 0, we get Jfλk

xk ⇀ p. Now, since

f(·, y) is weakly upper semicontinuous for every y ∈ K, we have

0 ≤ lim inf
k→∞

f(Jfλk
xk, y) ≤ lim sup

k→∞
f(Jfλk

xk, y) ≤ f(p, y),

for every y ∈ K. Therefore, p ∈ S(f,K) and since f is monotone, p ∈
⋂
k F (Jfλk

).
�

Theorem 4.6. Suppose that f : K ×K → R satisfies P1-P4, and f(·, y) is weakly
upper semicontinuous for all y ∈ K. If S(f,K) 6= ∅, then the sequence {xk}
generated by (4.15) is weakly convergent to an element of S(f,K).

Proof. It follows from Lemmas 4.4, 4.5 and Theorem 2.2. �

Suppose that {λk} ⊂ (0, α] for some α > 0 and x0 ∈ E. The Halpern regular-
ization method for the equilibrium problem EP (f,K) is defined by

f(Jfλk
xk, y) + λk〈y − Jfλk

xk, J(Jfλk
xk)− Jxk〉 ≥ 0, ∀y ∈ K,

xk+1 = J−1(αkJu+ (1− αk)J(Jfλk
xk)), (4.17)

where u ∈ E and {αk} ⊂ (0, 1) such that limk→∞ αk = 0 and
∑∞
k=1 αk = ∞ (see

[10]). In the following theorem, we prove the strong convergence of the sequence
{xk} generated by (4.17) to a solution of EP (f,K). In fact, we prove xk → x∗ =
PS(f,K)u.

Theorem 4.7. Suppose that f : K ×K → R satisfies P1-P4, and f(·, y) is weakly
upper semicontinuous for all y ∈ K. If S(f,K) 6= ∅, then the sequence {xk}
generated by (4.17) is strongly convergent to PS(f,K)u.

Proof. It follows from Lemmas 4.4, 4.5 and Theorem 3.3. �
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Remark 2. Suppose that ψ : E → (−∞,∞] is a convex, proper and lsc function. If
we define f(x, y) = ψ(y)−ψ(x) and K = E, then it is obvious that each equilibrium
point of f coincides with a minimizer of ψ and vice versa. Also, Theorem 4.3 is a
consequence of Theorem 4.7.

In the following example, we illustrate an application of Theorem 4.7.

Example 3. ConsiderK = [−10, 10]×[−10, 10]×[−10, 10] and define the bifunction
f : K ×K → R by

f(x, y) = y21 − 4y1 + 4y22 + 12y2 + y23 + 2y3 − (x21 − 4x1 + 4x22 + 12x2 + x23 + 2x3).

It is easy to see that the conditions B1-B4 are satisfied and S(f,K) 6= ∅. Now,
in order to illustrate the application of Theorem 4.7 for this example, we take
λk = 4k

k+1 , αk = 1
k+1 , u = (2, 5,−3) and x0 = (0, 0, 0). If {xk} is the sequence

generated by (4.17), then Theorem 4.7 ensures that {xk} converges to an element
of S(f,K). We performed our numerical experiment for this example. Our stop-
ping criterion is ‖xk−1 − xk‖ < 10−6. The numerical results are displayed in the
following table:

The sequence xk = (x
(1)
k , x

(2)
k , x

(3)
k ) generated by (4.17)

k x
(1)
k x

(2)
k x

(2)
k

1 1.983867940406904 1.842430813155550 -2.050808110550836
2 1.994622561587510 1.112324059072868 -2.016936040457454
3 1.997695352885247 0.614810768998420 -1.935829709932863
10 1.998742889206285 -0.384757654195337 -1.692270714833297
100 1.999197008151127 -1.090580904077409 -1.462006175733657
1000 1.999843209005453 -1.486155358408404 -1.096048403571341
2604 1.999873160521294 -1.493532995035196 -1.037381383434542

Note that the sequence {xk} converges to the point (2,−1.5,−1) which is the unique
equilibrium point of the bifunction f . Also, all tests for this problem corresponding
to each starting point were successful, meaning that the sequence {xk} converges
to (2,−1.5,−1), which is the unique solution of the problem.
This problem was solved by the Optimization Toolbox in Matlab R2020a and per-
formed on a Laptop with Intel(R) Core(TM) i3-4005U CPU @ 1.70 GHz, 1700 Mhz,
2 Core(s), 4 Logical Processor(s), Ram 4.00 GB.

Acknowledgments. The authors would like to thank the anonymous referees for
their comments that helped us improve this article.

References

[1] Y. I. Alber, Metric and generalized projection operators in Banach spaces, properties and

applications Theory and applications of nonlinear operators of accretive and monotone type,

Lecture Notes in Pure and Appl. Math. 178, (Dekker, New York, 1996) 15–50.
[2] C. Garodia, I. Uddin, A new iterative method for solving split feasibility problem. J. Appl.

Anal. Comput. 10, (2020) 986–1004.
[3] C. Garodia, I. Uddin, S. H. Khan, Approximating common fixed points by a new faster

iteration process. Filomat 34, (2020) 2047–2060.

[4] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM
J. Control Optim. 29, (1991) 403–419.

[5] B. Halpern, Fixed point of nonexpanding maps, Bull. Amer. Math. Soc. 73, (1967) 957–961.



THE ITERATIONS OF STRONGLY QUASI φ-NONEXPANSIVE MAPPINGS 37

[6] N. T. Hieu, N. V. Dung, A Hybrid projection algorithm for two finite families of asymp-

totically quasi φ-nonexpansive mappings in reflexive Banach spaces, Numer. Funct. Anal.

Optim. 39, (2018) 67–86.
[7] A. N. Iusem, M. Nasri, Inexact proximal point methods for equilibrium problems in Banach

spaces, Numer. Funct. Anal. Optim. 28, (2007) 1279–1308.

[8] S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach
space, SIAM J. Optim. 13, (2002) 938–945.

[9] H. Khatibzadeh, V. Mohebbi, On the iterations of a sequence of strongly quasi-nonexpansive

mappings with applications, Numer. Funct. Anal. Optim. 41, (2019) 231–256.
[10] H. Khatibzadeh, V. Mohebbi, On the proximal point method for an infinite family of equi-

librium problems in Banach spaces, Bull. Korean Math. Soc. 56, (2019) 757–777.

[11] F. Kohsaka, W. Takahashi, Strong convergence of an iterative sequence for maximal mono-
tone operators in a Banach space, Abstr. Appl. Anal. (2004) 239–249.

[12] Z. Ma, L. Wang, S. Chang, Strong convergence theorem for quasi-φ-asymptotically nonex-
pansive mappings in the intermediate sense in Banach spaces, J. Inequal. Appl. 306, (2013)

1–13.
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