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EXISTENCE OF SOLUTIONS OF INFINITE SYSTEMS OF
NONLINEAR CONVOLUTION TYPE INTEGRAL EQUATIONS
OF N-VARIABLES IN C(I; x I x ... x In,l,) AND NUMERICAL

RESULTS
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ABSTRACT. The aim of the present paper is to investigate the solvability of
infinite systems of nonlinear convolution type integral equations of N-variables
in C(Iy xI2 x...xIn,lp) by using Hausdorff measure of noncompactness with
the help of Meir-Keeler condensing operators. Finally, to credibility we propose
a numerical method to find solutions of the problem with the high accuracy.

1. INTRODUCTION AND AUXILIARY FACTS

Infinite system of ordinary differential equations or integral equations are closely
related to several important problems appearing naturally in applications (cf. [8|
12, [13]). Apart from this, infinite systems of ordinary differential equations or inte-
gral equations are connected with many real life problems considered in engineering,
mechanics, in the theory of branching processes, the theory of dissociation of poly-
mers, the theory of neural nets and so on (see [7}, 8 [12] [20]). Several researchers
have studied the various infinite systems of differential (or integral) equations by
applying the measure of noncompactness (see [II, 2, B} 4] Bl 4], 201 211 22], for
example). Besides, many mathematicians studied the infinite systems of integral
equations in two variables by using measure of noncompactness and some fixed
point theorems (see [4], 9] 10} [T, [16] 23]).

The aim of this paper is to investigate the solvability of the following infinite
system of nonlinear convolution type integral equations of N-variables

xi(te, ..., tn) = filte, .. tn,z(ty, .. tn))+N E(ti—s1,...,tn—sN)Qxi(s1,...,5N)ds1 ... dsn,

Iy xXIgX...xXIN
(1.1)
where I;, = [ai,bi], fz i xIg x ... x Iy XxR*® = R, \; € R (Z = 1,2,...),
k: [al—bl,bl—al]x...x[aN—bN,bN—aN] —>]RandQ : C(Il XIQX...XIN) — R
are arbitrary functions. We also provide an illustrative example in support of our
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existence theorem. Finally, to credibility we propose a numerical method to find
solutions of the above problem with the high accuracy.

In the following, we give a few auxiliary facts which will be used in our further
considerations.

Let (E,|.||) be a real Banach space with zero element 0. Let Ry = [0, +00),
X and ConvX denote the closure and closed convex hull of a set X, respectively.
Moreover, let 9y indicate the family of nonempty and bounded subsets of E and
Mg indicate the family of all nonempty and relatively compact subsets of F.

The following axiomatic definition of a measure of noncompactness was found in

[6].

Definition 1.1. A function p : 9g — R, is said to be a measure of noncompact-
ness if it fulfils the following conditions:

1° The family ker p = {X € Mg : p(X) = 0} is nonempty and ker u C Ng.

2° X CY implies that p(X) < p(Y).

3° u(X) = u(X).

4° p(ConvX) = p(X).

5° p(AX +(1—=XN)Y) < Apu(X)+ 1 = N)p(Y) for XA € [0,1].

6° If {X,} is a sequence of closed chains of Mg such that X, 1 C X, for

n=12...and if lim pu(X,) =0, then the intersection set X, = an

n— 00
n=1

is nonempty.
Definition 1.2. [6] Let (X, d) be a metric space and @ € Myx. Then the Kura-
towski measure of noncompactness of @, denoted by (@), is the infimum of the
set of all numbers £ > 0 such that ) can be covered by a finite number of sets with
diameters ¢, that is

a(Q)zinf{€>0:QC USi,SiCX,diam(Si) <e(i=12,...,n); neN},

i=1
where diam(S;) = sup{d(x,y) : z,y € S;}.

The Hausdorff measure of noncompactness for a bounded set @ is defined by

n
x(Q) = inf {5 >0:QC U B(zi,ri),z, € X,r; <e (i=1,2,...,n); n€ N}.
i=1
The Hausdorff measure of noncompactness is often called ball measure of noncom-
pactness .

In 1969, Meir and Keeler [I9] introduced the concept of Meir-Keeler contractive
mapping and proved some fixed point theorems for this kind of mappings. There-
after, Aghajani et al. [I] generalized some fixed point and coupled fixed point
theorems for Meir-Keeler condensing operators via measures of noncompactness.

Definition 1.3. [I] Let C be a nonempty subset of a Banach space E and p be
an arbitrary measure of noncompactness on E. An operator T : C' — C is called a
Meir-Keeler condensing operator if for any € > 0, 6 > 0 exists such that

e<u(X)<e+d implies p(T(X))<e
for any bounded subset X of C.
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Theorem 1.4. [I] Let C be a nonempty, bounded, closed and convex subset of
a Banach space E and p be an arbitrary measure of noncompactness on E. If
T :C — C is a continuous and Meir-Keeler condensing operator, then T has at
least one fized point and the set of all fixed points of T in C' is compact.

2. HAUSDORFF MEASURE OF NONCOMPACTNESS IN SEQUENCE SPACES

In the Banach space (I, ||.|l,) (1 < p < 0), the Hausdorff measure of noncom-
pactness x is defined as follows (see [6]):

(D)= Jim [sup (3 )] (2.1)
X, = lm | sup U P, .
! n—00 "D i k

where u = (u;) € I, and D € 9.

Let I; = [a;, b;], 1 <14 < N be compact intervals in R. Let us define C'(I; x I3 X ... x
In,l,) denotes the space of all continuous functions defined on Iy x Iy x ... x Iy
with values in [, (1 < p < 00). Then C(Iy x Iy x...x I, 1p) is also a Banach space
with the norm

”IHC(IlXIgX...XIN,lp) :Sup{”m(tl:"th)”lp : (t17t2""7tN) €l XIpx...x IN}:

where z € C(I1 x I3 x...x In,l,). For any non-empty bounded subset E of C (I x
oo X IN,lp) and (tl,...,tN) S Il X ... X IN, let E(t1,...,t]\[) = {.T(tl,...,tN) :
z e EY.

Now, using , we conclude that the Hausdorff measure of noncompactness for
E CC(I; x...xIn,lp) can be defined by

XC(lemXIN,lp)(EA) = sup{xy, (E(t1,...,tn)) : (t1,...,tn) € 1 X ... x In}.

3. SOLVABILITY OF INFINITE SYSTEMS OF NONLINEAR CONVOLUTION TYPE
INTEGRAL EQUATIONS OF N-VARIABLES IN C(I1 X Io X ... X In,lp)

In this section, we investigate the solvability of the infinite system of nonlinear
convolution type integral equations (1.1). We provide an illustrative example to

show the effectiveness and applicability of our results.

Consider the following conditions:
(i) The functions f; : Iy X Iy X ... x Iy x R® — R, i € N are continuous and
for each ¢ € N, there exists a positive real number M such that for each z,y €
C( x Iy x ...xIn,l,) and (t1,...,tn),(51,...,5n) € I1 X ... x Iy we have

Ifi(tlw'th?x(tlv'"7tN))_fi(517---75N7y(517"'7SN))|p < M‘Z‘i(tl,...,tN))—ZlJi(Sl,...,S]\])‘p-

oo
(i4) Z|fi(t1, ooty 2O(ty, ..., tn))|P uniformly converges to zero, the sequence
i=1
(A\;) is bounded with |[A\;| < A and for each i € N, Qz¥ = 0, where 2°(¢1,...,ty) =
(@(t1,...,tNn)), 20(t1, ..., tn) =0 for all (t1,...,tn) € I1 x ... X In.
(7i1) There exists a positive real number L such that

oo oo
S 1Qwi(tr, - tn) = Quilta, . )P S LD Jwi(tr, ..o tn) — wilta, ..., tn)[P.
i=1 i=1
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(#v) The mapping k : [a; —b1,b; —a1] X ... X [ay —bn, by —an] — R is continuous.

N

(v) 4°M + NP KPL(J [ (b — a:))P < 1, where K = sup{k(t1,....tn) : (t1,....tx) €
i=1

[a1 7b1,b1 7(11] oo X [aN 7bN,bN 7(1]\]]}.

Theorem 3.1. Suppose that the assumptions (i)-(v) are satisfied. Then the infinite
system has at least one solution in C(Iy X ... x In,l,).

Proof. We define the mapping F : (C(I1 X ... xIn,1,))>® = (C(I1 X...xIn,1,))™
by
Fz(ti,...,tn) = (Fi(z)(t1, .-, tN))

= (fi(th‘-~7tN7x(t1»~-7tN))+)\i/‘ k(tlfsl,...,thsN)Q:vi(sl,...,sN)dsl...dsN),
I % xIn

where z = (2;) € C(I; x Is x ... x Iy, 1,). By using our assumptions and Lebesgue
dominated convergence theorem, for arbitrarily fixed (t1,...,tn) € I1 X ... X Iy,
we deduce

1Fa(tr, . ta)l?,

oo
= Z'fi(th contns (e, tN)) A k(t1 —s1,...,tN —sN)Qwi(s1,...,8N)ds1...dsn|P
i=1 Iy x...xIN
oo
< D A filtr, ot a(t ) = filsn e sn,20(s1, )P
=1
oo
+ 4P| fi(s1,- s 5n, 2051, 58)[P
i=1
(e o)
+Z)\i2p| / k(tl — 81,...,tN — sN)Qxi(sl, . ,SN)dsl .. .dSN|p
i=1 I1X...xIn
oo (o)
< D APMlzi(ta, NP+ AP fi(st, . sn, 2051, sn))IP
i=1 =1
oo
+2PAZ(/ ‘k(tl—Sl,...,tN—SN)|p|Q.Z‘i(S1,...,SN)|pd81...dSN)(/ dsl...dsN)p71
i=1 Y1 X...XIN Iy x...xIpn
N (e}
< M|zt tn))P 2P ] —ai))p_le/ > 1Qwi(s1,. .., sn)[Pds1 ... dsy
P =1 I x..xIn ;=1
N
< Ha:||’é(hx_'_“N,lp)(4pM + )\2PKPL(H(bi —a;))?),
=1
Taking the supremum over (t1,...,tnx) € I1 X ... X Iy, we obtain
N
||F$Hg(11x...x1N,zp) < H“””%(ﬁx...fo,zp)(‘lpM+ )\QPKPL(H(bi —a;))P).
=1
Above inequality can be written as
N
P <P (4P M + AP KPL(] [ (b — ai))").
i=1

Let 7y denotes the optimal solution of the above inequality. Now, consider the set
B={r=(2;) € (C(I1 x ... x IN,1p))> : ||zl o1, x...x I .1,) < To} Which is closed,
bounded and convex.

We show that for each v € C(I; x ... x In,l,), Fz is continuous. Let ¢ > 0
and (t1,...,tn),(81,...,8n) € Iy X ... X Iy be arbitrary and fixed. Since k is
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continuous, so there exists d; > 0 such that if ||(¢1,...,tn) — (51,...,5n8)| < 01,
then

™
=

lk(te, ... tn) —k(s1,...,sn)| <

N
Lr )\ H Nlzllem x.. XIN,lp)
)

On the other hand, since x € C(I; x...XIp,1,), then there exists do > 0, such that

if [(t1,...,tn) — (81,---,8N)] < 02, then lz(ty, .. tn) = 2(s1,. .55, < (W)p
Take § = min{d1,d2}. Then, using again Lebesgue dominated convergent theorem
we have

IFa(tr, ... tw) = Fa(st, ... sn)lE,

oo
= D |filtt, - tn, @t tN) = fils1,- 8N, a(s1, -0, 8N))
i=1

+)\i/1 , , (k(ty —ty,...,tn —ty) —k(s1 —t],...,sn — th))Qmi(t], ..., th)dth ... dt)y|P
1 X 12X N

oo
< Zzpm(tl,...,tN,x(tl,...,tN))—fi(sl,...,sN,x(m,...,SN))|P
+ZA 2P|/I . Ic(tl — . tN =) —k(s1 —t), . 8N — Qi ... th)dE) .. dt [P
1 X122 X..
< ZQpMkCi(tl,...,tN)—CCZ'(SL...,SN)‘p
oo
+>\Z2p/ [k(tr —ty, ...ty —thy) —k(s1 — 1, ..., 88 — th)IPIQmi(th, ..., th)|PdE) ... dtly
‘ Iy xIoX..xXIn
(/ dsl.‘.dSN)p_l
Iy xXIgX...xXIN
oo
< 21)]\421331'(151,...,?fN)—.2%(51,...,51\])‘]J
N
e(JJ b — ai))P™?
+2P ) =1 / Z\sz (), ..., th)|Pdt; ... dty
) N » LixIgx..xIn 23
2r+ L/\(H(bi - ai))p”xHC(Ilx',.x[Nylp)
=1
&€ &
< -+ < / Z|sz(tl,.“, ) = Qz(th, .. th)|PdEy ... dty
2 v IixIax..xIn i2%
2L|IxHC(11X,”X]N,lp)(]_[(bi - a;))
=1
&€ & >
< S+ / LY zi(th, ... th)|Pdty ... dtly
» IixIax..xIn =1
2L|IxHC’(11><..4><IN,p)(H - ai))
N
e EL”w”Z’(IlXAAAXIN,lp)(H(bi - ai))
=1
< 5+ N
2L”mHg(Il><..4><IN,lp)(H(bi - ai))
=1
= E.

Next, we show that the operator F' is continuous on B. For this purpose, let
us fix arbitrarily a number ¢ > 0 and a function x € B. Then, for each y € B
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such that ||z — y||

(th,..

P
C(I1X...xIn,lp) < ( N
2P(M+AKP(H(b,~ —a;))PL
i=1

Ltn) €T X ... X Iy, we get

IFx(ty, . tn) = Pyt b IG . xriy)

IN

IN

IN

IN

IN

oo
DS 2 filt, ot w(tn, o tN)) = filtn, ot Yt EN)) P
P

Iy xXIgX...XInN

oo
+22p>\i| k(ty — 17, .ty — ) (Qzs(t], ... ty) — Qui(ty, - ..
i=1

oo
22PM|CEi(t17 s ,tN) — yi(tl, .. .7tN)|p
=1

[e’s}

N
20 ([ (bs - an)p*/ SOVt — 8ty — ) PIQui(E -

=1 Iy x...XIN ;—1
M|z (t, - tn) = y(tr, - tN)IE
N

£ ) and for a fixed N-tuple

St ))dt . dt P

+A2PKP(H(bi—ai>>P*1/ L it ) = wa(th, - ) [P)de - dily
ie1 Iy x...xIn i=1

N
2w = ylE 1y w1y M+ AKPL([ [ (b: —ai))?)

i=1

€.

Thus F is continuous on B.
Finally, we show that F' is a Meir-Keeler condensing operator. For arbitrary
fixed (t1,...,tN),(81,...,8n) € I1 X ... x I, we obtain

(X1 ... x In 1) (F(B)))P

IN

IN

Sup{(le(F(B)(t1,~~~,tN)))p : (tl,...,tN) cli x...x% IN}

o0
sup lim sup [fitte, .. tn, z(te, ..., tN))
(tl,.”,tN)eIlx.”xIN"—’O%eB(i:Zn ’
+; k(t1—51,...,tN—SN)Qxi(sl,...,sN)dsl...dsN\p)
Iy x...xXIN
oo
sup lim sup 2P|fi(tr, .-, tn,2(t, .-, EN))IP
(tl,...,tN)Ellx.“xIN"HoouEB(; !
o0
+Z/\i2p‘ k‘(tl781,...,tN7SN)QI¢(S1,...,SN)dS1...dSN|p)
i=n Iy x...xIN
oo
sup lim sup [Z4p|fi(tl7"~7tN7x(t11~"7tN))_fi(511~"751\]71:0(817"'78]\’))'1)
(t1,--tN)EN .. xIy "7 PueB LT

N

£ YU swi 2o, s )P 4 A K[ - ) [

oo
Z |Qzi(s1,...,sn)|Pds1 . ..dsN]

i—n i=1 I X..XIN ;—,
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o0
< sup lim sup AP Mzi(ty, ... tN)[P +4P > | fils1,.. . sn,20(s1,. .., 8N
(150t N)EIL X .. X Iy V7 ueB [Zz;l ;
N oo
x2P kP ([ (bi — ai))Pfl/ LY [@i(st,...,sn)[Pds: . ..dsN]
i1 I x..xXIn ;=
N
< APM(XOry x .. xIn ) (B))P + AQPKPLXC(Ilx...xIN,z,,)(B)(H(bi —a;))?
=1
N
= (XC(yxoxn ) (B)P (4P M+ X2PKPL([ [ (bi — a:))P).
=1
N
We observe that xco(r, x...x1y.1,)(F(B)) < Xo(1x...x 1 1,) (B)AP M + X2P KPL(
=1
1 . . N _1
a;))P]». Now, let € > 0 be given. Taking § = s<(4PM+ )\2PKPL(H(b¢ —a;))P) P — 1>‘

=1
Hence, we get

e < XC’(11><..4><IN,lp)(B) <e+é= XC’(11><..4><IN,ZP)(F(B)) <g,

which implies that F' is a Meir-Keeler condensing operator defined on the set B.
So I satisfies all the conditions of Theorem which shows that the mapping F
has a fixed point in B. Hence the infinite system (1.1) has a solution in C(I; x

. X IN, lp) O

Example 3.2. Let us consider the infinite system of integral equations

i+1

(1, j
zi(t1,t2) = Z MJF 4 /1 - cos((t1+t2)—(s1+s2)) In(1+| arctan x;(s1, s2)|)dsads1 .
231x[3

= 101 —1 241 2,5

(3.1)
i+1

xi(t1,t
Here I; = (343, 453] ( = 1,2), k(t1,2) = cos((t1 + t2), fi(t1,t2,x(t1,12)) = > 71]0(1;_21)
=

and Qz;(t1,t2) = In(1 + | arctan ;(¢1,¢2)|) and A\; = ﬁ, i=1,.... So 1 is a
special case of the infinite system (1.1]). Clearly, f; s’ are continuous on I; x I and
we have

z;(t1,t2) — y;(s1, 52
|fi(tr, ta, @(t1, t2)) — fi(s1,s2,y(s1,82))> = ‘Z . . )‘
1015 — 1
< ‘Z |5 (t1,t2) yj(51732)|‘2
= 1015 — 1
1
< ilxg t1,t2) — y;(s1,52)|?
- (1015 — 1)2 '

We may assume that the right hand side of the above inequality is less than or
oo

equal 5r|@;(t1,t2) — yi(s1,52)|?, where M = 5. Also, Z\fi(tl,tg,mo(tl,tg))P
i=1
uniformly converges to 0 and Qx? = 0. Further, we can write

NP



8. ALIPOUR FATIDEH, M. KHANEHGIR, M. MEHRABINEZHAD, R. ALLAHYARI, H. AMIRI KAYVANLOO
o o]
D lQwi(t1,t2) — Quita, t2)]?

o0
2
= Z’ In(1 + | arctan z;(t1,t2)]) — In(1 + | arctanyi(t1,t2)|)‘
i=1

i’l 1+ |arctan z;(t1,t2)]|2
= n

= 14 |arctany;(t1, t2)]

— i’ In(1+ |arctan x; (t1,t2)| — |arctanyi(t1,t2)‘)’2
1+ |arctan y; (t1,t2)]

oo
t i(t1,t2) — t i(t1,t 2
Z’ln(l—i— | arctan z;(t1, t2) — arctan y; (t1, 2)|)‘

<
- 1+ |arctan y;(t1, t2)]
2
< Z’ In(1 + | arctan z;(t1,t2) — arctanyi(tl,tz)D‘
i=1
o0
< D it ta) — wilts, t2) ]2
i=1

N
Moreover, 42M + 522 K2L*(J [ (b: — a;))* = 0.4854080247 < 1. Thus the infinite

i=1
system (3.1]) satisfies the hypotheses of the Theorem Therefore (3.1) has at
least one solution in C'(I7 x Is,ls).

4. NUMERICAL SOLUTION OF THE INFINITE SYSTEM (|3.1]

Finding the solution of nonlinear integral equations is an important subject in
various scientific problems. Numerical methods can help us to achieve this goal (see
[15, [18] 24]). In this section, we propose a numerical method to solve the infinite
system approximately.

Example 4.1. Consider the infinite system of integral equations
i+1

. _ zj(tl,tz) i\ ) .
xi(t1,t2) = Z m—kzi Tz s cos((t1+t2)—(s1+s2)) In(1+| arctan x;(s1, s2)|)dsads1, ¢ =1,2,....
j=i '

(4.1)
This system can be written as follows:

Z‘i(tl,tg) = 6ixi(t17 tg) + (Si+1$i+1(t1,t2 2 + 1 / / tl,tg, S1, 82)d32d51,

(4.2)

where
1

P = T 4.
0 1017 —1 (4.3)

and
Fi(th t2, S1, 52) = COS((tl + tg) — (51 + 52)) hl(l + |arctan l‘i(Sl, 52)|) (44)

Clearly, when i tends to inﬁnity, &; vanishes. Hence for a big enough n, we let

(tl,tg 2n+ 1 / / tl,t2,81,82)d82d81 (45)

Equation (4.5)) is an eigenvalue problem. For more details about an eigenvalue
problem one can see [I7]. To solve this problem, first we expand the integral term

in (4.5) as follows:
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4 5
4
fg f% Fi(t1,t2, 51, 52)dsads;

/ / cos((t1 + t2) — (s1 + 52)G(xn (51, 82))dsadsy,
2 3
where G(zn,(s1,82)) = In(1 + | arctan 2, (s1, s2)|). Hence
15
fg f%“ Fi(t1,t2, 51, 52)dsads;

4 .5 4 .5
3 1 3 1

= Cos(t1+t2)/1 /2 cos(s1—i-52)G(:vn(81,52))d52d51—}-Sin(tl—i-tg)/1 /2 sin(s1+s2)G(zn(s1, $2))ds2ds1 .
3 73 3 73

(4.6)
From (4.5) and (4.6) we deduce
Tp(s1,82) ~ on 7:_ 1 A (C1n cos(ty + ta) + Capsin(ty + t2)), (4.7)
where
3 s
:/ / cos(81 + $2)G(xn (81, 82))ds2dsy, (4.8)
1 2
z 73
and
3 ri
Cop = [ /2 sin(s1 + $2)G(y (51, 82))dsads;. (4.9)
3 73
Defining
Hi ,,(s1,52) = cos(s1 + $2)G(zn(51,82)), Han(s1,82) =sin(s1 + s2)G(x,(s1, 52)),
(4.10)

and replacing x,,(t1,t2) from (4.7) in C; ,, and Cy ,, the following nonlinear system
is obtained:

4 5 4 5

Cin = [ [5 Hin(s1,s2) = [ [ cos(s1 + s2)G (557 n (Crn cos(s1 + s2) + Oz, sin(s1 + s2)))dsads:
303 3%

Com = ff fg‘l Hs n(s1,82) = ff f24 sin(s1 + SQ)G(ﬁ)\n(CLn cos(s1 + s2) + Ca,p sin(s1 + s2)))dsa2ds;.
73 33

(4.11)
The integrals in (4.11) can not be solved exactly and we use the simple two di-
mensional trapezoidal method to approximate them. First, we recall the formula
of the simple two dimensional trapezoidal method

/ / H(s1, 82)dsadsy ~ (b;a)(d;c)[H(b,d) + H(b,c) + H(a,d) + H(a,c)].

(4.12)
Therefore the system (4.11) can be approximated as follows:
4.1 5. 2
Cl n = ( z j )( 4 : )(Hl 'n(37 Z) +H1 n(3’ 3) +H1 'n(27 Z) +H1 n(% %)) (413)
CQ,TL (§ 5)(2 g)(H2’ﬂ §7%)+H2”ﬂ(4317§)+H2’ﬂ(271)+H2n(27 3))

The nonlinear system (4.13)) is a system with two equations and three unknowns
Cin, Capn and Ay, Now, we choose a fix value for A\, and solve this system by
Newton-Raphson method to find C , and Cs,, [17].

Reviewing the procedure so far, first we must choose a big value for n and derive the
equation , then by assuming a fix value for )\, and solving the system
we find C ,, and Cs .

To make the procedure more clear, we choose n = 10, which is not so big. By
assuming different values for A9 and solving the system , we find out that for
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[A10] > 5.54, this system has nontrivial solutions. Now, we let A\;g = 9 and solve the
system (4.13) which results in Cq 19 = —0.6882143395 and Cs 19 = 0.2192127099.
Hence, by using (4.7) we get

x10(t1,t2) = —0.2949490027 cos(t1 + to) + 0.9394830424 sin(t1 + t2). (4.14)
In order to find the relation of other functions, i.e., xg(t1, t2),. .. ,21(t1,t2), consider

the following relation derived from (4.2))

1 n—1
—  (bnmnlti,t
1—5n,1( Tnlty t2)+o

Tp—1(t1,t2) =
(4.15)

Using the relations (4.8)) and (4.9)), equation (4.15)) can be written as follows:

n—

Snrn (b1, t
(Onn(ta,t2) g —

1
fn—l(tlytz) = ﬁ
— Un-1

(4.16)
By substituting in Cy p—1 and Cy 1, one obtains a nonlinear system similar
to , in which the values of C;,_1 and Cs,_1 are solved for fixed values of
An—1 = 10 for n = 10,9, ...,2. Hence we choose \,,_1 = 10 for n = 10,9,...,2 and
presented them in the table (1).

TABLE 1.

Cl,n
-0.06882143395
-0.06857378254

02,71
0.2192127099
0.2184238810

4 5
3 4

An—1 /1 /2 Fn_1(t1,t2,s1,s2)dsads1), n = 10,9, ..
2 3

2

1
)\n,1 (Cl,nfl COS(t1+t2)+CQ’n,1 sin(t1+t2))) .

=N Wk Lo N 00 o OB

-0.06807788018
-0.06743565394
-0.06657190157
-0.06534822955
-0.06348080126
-0.06028165222
-0.05354673859
-0.03058609698

0.2168443135
0.2147986695
0.2120474118
0.2120474118
0.2022015188
0.1920114647
0.1705591557
0.09742402651

On the other hand, to check how good are the approximate values of Cy ,,—; and
Cyn—1, in table (2), we have considered bigger values for n and computed C; ; and
Cy,;, for each n and some .
The results in this table reveal that, for big values of n, C1; and Cy;, for i =

1,2,...,n are approximately the same, which concludes that x;(t1,ts) for ¢ =
1,2,...,n for different values of n, are approximately the same.
TABLE 2.

n C1,100 C2 100 C1,10 C2 10 C11 Ca 1
100 | -0.07208672981 | 0.2296134573 | 0.06896900796 | 0.2196827684 | -0.03058609698 | 0.09742402651
200 | -0.07210081244 | 0.2296583139 | 0.06896900796 | 0.2196827684 | -0.03058609698 | 0.09742402651
300 | -0.07210081244 | 0.2296583139 | 0.06896900796 | 0.2196827684 | -0.03058609698 | 0.09742402651
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