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RANDOM GENERALIZED NONLINEAR IMPLICIT

VARIATIONAL-LIKE INCLUSION PROBLEM INVOLVING

RANDOM FUZZY MAPPINGS

MARYAM GHARAMAH ALSHEHRI∗, FAIZAN AHMAD KHAN∗, JAVID ALI∗

Abstract. In this paper, using proximal-point mapping of strongly maximal

P -η-monotone mapping and the fixed point formulation, we suggest and ana-

lyze a random iterative scheme for finding the approximate solution of a ran-
dom generalized nonlinear implicit variational-like inclusion problem involving

random fuzzy mappings in real separable Hilbert space. Further, we prove the
existence of solution and discuss the convergence analysis of iterative scheme

of this class of inclusion problem. Our results can be viewed as a refinement

and improvement of some known results in the literature.

1. Introduction

Variational inclusions, as the generalization of variational inequalities, have been
widely studied in recent years. One of the most interesting and important prob-
lems in the theory of variational inclusions is the development of an efficient and
implementable iterative algorithm. Variational inclusions include variational, quasi-
variational, variational-like inequalities as special cases. For application of varia-
tional inclusions, one can see [9]. Various of iterative methods have been studied
to find the approximate solutions for variational inclusions. Among these methods,
the proximal-point mapping method for solving variational inclusions (inequalities)
has been widely used by many authors. For details, we refer to see [1,5,7,9,12-
16,18,20-22].

In 1965, Zadeh [23] gave the notion of fuzzy sets as an extension of crisp sets, the
usual two-valued sets in ordinary set theory, by enlarging the truth value set to the
real unit interval [0, 1]. Ordinary fuzzy sets are characterized by, and mostly iden-
tified with, mapping called ‘membership function’ into [0, 1]. The basic operations
and properties of fuzzy sets or fuzzy relations are defined by equations or inequal-
ities between the membership functions. Heilpern [10] initiated the study of fuzzy
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mappings and established a fuzzy analogue of the Nadler’s fixed point theorem [18]
for multivalued mappings. Random variational inequality theory is an important
part of random functional analysis. These topics have attracted many scholars and
experts due to the extensive applications of the random problems, see for examples
[2,4,5,8-11,19].

In 1989, Chang and Zhu [4] initiated the study of a class of variational inequal-
ities with fuzzy mappings. In recent past, various classes of random variational
inequalities have been introduced and studied by Chang [2], Chang and Huang [3],
Ding [5], Huang [13], Noor [19] and Park and Jeong [21].

Recently, Huang [14] developed an iterative scheme for a class of random varia-
tional inclusions with random fuzzy mappings and discuss its convergence criteria
in real separable Hilbert space. Very recently, Ahmad and Bazan [1], Ding and
Park [6], Kazmi [15], Lan et al. [17], Onjaiuea and Kumam [20] and Park and
Jeong [22] introduced and studied various generalized classes of random variational
inclusions involving random fuzzy mappings in real separable spaces.

Motivated by the work in this active area, in this paper, using proximal-point
mapping of strongly maximal P -η-monotone mapping and the fixed point formula-
tion, we suggest and analyze a random iterative scheme for finding the approximate
solution of a random generalized nonlinear implicit variational-like inclusion prob-
lem involving random fuzzy mappings in real separable Hilbert space. Further,
we prove the existence of solution and discuss the convergence analysis of iterative
scheme of this class of inclusion problem. Our results can be viewed as a refinement
and improvement of some known results given in [1,6,7,14-18,22].

2. Preliminaries

Let H be a real separable Hilbert space whose norm and inner product are
denoted by ‖ · ‖ and 〈·, ·〉 respectively; let (Ω,Σ) be a measurable space, where Ω
is a set and Σ is σ-algebra of subsets of Ω; let B(H) be the class of Borel σ-fields
in H; CB(H) denotes the collection of all nonempty bounded and closed subsets
of H, and 2H denotes the power set of H. The Hausdorff metric H(·, ·) on CB(H)
is defined by

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
, A,B ∈ CB(H). (2.1)

First, we recall and define the following concepts and known results.

Definition 2.1[20]. A mapping x : Ω → H is said to be measurable if, for any
B ∈ B(H), {t ∈ Ω : x(t) ∈ B} ∈ Σ.

Definition 2.2[20]. A mapping f : Ω ×H → H is said to be random if, for any
x ∈ H, f(t, x) = y(t) is measurable. A random mapping f is said to be continuous
(resp. linear, bounded) if for any t ∈ Ω, the mapping f(t, ·) : H → H is continuous
(resp. linear, bounded).

Similarly, we can define a random mapping a : Ω×H ×H → H. We will write
ft(x) = f(t, x(t)) and at(x, y) = a(t, x(t), y(t)), for all t ∈ Ω and x(t), y(t) ∈ H.
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Remark 2.1[20]. It is well known that a measurable mapping is necessarily a
random mapping.

Definition 2.3[20]. A multivalued mapping G : Ω→ 2H is said to be measurable
if, for any B ∈ B(H), G−1(B) = {t ∈ Ω : G(t) ∩B 6= ∅} ∈ Σ.

Definition 2.4[20]. A mapping u : Ω → H is said to be measurable selection of
a multivalued measurable mapping G : Ω → 2H if u is a measurable and for any
t ∈ Ω, u(t) ∈ G(t).

Definition 2.5[20]. A multivalued mapping F : Ω × H → 2H is said to be
random if, for any x ∈ H, F (·, x) is measurable. A random multivalued mapping
F : Ω × H → CB(H) is said to be H-continuous if, for any t ∈ Ω, F (t, ·) is
continuous in the Hausdorff metric.

Definition 2.6[20]. Let F(H) be the family of all fuzzy sets over H. A mapping
F : H → F(H) is called a fuzzy mapping over H.

Remark 2.2[20]. If F is a fuzzy mapping over H, then F (x) (denoted by Fx in
the sequel) is fuzzy set on H, and Fx(y) is the membership function of y in Fx.

Definition 2.7[20]. Let A ∈ F(H), α ∈ [0, 1]. Then the set

(A)α = {x ∈ H : A(x) ≥ α} (2.2)

is called a α-cut set of fuzzy set A.

Definition 2.8[20]. A fuzzy mapping F : Ω → F(H) is called measurable if, for
any α ∈ (0, 1], (F (·))α : Ω→ 2H is a measurable multivalued mapping.

Definition 2.9[20]. A fuzzy mapping F : Ω×H → F(H) is said to be a random
fuzzy mapping if, for any x ∈ H, F (·, x) : Ω→ F(H) is a measurable fuzzy mapping.

Remark 2.3[20]. We note that the random fuzzy mappings include multivalued
mappings, random multivalued mappings and fuzzy mappings as the special cases.

Definition 2.10[16]. Let η : H × H → H be a single-valued mapping. Then a
multi-valued mapping M : H → 2H is said to be

(i) η-monotone, if

〈u− v, η(x, y)〉 ≥ 0, ∀x, y ∈ H, u ∈M(x), v ∈M(y);

(ii) strictly η-monotone, if

〈u− v, η(x, y)〉 > 0, ∀x, y ∈ H, u ∈M(x), v ∈M(y)

and equality holds if and only if x = y;
(iii) ν-strongly η-monotone, if there exists a constant ν > 0 such that

〈u− v, η(x, y)〉 ≥ ν‖x− y‖2, ∀x, y ∈ H, u ∈M(x), v ∈M(y);

(iv) maximal-η-monotone, if M is η-monotone and (I + ρM)(H) = H for any
ρ > 0, where I stands for identity mapping.

Definition 2.11[7,16]. Let η : H × H → H be a mapping. Then a mapping
P : H → H is said to be
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(i) η-monotone, if

〈P (x)− P (y), η(x, y)〉 ≥ 0, ∀x, y ∈ H;

(ii) strictly η-monotone, if

〈P (x)− P (y), η(x, y)〉 > 0, ∀x, y ∈ H

and equality holds if and only if x = y;
(iii) δ-strongly η-monotone, if there exists a constant δ > 0 such that

〈P (x)− P (y), η(x, y)〉 ≥ δ‖x− y‖2, ∀x, y ∈ H.

Definition 2.12[16]. Let η : H × H → H and P : H → H be mappings. A
multivalued mapping M : H → 2H is said to be γ-strongly maximal P -η-monotone,
if M is γ-strongly η-monotone and (P + ρM)H = H for any ρ > 0.

The following theorems give some properties of γ-strongly maximal P -η-monotone
mappings.

Theorem 2.1[16]. Let η : H×H → H be a mapping and P : H → H be a strictly
η-monotone mapping. Let M : H → 2H be a γ-strongly maximal P -η-monotone
multivalued mapping, then

(a) 〈u − v, η(x, y)〉 ≥ 0, ∀ (v, y) ∈ Graph(M) implies (u, x) ∈ Graph(M),
where Graph(M) := {(u, x) ∈ H ×H : u ∈M(x)};

(b) the mapping (P + ρM)−1 is single-valued for all ρ > 0.

By Theorem 2.1, we define strongly P -η-proximal-point mapping for a γ-strongly
maximal P -η-monotone mapping M as follows:

RMP,η(z) = (P + ρM)−1, ∀ z ∈ H, (2.3)

where ρ > 0 is a constant, η : H × H → H is a mapping and P : H → H is a
strictly η-monotone mapping.

Theorem 2.2[16]. Let P : H → H be a δ-strongly η-monotone mapping and
η : H ×H → H be a τ -Lipschitz continuous mapping. Let M : H → 2H be a γ-
strongly maximal P -η-monotone multivalued mapping, then strongly P -η-proximal-

point mapping RMP,η is
τ

δ + ργ
-Lipschitz continuous, that is,

‖RMP,η(x)−RMP,η(y)‖ ≤ τ

δ + ργ
‖x− y‖, ∀x, y ∈ H. (2.4)

3. Formulation of problem

Let A,C,D,Q,R, S, Z : Ω × H → F(H) be random fuzzy mappings satisfying
the following condition (C): there exist mappings a, c, d, q, r, s, e : H → (0, 1] such
that

(At,x)a(x) ∈ CB(H), (Ct,x)c(x) ∈ CB(H), (Dt,x)d(x) ∈ CB(H), (Qt,x)q(x) ∈ CB(H),

(Rt,x)r(x) ∈ CB(H), (St,x)s(x) ∈ CB(H), (Zt,x)e(x) ∈ CB(H), ∀(t, x) ∈ Ω×H.
(3.1)

By using the random fuzzy mappings A,C,D,Q,R, S and Z, we can define
respectively the multivalued mappings Ã, C̃, D̃, Q̃, R̃, S̃, Z̃ : Ω × H → CB(H) by

Ã(t, x) = (At,x)a(x), C̃(t, x) = (Ct,x)c(x), D̃(t, x) = (Dt,x)d(x), Q̃(t, x) = (Qt,x)q(x),
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R̃(t, x) = (Rt,x)r(x), S̃(t, x) = (St,x)s(x), Z̃(t, x) = (Zt,x)e(x), for each (t, x) ∈ Ω×H.
It means that

Ã(t, x) = (At,x)a(x) = {z ∈ H, (At,x)(z) ≥ a(x)} ∈ CB(H),

C̃(t, x) = (Ct,x)c(x) = {z ∈ H, (Ct,x)(z) ≥ c(x)} ∈ CB(H),

D̃(t, x) = (Dt,x)d(x) = {z ∈ H, (Dt,x)(z) ≥ d(x)} ∈ CB(H),

Q̃(t, x) = (Qt,x)q(x) = {z ∈ H, (Qt,x)(z) ≥ q(x)} ∈ CB(H),

R̃(t, x) = (Rt,x)r(x) = {z ∈ H, (Rt,x)(z) ≥ r(x)} ∈ CB(H),

S̃(t, x) = (St,x)s(x) = {z ∈ H, (St,x)(z) ≥ s(x)} ∈ CB(H),

Z̃(t, x) = (Zt,x)e(x) = {z ∈ H, (Zt,x)(z) ≥ e(x)} ∈ CB(H). (3.2)

In the sequel, Ã, C̃, D̃, Q̃, R̃, S̃ and Z̃ are called the random multivalued map-
pings induced by the random fuzzy mappings A,C,D,Q,R, S and Z, respectively.

Let P : H → H; η : H ×H → H; N,M : Ω ×H ×H ×H → H be single-
valued mappings, and let g,m : Ω×H → H be random mappings such that g 6≡ 0.
Let W : Ω × H × H → 2H be a multivalued random mapping such that for each
(t, x) ∈ Ω×H, W (t, ·, x) is strongly maximal P -η-monotone and

(g −m)(Ω×H) ∩ domainW (t, ·, x) 6= ∅,

where

(g −m)(t, x) = g(t, x)−m(t, x), for any (t, x) ∈ Ω×H.

We consider the following random generalized nonlinear implicit variational-
like inclusion problem involving random fuzzy mappings (for short, RGNIVLIP):

Find measurable mappings x, f, l, p, u, v, w, z : Ω → H such that for all
t ∈ Ω, x(t) ∈ H, At,x(t)(f(t)) ≥ a(x(t)), Ct,x(t)(l(t)) ≥ c(x(t)), Dt,x(t)(p(t)) ≥
d(x(t)), Qt,x(t)(u(t)) ≥ q(x(t)), Rt,x(t)(v(t)) ≥ r(x(t)), St,x(t)(w(t)) ≥ s(x(t)),
Zt,x(t)(z(t)) ≥ e(x(t)) and

0 ∈ N(t, f(t), l(t), p(t))−M(t, u(t), v(t), w(t))+W (t, (g−m)(t, x(t)), z(t)). (3.3)

We remark that for suitable choices of the mappingsA,C,D,M,N, P,Q,R, S,
W,Z, η, a, c, d, e, g,m, q, r, s and the space H, RGNIVLIP (3.3) reduces to various
known classes of random variational inclusions (inequalities) and nonlinear operator
equation problems, see for example [1,4-7,13-15,17-22].

4. Random iterative scheme

First we state the following useful lemmas.

Lemma 4.1[2,20]. Let M : Ω ×H → CB(H) be a H-continuous random multi-
valued mapping. Then, for any measurable mapping w : Ω → H, the multivalued
mapping M(·, w(·)) : Ω→ CB(H) is measurable.



RANDOM GENERALIZED NONLINEAR IMPLICIT VARIATIONAL-LIKE INCLUSION 87

Lemma 4.2[2,20]. Let M,V : Ω ×H → CB(H) be two measurable multivalued
mappings, ε > 0 be a constant and v : Ω → H be a measurable selection of M .
Then there exists a measurable selection w : Ω→ H of V such that, for any t ∈ Ω,

‖v(t)− w(t)‖ ≤ (1 + ε) H(M(t), V (t)).

Now, we give the fixed point common solution formulation of RGNIVLIP
(3.3).

Lemma 4.3. The set of measurable mappings x, f, l, p, u, v, w, z : Ω → H is
a random solution of RGNIVLIP (3.3) if and only if, for all t ∈ Ω the random
multivalued mapping G : Ω×H → 2H defined by

G(t, x(t)) =
⋃

f(t)∈Ã(t,x(t))

⋃
l(t)∈C̃(t,x(t))

⋃
p(t)∈D̃(t,x(t))

⋃
u(t)∈Q̃(t,x(t))

⋃
v(t)∈R̃(t,x(t))

⋃
w(t)∈S̃(t,x(t))⋃

z(t)∈Z̃(t,x(t))

[
x(t)− (g −m)(t, x(t)) +R

W (t,·,z(t))
P,η

(
P ◦ (g −m)(t, x(t))

−ρ(t)N(t, f(t), l(t), p(t))+ρ(t)M(t, u(t), v(t), w(t))
)]
, t ∈ Ω, (4.1)

has a fixed point x = x(t) ∈ H, where ρ : Ω→ (0,∞) is a measurable function; P ◦
(g −m) denotes P composition (g −m); R

W (t,·,z(t))
P,η ≡ (P + ρ(t)W (t, ·, z(t)))−1.

Proof. RGNIVLIP (3.3) has a random solution (x, f, l, p, u, v, w, z) if and only if

0 ∈ N(t, f(t), l(t), p(t))−M(t, u(t), v(t), w(t)) +W (t, (g −m)(t, x(t)), z(t))

⇔ P ◦ (g −m)(t, x(t))− ρ(t)N(t, f(t), l(t), p(t)) + ρ(t)M(t, u(t), v(t), w(t))

∈ (P + ρ(t)W (t, ·, z(t))(g −m)(t, x(t)).

Since for each (t, z(t)) ∈ Ω × H, W (t, ·, z(t)) is strongly maximal P -η-

monotone, by definition of strongly P -η-proximal mappingR
W (t,·,z(t))
P,η ofW (t, ·, z(t)),

preceding inclusion holds if and only if

(g−m)(t, x(t)) = R
W (t,·,z(t))
P,η

[
P◦(g−m)(t, x(t))−ρ(t)N(t, f(t), l(t), p(t))+ρ(t)M(t, u(t), v(t), w(t))

]
,

that is, x(t) ∈ G(t, x(t)). This completes the proof.

Now, based on Lemma 4.3, we give the following random iterative scheme to
compute the approximate random solution of RGNIVLIP (3.3).

Iterative Scheme 4.1. Let A,C,D,Q,R, S, Z : Ω×H → T (H) be random fuzzy

mappings satisfying the condition (C). Let Ã, C̃, D̃, Q̃, R̃, S̃, Z̃ : Ω×H → CB(H)
be H-continuous random multivalued mappings induced by A,C,D,Q,R, S, Z, re-
spectively, and let N,M : Ω×H×H×H → H be continuous random mappings; let
P : H → H, η : H ×H → H be single-valued mappings. Let W : Ω×H ×H → 2H

be a random multivalued mapping such that for each (t, z) ∈ Ω × H, W (t, ·, z)
is γ-strongly maximal P -η-monotone with (g − m)(Ω × H) ∩ domainW (t, ·, z) 6=
∅. For any given measurable mapping x0 : Ω → H, the multivalued mappings
Ã(·, x0(·)), C̃(·, x0(·)), D̃(·, x0(·)), Q̃(·, x0(·)), R̃(·, x0(·)), S̃(·, x0(·)), Z̃(·, x0(·)) : Ω →
CB(H) are measurable by Lemma 4.1. Hence by Himmelberg [11], there exist mea-

surable selections f0 : Ω → H of Ã(·, x0(·)), l0 : Ω → H of C̃(·, x0(·)), p0 : Ω → H
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of D̃(·, x0(·)), u0 : Ω → H of Q̃(·, x0(·)), v0 : Ω → H of R̃(·, x0(·)), w0 : Ω → H of

S̃(·, x0(·)) and z0 : Ω→ H of Z̃(·, x0(·)).

Let

x1(t) = x0(t)−(g−m)(t, x0(t))+R
W (t,·,z0(t))
P,η

[
P◦(g−m)(t, x0(t))−ρ(t)N(t, f0(t), l0(t), p0(t))

+ρ(t)M(t, u0(t), v0(t), w0(t))
]
.

It is easy to observe that x1 : Ω → H is measurable. By Lemma 4.2, there
exist measurable selections f1 : Ω → H of Ã(·, x1(·)), l1 : Ω → H of C̃(·, x1(·)),
p1 : Ω → H of D̃(·, x1(·)), u1 : Ω → H of Q̃(·, x1(·)), v1 : Ω → H of R̃(·, x1(·)),
w1 : Ω→ H of S̃(·, x1(·)) and z1 : Ω→ H of Z̃(·, x1(·)) such that for all t ∈ Ω,

‖f1(t)− f0(t)‖ ≤ (1 + (1 + 0)−1)H (Ã(t, x1(t)), Ã(t, x0(t))),

‖l1(t)− l0(t)‖ ≤ (1 + (1 + 0)−1)H (C̃(t, x1(t)), C̃(t, x0(t))),

‖p1(t)− p0(t)‖ ≤ (1 + (1 + 0)−1)H (D̃(t, x1(t)), D̃(t, x0(t))),

‖u1(t)− u0(t)‖ ≤ (1 + (1 + 0)−1)H (Q̃(t, x1(t)), Q̃(t, x0(t))),

‖v1(t)− v0(t)‖ ≤ (1 + (1 + 0)−1)H (R̃(t, x1(t)), R̃(t, x0(t))),

‖w1(t)− w0(t)‖ ≤ (1 + (1 + 0)−1)H (S̃(t, x1(t)), S̃(t, x0(t))),

‖z1(t)− z0(t)‖ ≤ (1 + (1 + 0)−1)H (Z̃(t, x1(t)), Z̃(t, x0(t))).

Let

x2(t) = x1(t)−(g−m)(t, x1(t))+R
W (t,·,z1(t))
P,η

[
P◦(g−m)(t, x1(t))−ρ(t)N(t, f1(t), l1(t), p1(t))

+ρ(t)M(t, u1(t), v1(t), w1(t))
]
,

then x2 : Ω→ H is measurable. Continuing the above process inductively, we can
define the following random iterative sequences {xn(t)}, {fn(t)}, {ln(t)}, {pn(t)},
{un(t)}, {vn(t)}, {wn(t)} and {zn(t)} as follows:

xn+1(t) = xn(t)−(g−m)(t, xn(t))+R
W (t,·,zn(t))
P,η

[
P◦(g−m)(t, xn(t))

−ρ(t)N(t, fn(t), ln(t), pn(t)) + ρ(t)M(t, un(t), vn(t), wn(t))
]
, (4.2)

fn+1(t) ∈ Ã(t, xn+1(t)) : ‖fn+1(t)−fn(t)‖ ≤ (1+(1+n)−1)H (Ã(t, xn+1(t)), Ã(t, xn(t))),

ln+1(t) ∈ C̃(t, xn+1(t)) : ‖ln+1(t)−ln(t)‖ ≤ (1+(1+n)−1)H (C̃(t, xn+1(t)), C̃(t, xn(t))),

pn+1(t) ∈ D̃(t, xn+1(t)) : ‖pn+1(t)−pn(t)‖ ≤ (1+(1+n)−1)H (D̃(t, xn+1(t)), D̃(t, xn(t))),

un+1(t) ∈ Q̃(t, xn+1(t)) : ‖un+1(t)−un(t)‖ ≤ (1+(1+n)−1)H (Q̃(t, xn+1(t)), Q̃(t, xn(t))),

vn+1(t) ∈ R̃(t, xn+1(t)) : ‖vn+1(t)−vn(t)‖ ≤ (1+(1+n)−1)H (R̃(t, xn+1(t)), R̃(t, xn(t))),

wn+1(t) ∈ S̃(t, xn+1(t)) : ‖wn+1(t)−wn(t)‖ ≤ (1+(1+n)−1)H (S̃(t, xn+1(t)), S̃(t, xn(t))),

zn+1(t) ∈ Z̃(t, xn+1(t)) : ‖zn+1(t)−zn(t)‖ ≤ (1+(1+n)−1)H (Z̃(t, xn+1(t)), Z̃(t, xn(t))),

for any t ∈ Ω, n = 0, 1, 2, . . . and ρ : Ω→ (0,∞) is a measurable function.
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5. Existence of solution and convergence of scheme (4.1)

First, we define the following concepts.

Definition 5.1. A random mapping g : Ω×H → H is said to be

(i) s(t)-strongly monotone, if there exists a measurable function s : Ω→ (0,∞)
such that

〈g(t, x1(t))− g(t, x2(t)), x1(t)− x2(t)〉 ≥ s(t)‖x1(t)− x2(t)‖2;

(ii) lg(t)-Lipschitz continuous, if there exists a measurable function lg : Ω →
(0,∞) such that

‖g(t, x1(t))−g(t, x2(t))‖ ≤ lg(t)‖x1(t)−x2(t)‖, ∀x1(t), x2(t) ∈ H, t ∈ Ω.

Definition 5.2. A random multivalued mapping A : Ω ×H → CB(H) is said to
lA(t)-H-Lipschitz continuous, if there exists a measurable function lA : Ω→ (0,∞)
such that

H(A(t, x1(t)), A(t, x2(t))) ≤ lA(t)‖x1(t)− x2(t)‖, ∀x1(t), x2(t) ∈ H, t ∈ Ω.

Definition 5.3. Let Q,R, S : Ω×H → CB(H) be random multivalued mappings.
A random mapping N : Ω×H ×H ×H → H is said to be

(i) α(t)-strongly mixed monotone with respect to Q, R and S, if there exists a
measurable function α : Ω→ (0,∞) such that

〈N(t, u1(t), v1(t), w1(t))−N(t, u2(t), v2(t), w2(t)), x1(t)− x2(t)〉 ≥ α(t)‖x1(t)− x2(t)‖2,

∀xi(t) ∈ H, ui(t) ∈ Q(t, xi(t)), vi(t) ∈ R(t, xi(t)), wi(t) ∈ S(t, xi(t)), t ∈ Ω,

i = 1, 2;
(ii) β(t)-generalized mixed pseudocontractive with respect to Q, R and S, if

there exists a measurable function β : Ω→ (0,∞) such that

〈N(t, u1(t), v1(t), w1(t))−N(t, u2(t), v2(t), w2(t)), x1(t)− x2(t)〉 ≤ β(t)‖x1(t)− x2(t)‖2,

∀xi(t) ∈ H, ui(t) ∈ Q(t, xi(t)), vi(t) ∈ R(t, xi(t)), wi(t) ∈ S(t, xi(t)), t ∈ Ω,

i = 1, 2;

(iii) (l(N,2)(t), l(N,3)(t), l(N,4)(t))-mixed Lipschitz continuous, if there exist mea-
surable functions l(N,2), l(N,3), l(N,4) : Ω→ (0,∞) such that

‖N(t, x1(t), y1(t), z1(t))−N(t, x2(t), y2(t), z2(t))‖ ≤ l(N,2)(t)‖x1(t)− x2(t)‖

+l(N,3)(t)‖y1(t)−y2(t)‖+l(N,4)(t)‖z1(t)−z2(t)‖, ∀xi(t), yi(t), zi(t) ∈ H, t ∈ Ω, i = 1, 2.

Now, we prove the existence of solution and discuss the convergence analysis
of iterative sequences generated by the Iterative Scheme (4.1) for RGNIVLIP (3.3).

Theorem 5.1. Let the mappings η and P be same as in Theorem 2.2, and the
random fuzzy mappings A,C,D,Q,R, S, Z : Ω ×H → F(H) satisfy the condition
(C). Let the random mapping g : Ω×H → H be s(t)-strongly monotone and lg(t)-
Lipschitz continuous, and the random mapping m : Ω×H → H be lm(t)-Lipschitz
continuous. Let the random mapping P ◦ g be r(t)-strongly monotone and lP◦g(t)-
Lipschitz continuous, and the random mapping P ◦m be lP◦m(t)-Lipschitz contin-

uous. Let the random multivalued mappings Ã, C̃, D̃, Q̃, R̃, S̃, Z̃ : Ω×H → CB(H)
be H-Lipschitz continuous with measurable functions lÃ(t), lC̃(t), lD̃(t), lQ̃(t), lR̃(t),
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lS̃(t), lZ̃(t), respectively. Let the random mapping N : Ω×H×H×H → H be α(t)-

strongly mixed monotone with respect to Ã, C̃ and D̃ and (L(N,2)(t), L(N,3)(t), L(N,4)(t))-
mixed Lipschitz continuous, and the random mapping M : Ω × H × H × H →
H be β(t)-generalized mixed pseudocontractive with respect to Q̃, R̃ and S̃ and
(L(M,2)(t), L(M,3)(t), L(M,4)(t))-mixed Lipschitz continuous. Suppose that the ran-

dom multivalued mapping W : Ω × H × H → 2H is such that for each (t, z) ∈
Ω × H, W (t, ·, z) is γ-strongly maximal P -η-monotone with (g − m)(Ω × H) ∩
domainW (t, ·, z) 6= ∅. Suppose that there exists a measurable function k : Ω →
(0,∞) such that

‖RW (t,·,z1(t))
P,η (x(t))−RW (t,·,z2(t))

P,η (x(t))‖ ≤ k(t)‖z1(t)−z2(t)‖, ∀x(t), z1(t), z2(t) ∈ H,
(5.1)

and suppose that for a measurable function ρ : Ω→ (0,∞), the following condition

holds, for all t ∈ Ω,

θ(t) := q(t) +
τ

δ + ρ(t)γ

[
p(t) +

√
1− 2ρ(t)(α(t)− β(t)) + 2ρ2(t)(L2

N (t) + L2
M (t))

]
< 1,

(5.2)

where p(t) = lP◦m(t)+
√

1− 2r(t) + l2P◦g(t) ; q(t) = lm(t)+k(t)lZ̃(t)+
√

1− 2s(t) + l2g(t);

LN (t) = L(N,2)(t)lÃ(t) + L(N,3)(t)lC̃(t) + L(N,4)(t)lD̃(t); LM (t) = L(M,2)(t)lQ̃(t) +

L(M,3)(t)lR̃(t) + L(M,4)(t)lS̃(t).

Then, there exist measurable mappings x, f, l, p, u, v, w, z : Ω → H such that (3.3)
holds. Moreover, xn(t) → x(t), fn(t) → f(t), ln(t) → l(t), pn(t) → p(t), un(t) →
u(t), vn(t)→ v(t), wn(t)→ w(t), zn(t)→ z(t).

Proof. From Iterative Scheme 4.1, (5.1) and Theorem 2.2, for any t ∈ Ω, we have

‖xn+2(t)−xn+1(t)‖ ≤ ‖xn+1(t)−xn(t)−(g−m)(t, xn+1(t))+(g−m)(t, xn(t))‖

+‖RW (t,·,zn+1(t))
P,η [h(t, xn+1(t))]−RW (t,·,zn(t))

P,η [h(t, xn+1(t))]‖+‖RW (t,·,zn(t))
P,η [h(t, xn+1(t))]

−RW (t,·,zn(t))
P,η [P◦(g−m)(t, xn(t))−ρ(t)N(t, fn(t), ln(t), pn(t))+ρ(t)M(t, un(t), vn(t), wn(t))]‖,

where

h(t, xn+1(t)) = P◦(g−m)(t, xn+1(t))−ρ(t)N(t, fn+1(t), ln+1(t), pn+1(t))

+ρ(t)M(t, un+1(t), vn+1(t), wn+1(t)).

Hence, we have

‖xn+2(t)−xn+1(t)‖ ≤ ‖xn+1(t)−xn(t)−(g(t, xn+1(t))−g(t, xn(t)))‖
+‖m(t, xn+1(t))−m(t, xn(t))‖+ k(t)‖zn+1(t)− zn(t)‖

+
τ

δ + ρ(t)γ

[
‖xn+1(t)− xn(t)− (P ◦ g(t, xn+1(t))− P ◦ g(t, xn(t)))‖

+‖P ◦m(t, xn+1(t))− P ◦m(t, xn(t))‖+ ‖xn+1(t)− xn(t)

−ρ(t)(N(t, fn+1(t), ln+1(t), pn+1(t))−N(t, fn(t), ln(t), pn(t)))

+ρ(t)(M(t, un+1(t), vn+1(t), wn+1(t))−M(t, un(t), vn(t), wn(t)))‖
]
. (5.3)

Since g is s(t)-strongly monotone and lg(t)-Lipschitz continuous, we have

‖xn+1(t)− xn(t)− (g(t, xn+1(t))− g(t, xn(t)))‖
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≤
√

1− 2s(t) + l2g(t) ‖xn+1(t)− xn(t)‖. (5.4)

Again since P ◦g is r(t)-strongly monotone and lP◦g(t)-Lipschitz continuous;

m is lm(t)-Lipschitz continuous; P ◦m is lP◦m(t)-Lipschitz continuous; Z̃ is lZ̃(t)-
H-Lipschitz continuous, we have

‖xn+1(t)−xn(t)−(P ◦g(t, xn+1(t))−P ◦g(t, xn(t)))‖

≤
√

1− 2r(t) + l2P◦g(t) ‖xn+1(t)− xn(t)‖, (5.5)

‖m(t, xn+1(t))−m(t, xn(t))‖ ≤ lm(t)‖xn+1(t)− xn(t)‖, (5.6)

‖P ◦m(t, xn+1(t))− P ◦ g(t, xn(t))‖ ≤ lP◦m(t)‖xn+1(t)− xn(t)‖, (5.7)

and

‖zn+1(t)− zn(t)‖ ≤ (1 + (1 + n)−1)lZ̃(t)‖xn+1(t)− xn(t)‖. (5.8)

Since for each fixed t ∈ Ω, N is α(t)-strongly mixed monotone with re-

spect to Ã, C̃ and D̃, and (L(N,2)(t), L(N,3)(t), L(N,4)(t))-mixed Lipschitz continu-

ous; M is β(t)-generalized mixed pseudocontractive with respect to Q̃, R̃ and S̃,
and (L(M,2)(t), L(M,3)(t), L(M,4)(t))-mixed Lipschitz continuous, using inequality

‖x+ y‖2 ≤ 2(‖x‖2 + ‖y‖2), for all x, y ∈ H, we have

‖N(t, fn+1(t), ln+1(t), pn+1(t))−N(t, fn(t), ln(t), pn(t))‖

≤ l(N,2)(t)‖fn+1(t)−fn(t)‖+l(N,3)(t)‖ln+1(t)−ln(t)‖+l(N,4)(t)‖pn+1(t)−pn(t)‖
≤ (1+(1+n)−1) (l(N,2)(t)H(Ã(t, xn+1(t)) , Ã(t, xn(t)))

+l(N,3)(t)H(C̃(t, xn+1(t)) , C̃(t, xn(t)))+l(N,4)(t)H(D̃(t, xn+1(t)) , D̃(t, xn(t))))

≤ (1+(1+n)−1) (l(N,2)(t)lÃ(t)+l(N,3)(t)lC̃(t)+l(N,4)(t)lD̃(t))‖xn+1(t)−xn(t)‖,
(5.9)

‖M(t, un+1(t), vn+1(t), wn+1(t))−M(t, un(t), vn(t), wn(t))‖

≤ (1+(1+n)−1)(l(M,2)(t)lQ̃(t)+l(M,3)(t)lR̃(t)+l(M,4)(t)lS̃(t))‖xn+1(t)−xn(t)‖,
(5.10)

and

‖xn+1(t)−xn(t)−ρ(t)(N(t, fn+1(t), ln+1(t), pn+1(t))−N(t, fn(t), ln(t), pn(t)))

+ρ(t)(M(t, un+1(t), vn+1(t), wn+1(t))−M(t, un(t), vn(t), wn(t)))‖2

≤ ‖xn+1(t)−xn(t)‖2

−2ρ(t)〈N(t, fn+1(t), ln+1(t), pn+1(t))−N(t, fn(t), ln(t), pn(t)), xn+1(t)−xn(t)〉
+2ρ(t)〈M(t, un+1(t), vn+1(t), wn+1(t))−M(t, un(t), vn(t), wn(t)), xn+1(t)−xn(t)〉

+2ρ2(t)
[
‖N(t, fn+1(t), ln+1(t), pn+1(t))−N(t, fn(t), ln(t), pn(t))‖2

+‖M(t, un+1(t), vn+1(t), wn+1(t))−M(t, un(t), vn(t), wn(t))‖2
]

≤ (1−2ρ(t)(α(t)−β(t))+2(1+(1+n)−1)2ρ2(t)(L2
N (t)+L2

M (t))) ‖xn+1(t)−xn(t)‖2.
(5.11)



92 M.G. ALSHEHRI, F.A. KHAN, J. ALI

From (5.3)-(5.11), it follows that

‖xn+2(t)− xn+1(t)‖ ≤ θn(t) ‖xn+1(t)− xn(t)‖, ∀ t ∈ Ω, (5.12)

where

θn(t) :=
{√

1− 2s(t) + l2g(t) + lm(t) + k(t)lZ̃(t)(1 + (1 + n)−1)+
τ

δ + ρ(t)γ

[
lP◦m(t)

+
√

1− 2r(t) + l2P◦g(t) +
√

1− 2ρ(t)(α(t)− β(t)) + 2(1 + (1 + n)−1)2ρ2(t)(L2
N (t) + L2

M (t))
]}

.

Letting n→∞, we have θn(t)→ θ(t) for all t ∈ Ω, where

θ(t) :=

{√
1− 2s(t) + l2g(t) + lm(t) + k(t)lZ̃(t)+

τ

δ + ρ(t)γ

[
lP◦m(t)+

√
1− 2r(t) + l2P◦g(t)

+
√

1− 2ρ(t)(α(t)− β(t)) + 2ρ2(t)(L2
N (t) + L2

M (t))
]}

, (5.13)

where LN (t) := L(N,2)(t)lÃ(t)+L(N,3)(t)lC̃(t)+L(N,4)(t)lD̃(t); LM (t) := L(M,2)(t)

lQ̃(t) + L(M,3)(t)lR̃(t) + L(M,4)(t)lS̃(t).

By condition (5.2), θ(t) ∈ (0, 1) for all t ∈ Ω. Hence for any t ∈ Ω, θn(t) < 1
for n sufficiently large. Therefore (5.12) implies that {xn(t)} is a Cauchy sequence
in H. Since H is complete, there exists a measurable mapping x : Ω → H such
that xn(t)→ x(t), for all t ∈ Ω. Further, it follows from H-Lipschitz continuity of

Ã and Iterative Scheme 4.1, we have

‖fn+1(t)− fn(t)‖ ≤ (1 + (1 + n)−1) lÃ(t)‖xn+1(t)− xn(t)‖,
which implies that {fn(t)} is a Cauchy sequence in H. Similarly, we can prove
that {ln(t)}, {pn(t)}, {un(t)}, {vn(t)}, {wn(t)}, {zn(t)} are Cauchy sequences in
H. Hence, there exist measurable mappings l, p, u, v, w, z : Ω → H such that
ln(t) → l(t), pn(t) → p(t), un(t) → u(t), vn(t) → v(t), wn(t) → w(t), zn(t) → z(t)
as n→∞, for all t ∈ Ω.

Furthermore, for any t ∈ Ω, we have

d(f(t), Ã(t, x(t))) ≤ ‖f(t)− fn(t)‖+ d(fn(t) , Ã(t, x(t)))

≤ ‖f(t)− fn(t)‖+H(Ã(t, xn(t)) , Ã(t, x(t)))

≤ ‖f(t)− fn(t)‖+ lÃ(t)‖xn(t)− x(t)‖
→ 0 as n→∞.

Hence f(t) ∈ Ã(t, x(t)) for all t ∈ Ω. Similarly we can prove that l(t) ∈ C̃(t, x(t)),

p(t) ∈ D̃(t, x(t)), u(t) ∈ Q̃(t, x(t)), v(t) ∈ R̃(t, x(t)), w(t) ∈ S̃(t, x(t)), z(t) ∈
Z̃(t, x(t)), for all t ∈ Ω. Thus, it follows from Iterative Scheme 4.1, and Lipschitz

continuity of g,m, P ◦ g, P ◦m,RW (t,·,z(t))
P,η , N,M,W , that x(t) is a fixed point of

random multivalued mapping G(t, x(t)) defined by (4.1). Hence, by Lemma 4.3,
it follows that the set {x(t), f(t), l(t), p(t), u(t), w(t), z(t)} is a random solution of
RGNIVLIP (3.3). This completes the proof.

Remark 5.1. For all t ∈ Ω and measurable functions ρ, k : Ω→ (0,∞), it is clear
that α(t) > β(t); 2r(t) < 1 + l2P◦g(t); 2s(t) < 1 + l2g(t); 2ρ(t)(α(t) − β(t)) < 1 +

2ρ2(t)(L2
N (t) +L2

M ), where LN (t) = L(N,2)(t)lÃ(t) +L(N,3)(t)lC̃(t) +L(N,4)(t)lD̃(t)
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and LM (t) = L(M,2)(t)lQ̃(t) + L(M,3)(t)lR̃(t) + L(M,4)(t)lS̃(t). Further, θ ∈ (0, 1)

and condition (5.2) of Theorem 5.1 holds for some suitable values of constants.

Remark 5.2. Since the RGNIVLIP (3.3) includes many known generalized vari-
ational inclusion (inequality) and nonlinear operator equation problems as special
cases, so the technique utilized in this paper can be used to extend and advance
the theorems given by many researchers, see for example [1,6,7,14-18,22].
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