
Journal of Mathematical Analysis

ISSN: 2217-3412, URL: www.ilirias.com/jma

Volume 12 Issue 2 (2021), Pages 44-53.

SYMMETRIZATION PROCEDURES FOR THE LAW OF THE

ITERATED LOGARITHM

ZAHRA SHOKOOH GHAZANI

Abstract. In this paper, the general symmetrization procedures for conver-

gence rates for the law of the iterated logarithm for independent and identically
distributed random variables are established. Necessary and sufficient condi-

tions are provided for the Hartman-Wintner law for a symmetrized version of

the array.

1. Introduction

Let {Y, Ym,m ≥ 1} be a sequence of i.i.d random variables. For such sequences
of random variables, with mean zero and variance one, the law of the Iterated
Logarithm states that P (limsup(|

∑n
m=1 Ym|)(2mloglogm)−

1
2 = 1) = 1. In this

paper, some probabilities, whenever this law applicable, and convenient conver-
gence rates are appointed. We apply one of the classical results of probability
Hartman-Wintner law of the iterated logarithm. The results extend to the gen-
eral situation by the standard symmetrization procedure. With the law of large
numbers and the central limit theorem, the iterated logarithm law is considered
the fundamental limit theorem in Probability theory. When EY 2 = 1 the cen-
tral limit theorem claims that the distribution of Sum of random variables tends
to the standard normal distribution, whiles by the law of the iterated logarithm
p(limsup(|

∑n
m=1 Ym|)(2mloglogm)−

1
2 = 1) = 1. The following statements are re-

lated to the extended classical Hartman-Wintner law of the iterated logarithm. We
start with a discussion of the equivalence of these four statements.

EY = 0 and EY 2 = 1, (1.1)

∞∑
m=1

1

m
P

{∣∣∣∣∣
m∑
n=1

Yn

∣∣∣∣∣ > (1 + ε)
√

2m log logm

}{
<∞, if ε > 0

=∞, if ε < 0,
(1.2)

∞∑
m=1

log logm

m
P

{∣∣∣∣∣
m∑
n=1

Yn

∣∣∣∣∣ > (1 + ε)
√

2m log logm

}{
<∞, if ε > 0

=∞, if ε < 0,
(1.3)
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∞∑
m=1

1

mf(m)
P

{∣∣∣∣∣
m∑
n=1

Yn

∣∣∣∣∣ > (1 + ε)
√

2m log logm

}{
<∞, if ε > 0

=∞, if ε < 0,
(1.4)

by assuming
∫∞
1

(af(a))−1da = ∞, and g(a) =
∫ a
1

(tf(t))−1dt, a ≥ 1. wherein f(·)
be a positive nondecreasing function on R+.

Davis [3] extended Baum et al. [1] results and showed that (1.2) follows from
(1.1). The equivalence ”(1.1)⇔(1.3)”, was formulated by Hartman and Wintner
[11]. The implication ”(1.2)⇒(1.1)”, was proved by Gut [10]. Chen and Wang [2]
showed the relations ”(1.1)⇒(1.2)” and ”(1.1)⇒(1.3)”. Friedman et al. [4] applied
this convergence rate concept to the central limit theorem. Li and Spataru [15] gave
a refined result of complete convergence of the above results. Lai [9] generalized
these results to the moving average processes. Jiang and Zhang [12] discussed the
special rates in the law of the iterated logarithm for complete moment convergence.
Li and Rosalsky [14] proved The equivalence of (1.1) and (1.4). The starting point
for this study is the equivalences of (1.1) and (1.3) discuss the convergence rate of
the classical law of the iterated logarithm researched by Hartman and Wintner [11].
In this paper, we extend the equivalences of (1.1) and (1.4) for the symmetrized
version of independent and identically random variables.

2. Preliminaries and Lemmas

The following lemmas applied for the convergence rate are potent tools in the
limit theory area that are useful for proving the Main Theorem.

Lemma 2.1. Let {Ym,m ≥ 1} be a sequence of random variables and {Y ′m,m ≥ 1}
be an independent copy of {Ym,m ≥ 1}, then for every s > 0, if Ym

P−→ 0, then
E|Ym|s → 0, if and only if E|Ym − Y ′m|s → 0.

Proof. We first assume that E|Ym|s → 0. By Cr-inequality E|Ym|s → 0, implies
that E|Ym − Y ′m|s → 0. conversely, now assume E|Ym − Y ′m|s → 0. Using the
definition of expectation by integral, we divide it into two integrals and conclude

E|Ym|s =

∫ ∞
0

P
{
|Ym| > a

1
s

}
da ≤ ε+

∫ ∞
ε

P
(
|Ym| > a

1
s

)
da,

for every ε > 0. Since

sup
a≥ε

P

(
|Ym| >

a
1
s

2

)
≤ P

{
|Ym| >

ε
1
s

2

}
→ 0,

then we can conclude for enough large m,

E|Ym|s ≤ ε+ 2

∫ ∞
ε

P

{
|Ym − Y ′m| >

a
1
s

2

}
da ≤ ε+ 2s+1E|Ym − Y ′m|s.

Thus, we can deduce that E|Ym|s → 0, holds whenever E|Ym − Y ′m|s → 0.
�

The following lemma express lévy inequalities for a sequence of symmetric ran-
dom variables. These inequalities also hold under sub-linear expectation [6].

Lemma 2.2 ([9]). Let {Ym} be a symmetric sequence of random variables. Let
Sm =

∑m
j=1 Yj. Then, for every n and a > 0,
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(a) P

{
max
m≤n
|Sm| > a

}
≤ 2P {|Sn| > a},

(b) P

{
max
a≤n
|Yj | > a

}
≤ 2P {|Sn| > a}.

Lemma 2.3. Let {Ym,m ≤ n} be independent positive random variables. Then,
for every a > 0,

P

{
max
m≤n

Ym > a

}
≥

∑n
m=1 P{Ym > a}

1 +
∑n
m=1 P{Ym > a}

.

In special case, if P

{
max
m≤n

Ym > a

}
≤ 1

2 ,

n∑
m=1

P{Ym > a} ≤ 2P

{
max
m≤n

Ym > a

}
.

Proof. According to the expansion of the exponential function, we can get
1− y ≤ exp(−y) and 1− exp(−y) ≥ y

1+y , for y ≥ 0, and by independence, we have

that

P

{
max
m≤n

Ym > a

}
= 1−

n∏
m=1

(1− P{Ym > a})

≥ 1− exp

(
−

n∑
m=1

P{Ym > a}

)

≥
∑n
m=1 P{Ym > a}

1 +
∑n
m=1 P{Ym > a}

.

The first inequality is proofed. To establish in the particular case, now, assume

P

{
max
m≤n

Ym > a

}
≤ 1

2 , consider to the first inequality and put the upper bound of

1
2 in it, it is concluded that

n∑
m=1

2P (Ym > a) ≤ 1 +
n∑

m=1
P (Ym > a) then clearly

n∑
m=1

P (Ym > a) ≤ 1. �

Lemma 2.4. Let {Yn, 1 ≤ n ≤ nm,m ≥ 1} be an array of rowwise independent
random variables such that {nm,m ≥ 1} be a sequence of positive integers . Assume
|Yn| ≤ η a.s. for some η > 0, such that for every m ≥ 1, 1 ≤ n ≤ nm. If
nm∑
n=1

Ymn
P−→ 0 then for a large enough m, we have E

∣∣∣∣ m∑
n=1

Ymn

∣∣∣∣→ 0.

Proof. Suppose {Y ′mn, 1 ≤ n ≤ nm,m ≥ 1} be an independent copy of {Ymn, 1 ≤
n ≤ nm,m ≥ 1}. Hence it is enough to show that

E

∣∣∣∣∣
nm∑
n=1

(Ymn − Y ′mn)

∣∣∣∣∣→ 0 as m→∞. (2.1)

Since
nm∑
n=1

Ymn
P−→ 0, and by {Y ′mn, 1 ≤ n ≤ nm,m ≥ 1} be an independent copy of

{Ymn, 1 ≤ n ≤ nm,m ≥ 1}, so we can deduce,
nm∑
n=1

Y ′mn
P−→ 0 holds, then deduces
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nm∑
n=1

(Ymn−Y ′mn)→ 0 in Pr. and |Ymn−Y ′mn| ≤ 2η holds. Therefore (2.1) yields by

Lemma 2.1. �

Lemma 2.5. Assume 0 < Vm ↗ ∞, and {Y, Ym,m ≥ 1} be a sequence of i.i.d

random variables. If V −1m

m∑
n=1

Yn → 0 in Pr., then

E

∣∣∣∣∣V −1m

m∑
n=1

YnI(|Yn| ≤ Vm)

∣∣∣∣∣→ 0 as m→∞.

Proof. Let {Y ′, Y ′m,m ≥ 1} be an independent copy of {Y, Ym,m ≥ 1} and since

V −1m

m∑
n=1

Yn → 0 in Pr., then

V −1m

m∑
n=1

(Yn − Y ′n)→ 0, in Pr. (2.2)

By Lemma 2.2 for all a > 0,

P

{
max

1≤n≤m
|Yn − Y ′n| > a

}
≤ 2P

{∣∣∣∣∣
m∑
n=1

(Yn − Y ′n)

∣∣∣∣∣ > a

}
.

choose a = Vm/2, Then (2.2) and recent inequality implies that

P

{
max

1≤n≤m
|Yn − Y ′n| >

Vm
2

}
→ 0, as m→∞. (2.3)

By Lemma 2.3

mP

{
|Y − Y ′| > Vm

2

}
=

m∑
n=1

P

{
|Yn − Y ′n| >

Vm
2

}
≤ 2P

{
max |Yn − Y ′n| >

Vm
2

}
,

(2.4)

then we can get

P{|Y | > Vm} ≤ 2P

{
|Y − Y ′| > Vm

2

}
, (2.5)

for sufficiently large m.
Therefore by (2.3), (2.4), and (2.5),

mP{|Y | > Vm} → 0, as m→∞. (2.6)

For every ε > 0,

P

{∣∣∣∣∣
m∑
n=1

YnI(|Yn| ≤ Vm)

∣∣∣∣∣ > εVm

}
≤ mP{|Y | > Vm}+ P

{∣∣∣∣∣
m∑
n=1

Yn

∣∣∣∣∣ > εVm

}
.

Then by (2.6) and since V −1m

m∑
n=1

Yn → 0 in Probability the right side of the last

inequality above tends to zero, we obtain can deduce

V −1m

m∑
n=1

YnI(|Yn| ≤ Vm)→ 0, in Pr.

The proof follows from Lemma 2.4. �
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Lemma 2.6. Assume f(·) be a nondecreasing and positive function on (0,∞) such
that

∫∞
1

(af(a))−1da = ∞. Let g(a) =
∫ a
1

(tf(t))−1dt, a ≥ 1. Suppose Y be a
random variable satisfying

∞∑
m=1

1

f(m)
P (|Y | >

√
m log g(m)) <∞, (2.7)

then for every t > 2,

∞∑
m=1

1

f(m)

1

(m log g(m))
m
2
E|Y |tI(|Y | ≤

√
m log g(m)) <∞.

Proof. Let V0 = 0 and Vm =
√
m log g(m), m ≥ 1. since g(m)↗ then if 1 ≤ n ≤ m

we can deduce 0 ≤ log g(n) ≤ log g(m) so we have log g(m) ↗ then Vm√
m
↗. Then

Vn

Vm
≤
√

n
m . Therefore

∞∑
m=1

1

f(m)

1

(m log g(m))
t
2

E|Y |tI(|Y | ≤
√
m log g(m))

=

∞∑
m=1

1

f(m)V tm

m∑
n=1

E|Y |tI(Vn−1 < |Y | ≤ Vn)

≤
∞∑
m=1

1

f(m)V tm

m∑
n=1

V tnP{Vn−1 < |Y | ≤ Vn}

=

∞∑
n=1

V tnP{Vn−1 < |Y | ≤ Vn}
∞∑
m=n

1

f(m)V tm

≤
∞∑
n=1

n
t
2P{Vn−1 < |Y | ≤ Vn}

∞∑
m=n

1

m
t
2 f(m)

≤ K
∞∑
n=1

n

f(n)
P{Vn−1 < |Y | ≤ Vn}

≤ K

f(1)
+K

∞∑
n=1

{
n+ 1

f(n+ 1)
− n

f(n)

}
P (|Y | > Vn)

≤ K

f(1)
+K

∞∑
n=1

1

f(n)
P (|Y | > Vn) <∞.

Wherein K =
(
t
2 − 1

)−1
. This ends the proof. �

Lemma 2.7. Let f(·) and g(·), be as in Lemma 2.6. Then for every random
variable Y , (2.7) is equivalent to

∞∑
m=1

1

f(m)
P{|Y | > L

√
m log g(m)} <∞, (2.8)

for some L > 0.

Proof. Suppose (2.7) holds, then we prove (2.8) deduced from that for all 0 < L < 1.

Let Vm =
√
m log g(m), m ≥ 1.Since g(m) ↗ and log g(m) ↗ therefore Vm√

m
↗.
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Then Vm√
m
≤ V2m√

2m
and Vm ≤ 1√

2
V2m for m ≥ 1. We can get,

1

f(2m)
P

{
|Y | > 1√

2
V2m

}
≤ 1

f(m)
P{|Y | > Vm},

and
1

f(2m+ 1)
P

{
|Y | > 1√

2
V2m+1

}
≤ 1

f(2m)
P

{
|Y | > 1√

2
V2m

}
≤ 1

f(m)
P{|Y | > Vm},

which implies that,

∞∑
m=1

1

f(m)
P

{
|Y | > 1√

2
Vm

}
=

1

f(1)
P

{
|Y | > 1√

2
V1

}

+

∞∑
m=1

1

f(2m)
P

{
|Y | > 1√

2
V2m

}

+

∞∑
m=1

1

f(2m+ 1)
P

{
|Y | > 1√

2
V2m+1

}
≤ 1

f(1)
P

{
|Y | > 1√

2
V1

}
+ 2

∞∑
m=1

1

f(m)
P{|Y | >

√
m log g(m)}

<∞,

Then for every integer m ≥ 1,

∞∑
m=1

1

f(m)
P

{
|Y | > 1

2
n
2
Vm

}
<∞.

wherein L = 1
2n/2 and Vm =

√
m log g(m) . The proof is completed. �

3. Main Results

This section proves the main theorem by lemmas and shows some applications
by providing some examples.

Theorem 3.1. Suppose f(·) and g(·), be as in Lemma 2.6. Let {Y, Ym,m ≥ 1}, be
a sequence of i.i.d random variables. Let

(
√
m log g(m))−1

m∑
n=1

Yn → 0 in Pr.

(i) Assume that (2.7) holds and

EY = 0 and EY 2 <∞, (3.1)

Then
∞∑
m=1

1

mf(m)
P

{∣∣∣∣∣
m∑
n=1

Yn

∣∣∣∣∣ > (1 + ε)
√

2σ2m log g(m)

}{
<∞, if ε > 0

=∞, if ε < 0.
(3.2)
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(ii) Conversely, let

∞∑
m=1

1

mf(m)
P

{∣∣∣∣∣
m∑
n=1

Yn

∣∣∣∣∣ > L
√
m log g(m)

}
<∞, (3.3)

holds for some L > 0. Then (2.7) and (3.1) hold.

Proof. For every m ≥ 1 let Um =
√

2σ2m log g(m), Vm =
√
m log g(m), and

Ymn = YnI(|Yn| ≤ Vm), Zmn = Ymn − EYmn,where in 1 ≤ n ≤ m, m ≥ 1.

(i) Assume that (2.7) and (3.1) holds. We show that

∞∑
m=1

1

mf(m)
P

{∣∣∣∣∣
m∑
n=1

Yn

∣∣∣∣∣ > (1 + ε)Um

}
<∞, ∀ε > 0. (3.4)

For every ε > 0, we have

P

{∣∣∣∣∣
m∑
n=1

Yn

∣∣∣∣∣ > (1 + ε)Um

}
≤ mP{|Y | > Vm}+ P

{∣∣∣∣∣
m∑
n=1

Ymn

∣∣∣∣∣ > (1 + ε)Um

}
.

Then, by (2.7), to prove (3.4), it’s enough we show that

∞∑
m=1

1

mf(m)
P

{∣∣∣∣∣
m∑
n=1

Ymn

∣∣∣∣∣ > (1 + ε)Um

}
∞, ∀ε > 0. (3.5)

By Jensen’s Inequality and Lemma 2.5

1

Vm

∣∣∣∣∣
m∑
n=1

EYmn

∣∣∣∣∣ ≤ 1

Vm
E

∣∣∣∣∣
m∑
n=1

Ymn

∣∣∣∣∣→ 0, as m→∞,

and

1

Vm
E

∣∣∣∣∣
m∑
n=1

Zmn

∣∣∣∣∣ ≤ 2

Vm
E

∣∣∣∣∣
m∑
n=1

Ymn

∣∣∣∣∣→ 0, as m→∞.

Then to prove (3.5), it’s enough to show that

∞∑
m=1

1

mf(m)
P

{∣∣∣∣∣
m∑
n=1

Zmn

∣∣∣∣∣ > 2E

∣∣∣∣∣
m∑
n=1

Zmn

∣∣∣∣∣+ (1 + ε)Um

}
<∞, ∀ε > 0. (3.6)

Then for some t > 2 and any η > 0,

P

{∣∣∣∣∣
m∑
n=1

Zmn

∣∣∣∣∣ > 2E

∣∣∣∣∣
m∑
n=1

Zmn

∣∣∣∣∣+ (1 + ε)Um

}

≤ exp

{
− (1 + ε)2U2

m

(2 + η)∆2
m

+
C

V tm

m∑
n=1

E|Zmn|t
}
.

(3.7)

Wherein ∆2
m = sup

m∑
n=1

E(Zmn)2. Note that

E(Z2
mn) ≤ E(Ymn)2 ≤ EY 2 1 ≤ n ≤ m, m ≥ 1.
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Therefore ∆2
m ≤ mσ2, m ≥ 1. Choose η > 0 which be nearby enough to 0

such that a = 2(1+ε)2

(2+η) > 1. Then

∞∑
m=1

1

mf(m)
exp

{
− (1 + ε)2U2

m

(2 + η)∆m

}
≤
∞∑
m=1

1

mf(m)
exp

{
− (1 + ε)2U2

m

(2 + η)∆m

}

≤
∞∑
m=1

1

mf(m)
exp{−a log g(m)}

≤
∞∑
m=1

1

mf(m)

1

(g(m))a
<∞.

(3.8)

According to the integral test for convergence investigate of series and
since

∫∞
0

ds
sf(s)ga(s) < ∞, the convergence of the recent series resulted. By

the Cr-inequality, Holder’s inequality, and Lemma 2.6,
∞∑
m=1

1

mf(m)

1

V tm

m∑
n=1

E|Zmn|t

≤
∞∑
m=1

1

f(m)

1

(m log g(m))
t
2

E|Y |tI(|Y | ≤
√
m log g(m)) <∞.

(3.9)

By (3.7), (3.8), and (3.9), (3.6) holds and hence (3.4) holds.
Now we prove

∞∑
m=1

1

mf(m)
P

{∣∣∣∣∣
m∑
n=1

Yn

∣∣∣∣∣ > (1 + ε)Um

}
=∞, ∀ε > 0. (3.10)

By (3.1), EY = 0 and EY 2 < ∞. Then by the implication (1.1)⇒(1.4),
for all ε < 0
∞∑
m=1

1

mf(m)
P

{∣∣∣∣∣
∞∑
n=1

Yn

∣∣∣∣∣ > (1 + ε)
√

2EY 2m log g(m)

}
=∞. (3.11)

Then (3.10) holds by (3.2). Hence (3.2) follows from (3.4) and (3.10) .
(ii) Suppose that (3.3) holds for some L > 0. Then for every Y ,

∞∑
m=1

1

mf(m)
P

{∣∣∣∣∣
m∑
n=1

Yn

∣∣∣∣∣ > Lm

}
<∞.

Then by the implication ”(2.3)⇒(2.4)”, it follows that EY = 0 and EY 2 <
∞, hence (3.1) holds.Let {Y ′, Y ′m,m ≥ 1} be an independent copy of
{Y, Ym,m ≥ 1}. Then by the Lemma 2.5,

mP{|Y | > 4LVm} ≤ ∆P

{∣∣∣∣∣
m∑
n=1

(Yn − Y ′n)

∣∣∣∣∣ > 2LVm

}

≤ 16P

{∣∣∣∣∣
m∑
n=1

Yn

∣∣∣∣∣ > LVm

}
,

which by (3.3) ensures that
∞∑
m=1

1

f(m)
P (|Y | > 4LVm) <∞,
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and (2.7) follows from Lemma 2.7.

�

Remark 3.2. Let EY 2 <∞. Then (2.7) holds.

Proof. By Lemma 2.6, f(·) be a nondecreasing and positive function on (0,∞) and
m ≥ 1.Then

∞∑
m=1

1

f(m)
P
(
|Y | >

√
m log g(m)

)
≤ 1

f(1)

∞∑
m=1

P
(
|Y | >

√
m
)

≤ 1

f(1)
EY 2 <∞.

�

The main theorem that is proved in this article is possible when Lemma 2.6 and
(2.7) are correct. In the following, we explain the conditions equivalent to Lemma
2.6 and (2.7) by giving some examples.

Example 3.3. Define f(a) = (log log a)
v

in Lemma 2.6, where v ≥ 0. Hence as
a → ∞, equivalence log g(a) ∼ log log a holds. Then EY 2/[log log |Y |]v+1 < ∞ is
equivalent to (2.7).

Example 3.4. Define f(a) = (log a)s in Lemma 2.6, where 0 ≤ s < 1
2 . Hence as

a→∞, equivalence log g(a) ∼ (s−1) log log a holds. Then Ey2/{(log |Y |)s log log |Y |} <
∞ is equivalent to (2.7).

Example 3.5. In example 3.3, take v = 0, or in example 3.4, take s = 0. Then
EY 2/ log log |Y | <∞ is equivalent to (2.7).

With the law of large numbers, the iterated logarithm law is considered. Weak
convergence that proved in Theorem 3.1, also holds in case of almost sure conver-
gence for symmetric random variables [5]. This strong convergence is also estab-
lished for non-negative random variables [7]. An application of this strong conver-
gence for ρ-mixing random variables is given in [8].
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