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EXACT SOLUTIONS OF HYDROMAGENTIC FLUID FLOW

ALONG AN INCLINED PLANE WITH HEAT AND MASS

TRANSFER

ADNAN AHMAD, MUDASSAR NAZAR, AKHTER ALI, MAJID HUSSAIN, ZAFAR ALI

Abstract. The major focus of this research is to discuss the precise results

of the unstable, indirect and natural free convection flow of radiating fluid

with heat and the analysis of its collective transmission along with an inclined
plane. The subsequent liquid is optically thick, sticky and is unable to be com-

pressed and further it is prone to electrical conducting. Analytical solutions

are developed by applying the method of Laplace transform for the governing
differential equations. The obtained results are discussed minutely for some

special cases and further the effects of the related parameters are considered
in detail. Rosseland radiational flux model is employed in order to model the

impacts of the thermal radiation. For this purpose, graphical and numerical

results are derived for the appropriate parameters in flow regime and these
parameters exert significant impact on the obtained results.

1. Introduction

The hydromagnetic convection flow past a vertical plate has been considered in
many problems in the previous studies due to its practical applications in many
fields of engineering and scientific problems. Numerous investigations were im-
plemented using numerical and analytical approaches with thermal conditions of
different type which are well defined and continuous at the wall. This is because
of the fact that impact of radiation on convection is reasonably imperative in the
framework of various applications for example in transportation system, Pollution
dispersion, cooling and heating of channels, Biological sciences, gas turbines and
nuclear reactors, electrical power generation and also many other fields. Among
such applications the heat and mass transfer combinations for free convective pro-
cesses are analyzed under various processes, like in chemical processing systems
along with various industrial applications. Thus, Magneto-Hydrodynamics show
much importance in cosmological and environmental fields, nuclear and chemical
engineering and in electronics for freeconvective flows. Such wide applicability of
magnetic field in fluid dynamic has been analyzed by various scientists under dif-
ferent conclusions. The analytical solution and physical aspects of heat and mass
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transfer past an inclined oscillating surface under the impact of mass diffusion and
thermal radiation investigated by [1]. The unsteady free convection flow with heat
and mass transfer of an electrically conducting viscoelastic fluid through a porous
medium of variable permeability was investigated [2]. They use Laplace Transform
and method of separation of variables to explore the impact of various important
parameters. Moreover, it was found that, if the applied magnetic field is fixed to the
plate the fluid flows more slowly than if the magnetic field is fixed to fluid. If the
magnetic field strength is high, the fluid moves more slowly than into weak magnetic
fields. The fully-developed transient free-convection flow of viscous reactive fluid
problem in a vertical tube is analyzed both analytically and numerically [3]. This
study reports the effect of several operating parameters on the flow hydrodynamics
and thermal characteristics. They obtained solutions for transient state velocity
and temperature fields by implicit finite difference method and perturbation series
method. Norfifah Bachok et al [4] investigated the heat transfer for moving plates,
Sadia and Hossain [5] deliberated the mixed convention boundary layer flow with
mass and heat transfer having variable viscosity. The transport processes, which
are important for industrial applications, in which mass and heat transfers were
considered by Ellahi [6] in recent past, who discussed the MagnetoHydrodynamics
effects over nano fluid in a pipe having variable viscosity. The thermal radiational
effect on hydromagnetic Couette flow was presented by [7] and [8]. They used a
flux model to investigate radiational magneto- hydrodynamic channel flow. The
steady radiative magneto gas dynamics Couette flow for variable coefficients of
viscosity and density-dependent absorption coefficient has been described by [9].
He also numerically computed velocity, radiative flux, induced magnetic field and
temperature profiles. This shows that wall electrical conductivity and emissivity
exert a major effect on the velocity and magnetic field distributions but have minor
influence on temperatures. The fully developed mixed convection flow in a vertical
channel filled with nanofluids in the presence of a uniform transverse magnetic field
has been studied [10]. Closed form solutions for the fluid temperature, velocity
and induced magnetic field are obtained for both the buoyancy-aided and -opposed
flows. The unsteady magneto-hydrodynamic radiational convective flow with the
use of Rosseland model for radiation was reviewed by [11]. Analytical solutions
for temperature induced magnetic field and velocity has also been discussed by
them. The radiational effect of magnetohydrodynamics flow of gas between two
concentric spheres employing the optically thin limit case for thermal radiation is
studied by [12]. On the other hand, numerous practical interest problems of which
might contain non-uniform conditions at the plates. Considering this fact, some
researchers, namely, Makinde [13] , Pal et al [14], Sarma, D. and K. Pandit [15],
Usman et al [16] studied natural convection flow from a vertical plate along with
surface temperature by seeing different characteristics of the problems. Patra et
al. and Seth [17, 18] explored the impacts of radiation on natural convection flow
of an incompressible and viscous fluid near avertical plate. Azzam [19], used the
Rosseland approximation to explain the impact of radiation flux on hydromagnetic
free forced steady and laminar boundary layer flow. Analytically solutions was
obtained for free convectional magneto-heat transfer [20], using the differential ap-
proximation for energy equation with radiation flux and viscous effects. A steady,
laminar, magneto-hydrodynamic and convectional flow with thermal mass and heat
transmission and a semi-infinite plate were considered by [21], the model solutions
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are obtained numerically. Mahmoud [22] studied the temperature-dependent vis-
cosity effects in transient dissipative radiation-hydromagnetic convection and [23]
discussed the numerical results of magneto hydrodynamic boundary layer flow for
porous medium. The series solutions was obtained for unsteady squeezing flow
between parallel plates with transmission of heat and mass [24]. The unsteady
natural convectional flow of optically thick incompressible viscous fluid for vertical
plates with temperature distribution and thermal diffusion effects were discussed
by [25, 26]. Under the light of above researches, the main point of this research is
to explore the unsteady, thermal, natural convectional fluid flow for an electrically
conducting fluid with mass and heat transfer along an inclined plane. Moreover,
frictional shearing stress, concentration gradient and temperature gradients at the
plate surface are calculated for Grashof number, modified Grashof number, Schmidt
number and Boltzmann Rosseland constant. For this purpose, analytical solutions
are developed, and effects of the pertinent parameters are considered in detail. In
order to prove the concerned point, this research has been arranged as follows: Sec-
tion 2, describes mathematical formulation of problem along with the description
of boundary conditions. In Section 3, Laplace Transform Method is used to derive
the analytical results of proposed problem for different cases. Some special cases of
the peresnnt study are discussed in Section 4. Further, the graphical and numerical
results are explained in detail in Section 5. Finally, conclusion and remarks of this
study are given in Section 6.

2. Mathematical Processing of the Problem

Suppose an incompressible viscous, transient hydromagnetic flow is under re-
search for an electrically conducting, non-scattering, absorbing-emitting fluid with
mass and heat transmission along an infinite plate making an angle α to the hor-
izontal side. The velocity of the plate is and x, y−axis are considered axes along
and perpendicular to the plate as shown in Figure 1.

A uniform magnetic field is applied perpendicular to the direction of plate is
known as B0. By using Maxwell field equations described by Sutton and Sherman
[27], which are the result of the compromise of five vector equations, known as
Amperes law, Ohms law, magnetic field continuity, Kirchhoffs law and Faraday s
law. They described the propagation and interaction of electric and magnetic fields,
influenced by objects. Thus, the generalized vector forms these Maxwell equations
for an electrically conducting gas flow are

∇.B = 0, (2.1)

∇.J = 0, (2.2)

∇×B = µJ, (2.3)

∇× E = −∂B
∂t
, (2.4)

J = σ(ν ×B + E), (2.5)

where µ is known as viscosity and t is time, J is known as the current density, σ
electrical conductivity of the fluid, B magnetic field vector, E electrical field inten-
sity vector, v velocity vector, ρ is the density. For two-dimensional magneto hydro
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Figure 1. Flow geometry

dynamic and dynamic flow of fluid, the hydro magnetic retarding force applied only
in the anti-parallel direction to the flow of fluid and can be written as

Fmagnetic ≈ −σB2
yu, (2.6)

where By is the component of magnetic field vector in the direction of y-axis. In
mass and heat transfer processes, the concentration and temperature differences
are small enough. The Boussines q approximation and the heat and mass trans-
fer processes are analogously applicable. Under these simplifications, the unsteady
indirect natural free convection flow for radiating fluid, by using Boussines q ap-
proximation, the mathematical equations are as under

∂u

∂x
+
∂v

∂y
= 0, (2.7)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− ν ∂

2u

∂y2
+
σB2

0u

ρ
= −1

ρ

∂P

∂x
+ gβ(Tf − T∞) sinα+ gβc(C − C∞),(2.8)

−1

ρ

∂P

∂x
= gβ(Tf − T∞) cosα, (2.9)

∂C

∂t
= D1

∂2C

∂y2
, (2.10)

∂Tf
∂t

=
k

ρCp

∂2Tf
∂y2

− 1

ρCp

∂Qr
∂y

, (2.11)

Thus, the corresponding conditions are

u = u0, Tf = Tw, t ≥ 0, when y ≥ 0, (2.12)
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u = 0, Tf = T∞, t ≤ 0, when y = 0, (2.13)

u→ 0, Tf = T∞, t ≥ 0, when y →∞, (2.14)

where u and v are the components of velocity along with x-axis and y-axis, t is
for the time, Tf is temperature of fluid, T∞ is temperature of free stream, Tw is
the plate surface temperature, µ and ν are fluid dynamic and kinematic viscosity,
g is the gravitational acceleration, Qr is radiative heat flux, β is thermal expansion
coefficient, k and σ are thermal and electrical conductivities of the fluid, ρ is density,
B0 is magnetic field, C is fluid concentration and Cp is the specific heat, C∞ is
uniform ambient concentration, and D1 is diffusion coefficient. And

P = ρβg(h− y)(Tf − T∞) cos(α), (2.15)

where h is known as an elevation, differentiating the above Eq. (15) yields

∂P

∂x
= ρgβ(Tf − T∞)

∂h

∂x
cosα. (2.16)

The special position at plate (x=0), the density gradient with depth is constant
and hence the prescribed condition is as follows

∂h

∂x
= constant = F1, (2.17)

To facilitate the solution of two-point boundary value problem (BVP) which is
defined above, under the boundary conditions (12), (13), and (14) the dimensionless
variables are

u∗ =
u

u0
, t∗ = t

u20
ν
, y∗ =

yu0
ν
, θ =

(Tf − T∞)

(Tw)− T∞
,Gr =

gβν(Tw − T∞)

u30
,Pr =

µCP
k

,

M =
σνB2

0

ρu20
, φ =

(C − C∞)

Cw − C∞
,Sc =

ν

ρ
,Gm =

gβcν(Cw − C∞)

u30
, (2.18)

where θ is the dimensionless temperature function, Grashof number (free convection
parameter) Gr, Gm is the modified Grashof number, Schmidt number Sc, Hartman
number M, and Prandtl number Pr. Using transformation Eq. (18) into dimension-
less variables, dropping ∗, and neglecting convective acceleration term, the result
comes as follows

∂u

∂t
= Gr(θ sinα− F1θ cosα) +

∂2u

∂y2
−M2u+Gm(sinα− F1 cosα)φ. (2.19)

Presently, the optically thick radiational limit is taken in order to simplify the
problem. By using Rosseland radiation approximation formula by Raptis et al.
[28], the Qr is given as

Qr = −1.333σ

k∗
∂T 4

f

∂y
, (2.20)

where σ represents the Stefan-Boltzman constant and k∗ is absorption parameter
for the medium

T 4
f = 4T 3

∞Tf − 3T 4
∞. (2.21)

Proceeding with the above analysis, the energy equation in dimensionless form is

[1 + k1]
∂2θ

∂y2
− Pr

∂θ

∂t
= 0, (2.22)
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∂2φ

∂y2
− Sc

∂φ

∂t
= 0, (2.23)

where

k1 =
16σT 3

∞
3kk∗

, (2.24)

k1 denotes the Boltzmann-Rosseland’s radiatonal-conductive number and has dif-
ferent values corresponding to different phenomena. As (k1 > 1), shows thermal
radiation domination and for (k1 < 0) corresponds to thermal condition domina-
tion. In the case of k1 = 1 then both radiation and deduction dominance heat
transfer modes will equally contribute to the system. The above conditions have
also been transformed as under

u = 0, θ = 0, φ = 0, t ≤ 0 when y ≥ 0, (2.25)

u = 1, θ = 1, φ = 1, t > 0 when y = 0, (2.26)

u→ 0, θ → 0, φ→ 0, t > 0 when y →∞. (2.27)

3. Analytical Solution

In this section an attempt is made to derive the analytical solutions of thee
proposed mathematical model by using Laplace Transform Method. This method
solves differential equations along with initial and boundary conditions. Applying
Laplace transform technique on these equations (19), (22) and (23) along with
conditions (25), (26), and (27), gives the results as

sū(y, s)− u(y, 0) = Gr(sinαθ(y, s)− F1 cosαθ(y, s)) +
∂2ū(y, s)

∂y2
−

M2ū(y, s) + Gm(sinα− F1 cosα)φ̄(y, s) (3.1)

[1 + k1]
∂2θ̄(y, s)

∂y2
= Pr[sθ̄(y, s)− θ(y, 0)] (3.2)

∂2φ̄(y, s)

∂y2
= Sc[sφ̄(y, s)− φ(y, 0)] (3.3)

The Laplace transforms of u(y,t), θ(y, t) and φ(y, t) are represented by ū(y, s),
θ̄(y, s) and φ̄(y, s) respectively, and defined as

ū(y, s) =

∫ ∞
0

exp(−st)u(y, t)dt,

θ̄(y, s) =

∫ ∞
0

exp(−st)θ(y, t)dt,

φ̄(y, s) =

∫ ∞
0

exp(−st)φ(y, t)dt, (3.4)

∂2ū(y, s)

∂y2
− sū(y, s) + Gr(sinαθ(y, s)− F1 cosαθ(y, s))−

M2ū(y, s) + Gm(sinα− F1 cosα)φ̄(y, s) = 0, (3.5)
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∂2θ̄(y, s)

∂y2
− sθ̄(y, s) Pr

1 + k1
= 0, (3.6)

∂2φ(y, s)

∂y2
− Scsφ̄(y, s) = 0. (3.7)

The corresponding transformed boundary conditions are

ū(y, s) =
1

s
, θ̄(y, s) =

1

s
, φ̄(y, s) =

1

s
,

ū(y, s)→ 0, θ̄(y, s)→ 0, φ̄(y, s)→ 0, t > 0 when y →∞. (3.8)
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Applying inverse Laplace transform, we get the solution of Eqs. (32) to (34) with
respect to the boundary condition (35). The simplified solution becomes

u(y, t) =
1

2

[
exp(My)erfc

(
0.5y√
t

+M
√
t

)
+ exp(−My)erfc

(
y

2
√
t
−M

√
t

)]
[
1− (Gr + Gm)(sinα− F1 cosα)

M2

]
+

0.5Gr(sinα− F1 cosα)

M2
exp

(
M2(1 + k1)t

Pr− 1− k1

)
[

exp

(
My

√
Pr

Pr− 1− k1

)
erfc

(
0.5y√
t

+M

√
pr

pr− 1− k1
t

)
+ exp

(
−My

√
Pr

Pr− 1− k1

)
erfc

(
0.5y√
t
−M

√
pr

pr− 1− k1

)]
+

0.5Gm(sinα− F1 cosα)

M2
exp

(
M2

Sc− 1
t

)
[

exp

(
My

√
Sc

Sc− 1

)
erfc

(
.5y√
t

+M

√
Sc

Sc− 1
t

)
+ exp

(
−My

√
Sc

Sc− 1

)
erfc

(
.5y√
t
−M

√
Sct

Sc− 1
t

)]
+

(sinα− F1 cosα)

M2

[
Gmerfc

(
0.5y

√
Sc

t

)
+ 0.5Gry

(√
Pr

(1 + k1)t

)]

+
(sinα− F1 cosα)

M2

[
Gmerfc

(
0.5y

√
Sc

t

)
+ 0.5Gry

(√
Pr

(1 + k1)t

)]
− .5Gr(sinα− F1 cosα)

M2
exp

(
M2(1 + k1)t

Pr− 1− k1

)
exp

(
My

√
Pr

Pr− 1− k1

)

erfc

[(
0.5y

√
Pr

1 + k1t
+M

√
(1 + k1)t

Pr− 1− k1

)
+ exp

(
−My

√
Pr

Pr− 1− k1

)

erfc

(
0.5y

√
Pr

(1 + k1)t
−M

√
(1 + k1)t

Pr− 1− k1

)]
Gm(sinα− F1 cosα)

M2[
0.5 exp(

M2t

Sc− 1
)

{
exp

(
yM

√
Sc

Sc− 1

)
erfc

(
0.5y

√
Sc

t
+M

√
t

Sc− 1

)
+ exp

(
− yM

√
Sc

Sc− 1

)
erfc

(
0.5y

√
Sc

t
−M

√
t

Sc− 1

)}]
, (3.9)

and

θ(y, t) = erfc

(
0.5y

√
Pr

(1 + k1)t

)
, (3.10)

φ(y, t) = erfc

(
0.5y

√
Sc

t

)
. (3.11)
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4. Special Cases

Several special cases can be extracted from the above derived solution

4.1. Case 1. Reduction of thermal effects. When the thermal radiation affect
K1 → 0, then

u(y, t) =
1

2

[
eMyerfc

(
0.5y√
t

+M
√
t

)
+ e−Myerfc

(
y

2
√
t
−M

√
t

)]
[
1− (Gr + Gm)(sinα− F1 cosα)

M2

]
+

0.5Gr(sinα− F1 cosα)

M2
exp

(
M2t

Pr− 1

)
[

exp

(
My

√
Pr

Pr− 1

)
erfc

(
0.5y√
t

+M

√
Pr

Pr− 1
t

)
+

exp

(
−My

√
Pr

Pr− 1

)
erfc

(
0.5y√
t
−M

√
Pr

Pr− 1

)]
+

0.5Gm(sinα− F1 cosα)

M2
exp

(
M2

Sc− 1
t

)[
exp

(
My

√
Sc

Sc− 1

)
erfc

(
0.5y√
t

+M

√
Sc

Sc− 1
t

)
+ exp

(
−My

√
Sc

Sc− 1

)
erfc

(
0.5y√
t
−M

√
Sct

Sc− 1
t

)]
+

(sinα− F1 cosα)

M2

[
Gmerfc

(
0.5y

√
Sc

t

)
+ 0.5Gry

√
Pr

t

]
+

(sinα− F1 cosα)

M2[
Gmerfc

(
0.5y

√
Sc

t

)
+ 0.5Gry

√
Pr

t

]
− 0.5Gr(sinα− F1 cosα)

M2
exp

(
M2t

Pr− 1

)
[

exp

(
My

√
Pr

Pr− 1

)
+ erfc

(
0.5y

√
Pr

t
+M

√
(t)

Pr− 1

)]
+ exp

(
−My

√
Pr

Pr− 1

)
erfc

(
0.5y

√
Pr

(1 + k1)t
−M

√
(1 + k1)t

Pr− 1

)
+

Gm(sinα− F1 cosα)

M2[
0.5 exp

(
M2t

Sc− 1

){
exp

(
yM

√
Sc

Sc− 1

)
erfc

(
0.5y

√
Sc

t
+M

√
t

Sc− 1

)

+ exp

(
− yM

√
Sc

Sc− 1

)
erfc

(
0.5y

√
Sc

t
−M

√
t

Sc− 1

)}]
. (4.1)
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4.2. For Horizontal Convection. When α→ 0, sinα→ 0, cosα→ 1

u(y, t) =
1

2

[
eMyerfc

(
0.5y√
t

+M
√
t

)
+ e−Myerfc

(
y

2
√
t
−M

√
t

)]
[
1 +

(Gr + Gm)F1

M2

]
− 0.5GrF1

M2
exp

(
M2(1 + k1)t

Pr− 1− k1

)
[exp

(
My

√
Pr

Pr− 1− k1

)
erfc

(
0.5y√
t

+M

√
Pr

Pr− 1− k1
t

)
+ exp

(
−My

√
Pr

Pr− 1− k1

)
erfc

(
0.5y√
t
−M

√
Pr

Pr− 1− k1

)
−0.5GmF1

M2
exp

(
M2

Sc− 1
t

)[
exp

(
My

√
Sc

Sc− 1

)
erfc

(
0.5y√
t

+M

√
Sc

Sc− 1
t

)
+ exp

(
−My

√
Sc

Sc− 1

)
erfc

(
.5y√
t
−M

√
Sct

Sc− 1
t

)]
− −F1

M2

[
Gmerfc

(
0.5y

√
Sc

t

)
+0.5Gry

√
Pr

(1 + k1)t

]
− F1

M2

[
Gmerfc

(
0.5y

√
Sc

t

)
+ 0.5Gry

√
Pr

(1 + k1)t

]
+
.5GrF1

M2
exp

(
M2(1 + k1)t

Pr− 1− k1

)[
exp

(
My

√
Pr

Pr− 1− k1

)

erfc

(
0.5y

√
Pr

1 + k1t
+M

√
(1 + k1)t

Pr− 1− k1

)
+ exp

(
−My

√
Pr

Pr− 1− k1

)
erfc

(
0.5y

√
Pr

(1 + k1)t

−M

√
(1 + k1)t

Pr− 1− k1

)]
+

GmF1

M2

[
0.5 exp

(
M2t

Sc− 1

){
exp

(
yM

√
Sc

Sc− 1

)
erfc

(
0.5y

√
Sc

t
+

M

√
t

Sc− 1

)
+ exp

(
− yM

√
Sc

Sc− 1

)
erfc

(
0.5y

√
Sc

t
−M

√
t

Sc− 1

)}]
. (4.2)

4.3. For vertical convection. When α→ π
2 , sinα→ 1, cosα→ 0
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u(y, t) =
1

2

[
eMyerfc

(
0.5y√
t

+M
√
t

)
+ e−Myerfc

(
y

2
√
t
−M

√
t

)]
[
1− (Gr + Gm)

M2

]
+

0.5Gr

M2
exp

(
M2(1 + k1)t

Pr− 1− k1

)
[

exp

(
My

√
Pr

Pr− 1− k1

)
erfc

(
0.5y√
t

+M

√
Pr

Pr− 1− k1
t

)
+ exp

(
−My

√
Pr

Pr− 1− k1

)
erfc

(
0.5y√
t
−M

√
Pr

Pr− 1− k1

)]
+

0.5Gm

M2
exp

(
M2

Sc− 1
t

)[
exp

(
My

√
Sc

Sc− 1

)
erfc

(
0.5y√
t

+M

√
Sc

Sc− 1
t

)
+ exp

(
−My

√
Sc

Sc− 1

)
erfc

(
0.5y√
t
−M

√
Sct

Sc− 1
t

)]
+

1

M2

[
Gmerfc

(
0.5y

√
Sc

t

)
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.(4.3)

5. Results and discussion

Figures (2-8) shows the relationship between velocity distribution and various
pertinent parameters. It is explored that the effect of square root of Hartmann
number M over the velocity profile with the special coordinate is in orthogonal di-
rection to the surface of solid boundary. In a dimensionless form, the hydromagnetic
terms are in linear drag force terms in which as value of M is directly proportional
to the strength of magnetic field. Accordingly, the velocity profile values are in-
tensely reduced while increasing the value of M. It is also noted that as M increases,
then the velocity profiles decline to zero gradually for smaller distances from the
surface of the plate. The velocity profiles are increased mostly further from the
plate with an increase in Grashof number Gr as shown in Figure (3). The drag
forces oppose the flow in the perpendicular directions in the presence of inconstant
mass diffusion. In Figure (4), the velocity profile is increased when the Grashof
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number values Gm are increased. The absolute values of velocity profile decrease
with the increase of Schmidt number Sc, Prandtl number Pr, and along with it
the molecular diffusivity of the chemical species decreases as shown in Figure (5)
and (6). It is physically explored that Pr defines the proportion between momen-
tum and thermal diffusivity along with controlling the thickness between thermal
boundary layers and momentum. As, viscous forces govern the thermal diffusivity
therefore the velocity of the fluid decreases when they are increased. For the fixed
inclination α = π/3, the velocity distribution is also decreased for various values of
Hartmann number (M) as shown in the Figure (7). Figure (8) shows the relation
between velocity distribution and plate inclinations (α). The velocity is minimized
for α = 0, (horizontal plate) and the effect of gravitational acceleration is negated.
A gradual decay happen from rigid boundary to fluid streem. Velocity reverse its
direction (decreases) also from the boundary and for less inclination angles. By
gradually increasing the orientation of the plate from ( α = π/6, α = π/4, α = π/3
) in vertical (α = π/2) direction, the flow is accelerated. Finally, the effects of
gravitational acceleration g are maximized and back flow is rejected. The velocity
profiles relate to free convection but significant values of magnetic field strength
(M = 5). Figures (9) and (10) show the relationship of temperature distribution
profile (θ) for different values of Boltzmann Rosseland radiation convection param-
eter k1 and time t. As the value of (Pr < 1), then the diffusion of heat is faster than
momentum in the system. As k1 > 1, then it is thermal radiation and for k1 < 1
corresponds to thermal conduction. If k1 = 1 then both radiation and conduction
of heat transfer modes will equally contribute to the system. An addition in the
values of k1 which physically represents a thermal radiation flux. Temperature is
obviously increased in the regime with an increase in time.

It is also seen from Figure (11-12) the concentration profiles of fluid are increased
by increase of Schmidt number Sc. Further, under the constant physical parame-
ters, the mass transfer will decrease as the values of Sc increases and similarly as the
values of Sc is increased the concentration profiles are decreased. Furthermore, it is
also observed that the distribution of concentration is increased by addition of time.
The computational results of frictionless shear stress, concentration of the plate, and
wall temperature are shown in tables with various variational parameters. Table
1 shows the relation between the constant square root of Hartmann number M and
various values of plate inclination α. It also shows that by increasing the plate
orientation, the frictional shear stress is increased and the square root of Hartmann
number M remains constant and in contrast for any fixed value of the plate ori-
entation, the shear stress is decreased. Table 2 shows that by increasing various
values of inclination α under constant Grashof number, the value of frictional shear
stress is increased and it also accelerates the speed of the flow. If the orientation
of the plate is fixed then the magnitude of shear stress must be increased with the
increase of Grashof number. In all cases, it gives back flow because the values are
negative.

Table 3 shows that the value of frictional shear stress is increased as orientation
of the plate is increased under constant Grashof number (Gm). Table 4 shows the
influence of time when the Bolzmann-Rosseland number k1 remains constant or

varies for plate temperature gradient ( dθ
dy

∣∣∣∣y → 0. When the value of the Bolzmann-

Rosseland number k1 remains fixed with increasing the time span, the magnitude
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Figure 2. Distribution of velocity for different square root values
of the Hartmann number (M) for α = π

4 , Gr=5, Gm=5, Sc=2,
F=1, k1 = 1, t=1, Pr=3

of temperature gradient is constantly reduced. But in contrast the value of heat
transfer gradient is decreased when the time is fix and the value of k1 is increased.
Finally, in Table 5, the influence of time and Schmidt number Sc on concentration
gradient of plate is presented. As the time is increased under fixed value of Sc then
the concentration gradient of the plate is constantly reduced. Quite the reverse,
for fixed time, with the increase in Sc, gradually decreases the magnitude of the
concentration gradient of the plate.
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Figure 3. velocity distribution for diffirent Grashof numbers (Gr)
for α = π

3 , M=5, Gm=5, Sc=2, F=1, k1 = 1, t=1, Pr=3

Figure 4. Distribution of velocity for different Grashof numbers
(Gm) for α = π

3 , Gr=5, M=5, Sc=2, F=1, k1 = 1, t=1, Pr=3
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Figure 5. Distribution of velocity for various values of Schmidt
number (Sc) for α = π

3 , M=5, Gr=5, Gm=5, F=1, k1 = 1, t=1.

Figure 6. Distribution of velocity for different values of (Pr), for
α = π

3 , Gr=5, Gm=5, Sc=2, F=1, k1=1, t=1, M=5
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Figure 7. Distribution of velocity for different square root values
of the Hartmann number (M) for α = π

3 , Gr=5, Gm=5, Sc=2,
F=1, k1 = 1, t=1, Pr=3

Figure 8. Distribution of velocity for various inclinations of plate
for Gr=5, Gm=5, Sc=2, F=1, Pr=3, k1=1, t = 1,
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Figure 9. Distribution of velocity for various inclinations of plate

Figure 10. Distribution of temperature for different times, for Pr
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Figure 11. Concentration distribution with different values of pa-
rameter (Sc) at t=0.2

Figure 12. Concentration distribution for different time for Sc=2
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Table: 1 Concentration distribution for different values of time for Sc=2

Table: 2 Fractional stress du
dy (

y → 0) and F1=1, Pr=3, Gm=5, k1=1, t=1, Sc=2

with various plate inclinations and thermal Grashof number

Table: 3 Fractional stress du
dy (y→0)

and F1=1, Pr=3, k1=1, t=1, Gr=5, Sc=2 with

various plate inclinations and mass Grashof number
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Table: 4 Temperature gradient dθ
dy (y→0)

for different times t, Pr=0.71, and

Boltzmann Rosseland constant k1

Table: 5 Concentration gradient dφ
dy (y→0)

for different times and Sc
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6. Conclusions

Exact solutions of unsteady hydromagnetic fluid flow of viscous, optically thick,
and incompressible electrically conducting liquid along an inclined plane with the
transmission of heat and mass are systematically analyzed. Laplace transform
method is used to obtain analytical solutions. The impact of the related parameters
are also observed showing their significance on the results. The following results are
obtained from this research, fluid velocity increases with the decrease of Schmidt
number Sc and square root of Hartman number M and is increased for Grashof
numbers Gr, Gm. Moreover, the absolute value of velocity distribution of the
fluid decreases by an increase in the Prandtl number Pr, as defines the proportion
between momentum and thermal diffusivity. The velocity of the fluid decreases
by increasing the viscous forces because they govern the thermal diffusivity. The
temperature distribution increases by an increase of time and radiational parameter.
The fluid concentrations are increased by the decrease in Schmidt number along
with the addition of time span.
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