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NEW SOLITARY WAVE STRUCTURES TO TIME FRACTIONAL

BIOLOGICAL POPULATION MODEL

MD NUR ALAM, SHAMIMA AKTAR, CEMIL TUNC

ABSTRACT. Nonlinear space -time-fractional models perform an important task in reveal-

ing the internal devices of complex phenomena in numerous areas of the real world. This

article examined time-fractional biological population model and gained some new solitary

wave structures through the modified (G′/G)-expansion method. Among these results, a

few solutions are obtained for the initial time. Finally, we concluded that the examined ap-

proach in raise, notable in showing numerous solitary wave structures of various nonlinear

space -time-fractional models following in biology, physics and engineering as well.

1. INTRODUCTION

Nonlinear space -time-fractional models have been excited about the observation of nu-

merous scientists in different areas. Everybody can display diverse natural phenomena to

nonlinear space -time-fractional models. Furthermore, they define the dynamics of these

phenomena and discover the physical application of these nonlinear space -time-fractional

models. Several scientists have been attempted to receive distinct schemes that capable of

performing the solitary wave structures of these nonlinear space -time-fractional models.

Many effective methods have been used to solve nonlinear space -time-fractional models,

these methods include rational (G′/G)-expansion method [1], the improved fractional ric-

cati expansion method [2], He’s variational iteration method [3], the homotopy analysis

method [4], homotopy perturbation method [5, 6], the fractional reduced differential trans-

form method [7], Lie symmetry analysis [8], modified generalized Taylor fractional series

method [9], the first integral method [10], modified exp-function method [19], variable

separation method [12], Chebyshev collocation method [13], method of separation vari-

ables [14], (G′/G)-expansion scheme [15, 16, 17, 18, 19, 20], generalized exponential ra-

tional function method [21], finite series Jacobi elliptic cosine function ansatz [22], shifted

Jacobi spectral collocation method [23], modified auxiliary equation method [24], new

generalized exponential rational function method [25], generalized unified method [26],

the generalized exponential function [27], general bilinear form [28], reproducing kernel

Hilbert space method [29], residual power series method [30], the exp−φ(ξ)-expansion

2000 Mathematics Subject Classification. 35C07, 35C08,35Q53, 35Q55, 35A07.

Key words and phrases. modified (G′/G)-expansion method; time fractional biological population model;

solitary wave structures.

c©2020 Ilirias Research Institute, Prishtinë, Kosovë.
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method [31, 32, 33], variation of parameters method [34], the traditional homotopy pertur-

bation method [35], the improved tan(φ(ξ)/2)-expansion method [36, 37], the sumudu ho-

motopy perturbation method [38], the sine-Gordon expansion method [39], riccati-bernoulli

sub-ODE method [40], reproducing kernel method [41], the extended trial equation method [42],

the variation of (G′/G)-expansion method [43], the improved (G′/G)-expansion method [44],

the novel generalized (G′/G)-expansion method [45] and many more.

The paper applied the modified (G′

G
)-expansion method [46, 47] to derive the different

type of solitary wave structures for time fractional biological population model [1, 2]. The

time fractional biological population model as follows:

Dα
t W −D2

xW −D2
yW − S1(W

2 − S2) = 0, (1.1)

here W describes the population density, S1, S2 are free parameters and s1(W
2 − s2)

expresses the population supply owing to births and deaths. A biological population model

is a mathematical model that helps us to comprehend the dynamical process of popula-

tion changes and contributes important predictions. The nature that extends from simple

to dynamic is complete of intercommunications. Most of the earths processes affect hu-

man life. Methods in population modeling have significantly improved our knowledge of

biology and the natural life. A population model that is implemented to the investigation

of population dynamics is a variety of mathematical model which produces us including

a stable comprehension of how intricate communications and methods task. This investi-

gation proposes to acquire novel solitary wave structures to the considered model via the

modified (G′

G
)-expansion method.

2. FRACTIONAL DERIVATIVE

Suppose that g : x → g(x). It’s denotes a continuous but not significantly differentiable

function. The fractional derivatives of order α are defined through the expression [48] as

the following:

Dα
x =











1
Γ(−α)

∫ x

0 (x− ξ)−α−1[g(ξ)− g(0)]dξ, α < 0,
1

Γ(−α)
d
dx

∫ x

0
(x− ξ)−α[g(ξ)− g(0)]dξ, 0 < α < 1,

(g(m)(x))α−m,m ≤ α ≤ m+ 1,m ≥ 1.

(2.1)

The Mittag-Leffler function including two parameters is explained which as follows [49]:

Hα,β(x) =

∞
∑

i=0

xi

Γ(αi + β)
, Re(α) > 0, β, x ∈ C. (2.2)

Some notable characteristics for the fractional derivative are given below, respectively:

(1) Dα
xx

γ = Γ(1+γ)
Γ(1+γ−α)x

γ−α, γ > 0.

(2) Dα
x (cg(x)) = cDα

x (g(x)).
(3) Dα

x (ag(x) + bh(x)) = aDα
xg(x) + bDα

xh(x).

3. THE FRACTIONAL COMPLEX TRANSFORMATION

Suppose that the nonlinear fractional ODE:

R(W,Dα
t W,Dβ

xW,Dα
t D

α
t W,Dα

t D
β
xW,Dβ

xD
β
xW, . . . ) = 0, (3.1)

where 0 < α ≤ 0, 0 < β ≤ 0, Dα
t W and Dβ

xW are the fractional derivatives of W with

respect to t and x.
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We study the equation ( 3.1) through W = W (x, t) = W (ξ), ξ = kxβ

Γ(1+β) +
λtβ

Γ(1+α) .

Hence, the equation ( 3.1) is converted to the following partially differential equation:

S(W,
∂W

∂ξ
,
∂2W

∂ξ2
,
∂3W

∂ξ3
, . . . ) = 0. (3.2)

.

4. SOLITARY WAVE SOLUTIONS FOR THE TIME FRACTIONAL BIOLOGICAL

POPULATION MODEL

(A) Real 3D shape (B) Imaginary 3D shape

(C) Real contour plot (D) Imaginary contour plot

FIGURE 1. The three-dimensional and contour shape of the solution in

W1(x, y, t) for y = 0, α = 0.5, d = 1, A = 1, B = 0, C = 4, E = 1
f1 = −0.25, f2 = −0.50 and f3 = −0.75.

Let us consider the equation (1.1).

Making W (x, y, t) = W (η), η = ax+ iay − btα

α
, i2 = −1 into the equation (1.1), we

derive the following equation:

bW ′ − S1(W
2 − S2) = 0. (4.1)

In accordance with the rule of the modified (G′

G
)-expansion method [46], equation (1.1)

gives:

U(ξ) = A1F (ξ) +A0 +A−1F
−1(ξ), (4.2)
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(A) Real 3D shape (B) Imaginary 3D shape

(C) Real contour plot (D) Imaginary contour plot

FIGURE 2. The three-dimensional and contour shape of the solution in

W2(x, y, t) for y = 0, α = 0.5, d = 1, A = 1, B = 0, C = 4, E = 1
f1 = −0.25, f2 = −0.50 and f3 = −0.75.

where the coefficients A0, A1 and A−1 are constants. By equation (4.2) and equation (1.1)

and then equating each coefficients of F i to zeros, we get:

• The first set:

b =
2S1S2

(±
√

S2(λ2 − 4µ))
, A0 = 0, A1 = 0, A−1 =

1

2
(±

√

S2(λ2 − 4µ)).

Using the values of the first set, from equation (4.2) and equation (1.1), we

have:

W1(x, y, t) =
1

2
(±

√

S2(λ2 − 4µ))× coth{
√

λ2 − 4µ

2
(ax + iay − btα

α
)}.

W2(x, y, t) =
1

2
(±

√

S2(λ2 − 4µ))× tanh{
√

λ2 − 4µ

2
(ax+ iay − btα

α
)}.

W3(x, y, t) =
1

2
(±

√

S2(λ2 − 4µ))× (ax+ iay − btα

α
).

W4(x, y, t) =
1

2
(±

√

S2(λ2 − 4µ))× cot{
√

4µ− λ2

2
(ax+ iay − btα

α
)}.
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(A) Real 3D shape (B) Imaginary 3D shape

(C) Real contour plot (D) Imaginary contour plot

FIGURE 3. The three-dimensional and contour shape of the solution in

W3(x, y, t) for y = 0, α = 0.5, d = 1, A = 1, B = 0, C = 4, E = 1
f1 = −0.25, f2 = −0.50 and f3 = −0.75.

W5(x, y, t) =
1

2
(±

√

S2(λ2 − 4µ))× tan{
√

4µ− λ2

2
(ax+ iay − btα

α
)}.

• The second set:

b = −S1, A0 = 0, A1 = − 4S2

λ2 − 4µ
,A−1 = 0.

Similarly, we get:

W6(x, y, t) = − 2S2
√

λ2 − 4µ
× tanh{

√

λ2 − 4µ

2
(ax+ iay − btα

α
)}.

W7(x, y, t) = − 2S2
√

λ2 − 4µ
× coth{

√

λ2 − 4µ

2
(ax+ iay − btα

α
)}.

W8(x, y, t) = − 4S2

λ2 − 4µ
× (ax+ iay − btα

α
).

W9(x, y, t) = − 2S2
√

4µ− λ2
× tan{

√

4µ− λ2

2
(ax+ iay − btα

α
)}.
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(A) Real 3D shape (B) Imaginary 3D shape

(C) Real contour plot (D) Imaginary contour plot

FIGURE 4. The three-dimensional and contour shape of the solution in

W4(x, y, t) for y = 0, α = 0.5, d = 1, A = 1, B = 0, C = 4, E = 1
f1 = −0.25, f2 = −0.50 and f3 = −0.75.

W10(x, y, t) = − 2S2
√

4µ− λ2
× cot{

√

4µ− λ2

2
(ax+ iay − btα

α
)}.

• The third set:

b = −S1, A0 = 0, A1 = −1

3

−λ2 + 4S2 + 4µ

λ2 − 4µ
,A−1 = −1

4
λ2 + µ).

Similarly, we find:

W11(x, y, t) = −1

6

−λ2 + 4S2 + 4µ
√

λ2 − 4µ
× tanh{

√

λ2 − 4µ

2
(ax+ iay − btα

α
)}

−
√

λ2 − 4µ

2
× coth{

√

λ2 − 4µ

2
(ax+ iay − btα

α
)}.

W12(x, y, t) = −1

6

−λ2 + 4S2 + 4µ
√

λ2 − 4µ
× coth{

√

λ2 − 4µ

2
(ax+ iay − btα

α
)}

−
√

λ2 − 4µ

2
× tanh{

√

λ2 − 4µ

2
(ax+ iay − btα

α
)}.
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(A) Real 3D shape (B) Imaginary 3D shape

(C) Real contour plot (D) Imaginary contour plot

FIGURE 5. The three-dimensional and contour shape of the solution in

W6(x, y, t) for y = 0, α = 0.5, d = 1, A = 1, B = 0, C = 4, E = 1
f1 = −0.25, f2 = −0.50 and f3 = −0.75.

W13(x, y, t) = −1

3

−λ2 + 4S2 + 4µ

λ2 − 4µ
× 1

(ax+ iay − btα

α
)

− 1

4
λ2 + µ)× (ax+ iay − btα

α
).

W14(x, y, t) =
1

6

−λ2 + 4S2 + 4µ
√

4µ− λ2
× tan{

√

4µ− λ2

2
(ax+ iay − btα

α
)}

+

√
4µ− λ2

2
× cot{

√

4µ− λ2

2
(ax+ iay − btα

α
)}.

W15(x, y, t) =
1

6

−λ2 + 4S2 + 4µ
√

4µ− λ2
× cot{

√

4µ− λ2

2
(ax+ iay − btα

α
)}

+

√

4µ− λ2

2
× tan{

√

4µ− λ2

2
(ax+ iay − btα

α
)}.
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(A) Real 3D shape (B) Imaginary 3D shape

(C) Real contour plot (D) Imaginary contour plot

FIGURE 6. The three-dimensional and contour shape of the solution in

W8(x, y, t) for y = 0, α = 0.5, d = 1, A = 1, B = 0, C = 4, E = 1
f1 = −0.25, f2 = −0.50 and f3 = −0.75.

5. RESULTS AND DISCUSSIONS

In this paper, we apply the modified (G′/G)-expansion process [46] on the equation

(1.1) and provide fifteen solitary wave structures. The obtained solitary wave structures

to the equation (1.1) are new and general. Salam and Gumma [2] were applied to the im-

proved fractional Riccati expansion method and constructed two traveling wave solutions.

Salam and Gumma [2] only derived hyperbolic solutions but failed to achieve trigono-

metric and rational. Akbar et al. [1] was applied rational (G′/G)-expansion method on

the same model and gained six closed-form traveling wave solutions. Comparison be-

tween three methods, the modified (G′/G)-expansion process is provided more solitary

wave structures rather than the improved fractional Riccati expansion method and ratio-

nal (G′/G)-expansion method. Finally, the newly method successfully implemented to

derive new solitary wave structures to the equation (1.1). The graph is an important tool

for information and to demonstrate the solutions to the problems lucidly. When making

the computation in daily life, we need a fundamental knowledge of building the applica-

tion of graphs. Accordingly, the graphical performances of few solutions are drawn in the

Figures 1- 8, respectively. We expressed Figure 1- 8, respectively for few of the derived
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(A) Real 3D shape (B) Imaginary 3D shape

(C) Real contour plot (D) Imaginary contour plot

FIGURE 7. The three-dimensional and contour shape of the solution in

W12(x, y, t) for y = 0, α = 0.5, d = 1, A = 1, B = 0, C = 4, E = 1
f1 = −0.25, f2 = −0.50 and f3 = −0.75.

solutions to display more of properties for the recommended model. The representation

of the examined process gives the accuracy and influence of this procedure and also the

capacity for implementing various nonlinear wave models.
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