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DYNAMICAL STUDY OF A CLASS OF SYSTEMS OF

DIFFERENCE EQUATIONS

TARIQ A. ALRAQAD, ETAF S. ALSHAWARBEH

Abstract. This paper presents a study of the system of nonlinear difference
equations xn+1 =

xn−2q+1

A+Bxn−q+1yn−2q+1
, yn+1 =

yn−2q+1

A+Byn−q+1xn−2q+1
with

nonzero arbitrary initial conditions, where A and B are arbitrary parameters
and q is an arbitrary non-negative integer. We obtain closed forms for the
solutions of this system and give a complete investigation of their convergence.
Local and global stability of the equilibrium points are discussed. Numerical
examples are given to confirm the correctness of the analytical results.

1. Introduction

Difference equations have been extensively studied in recent years. They play
a vital role in describing dynamical systems and presenting numerical schemes.
Various applications of discrete dynamical systems and difference equations have
widely grown in many fields such as ecology, population dynamics, engineering,
mathematical biology, physics, and game theory. For instance, systems of differ-
ence equations are used in mathematical biology to model competitive interaction
between two species or to describe predator-prey models (see [17, 13, 32, 41] and
references therein). Khan and Qureshi [20] investigated a modified Nicholson-Bailey
model which describes a host-parasitoid phenomena. For more applications of dif-
ference equations we refer the reader to [1, 2, 3, 8, 10, 11, 22, 26, 27, 38]. In addition
to their applications in other fields, difference equations play an important role in
mathematics as a whole. For example, Mazzia and Trigiante [28] described how dif-
ference equations are used in numerical analysis to approximate solutions of differ-
ential equations. Studying the qualitative behavior of nonlinear rational difference
equations has attracted many researchers due to their paramount importance.

Papaschinopoulos and Schinas [30] considered the system

xn+1 = A+
yn

xn−p
, yn+1 = B +

xn

yn−q
,
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where p, q are positive integers. They studied some of its properties such as oscil-
latory behavior, boundedness of the solutions, and the global asymptotic stability
of the equilibrium points.

Clark and Kulenovic [5] and Clark et al., [6] discussed the asymptotic behavior
and the global stability of the system

xn+1 =
xn

a+ cyn
, yn+1 =

yn

b+ dxn
.

Kurbanli et al. [24] studied the positive solutions of the system

xn+1 =
xn−1

ynxn−1 + 1
, yn+1 =

yn−1

xnyn−1 + 1
.

As an extension, Elsayed [16] obtained the solutions of the system

xn+1 =
xn−1

±1 + xn−1yn
, yn+1 =

yn−1

±1 + yn−1xn
,

with nonzero real number initial conditions.
Touafek and Elsayed [35] investigated the periodicity and the solutions of the

system

xn+1 =
xn−3

±1± xn−3yn−1
, yn+1 =

yn−3

±1± yn−3xn−1
.

In [37], Wang et al. considered a more general class where they studied the the
asymptotic behavior and determined the solution expression of the system

xn+1 =
xn−3

A+ xn−3yn−1
, yn+1 =

yn−3

B + yn−3xn−1
, A,B ∈ [0,∞).

Khan et. al. [21] investigated the qualitative behavior of the following two
systems

xn+1 =
αxn−1

β + γynyn−1
, yn+1 =

α1yn−1

β1 + γ1xnxn−1
,

xn+1 =
ayn−1

b+ cxnxn−1
, yn+1 =

a1xn−1

b1 + c1ynyn−1
,

where all of the parameters are positive real numbers.
In 2017, Wang et al. [36] used variational iteration techniques to describe the

asymptotic behavior of the equilibrium points of the systems of difference equations

xn+1 =
xn−1xn−2

A+Byn−3
, yn+1 =

yn−1yn−2

C +Dxn−3
.

In 2019, Liu et al. [25] used the variational iteration techniques to study the
system

xn+1 =
xn−3 − yn−1

A+ xn−3yn−1
, yn+1 =

yn−3 − xn−1

A+ yn−3xn−1
.

Recently, Gelisken and Kara [18] investigated four general systems of rational
difference equations of order 3k, where k is a positive integer. For more studies of
difference equations and systems of difference equations see also [4, 7, 9, 15, 29, 33,
34, 36, 40].

Motivated by the above studies, our main goal in this paper is to study the class
of nonlinear rational difference equations given by

xn+1 =
xn−2q+1

A+Bxn−2q+1yn−q+1
, yn+1 =

yn−2q+1

A+Byn−2q+1xn−q+1
, q = 1, 2, ... (1.1)

where A and B are arbitrary constants and with arbitrary nonzero initial conditions
x−2q+1 = a−2q+1, x−2q+2 = a−2q+2,..., x0 = a0, y−2q+1 = b−2q+1, y−2q+2 =
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b−2q+2,..., y0 = b0. We give a detailed analytical study of qualitative behavior of
this class, where we obtain the solution expressions for this system and provide a
complete analysis of their convergence. We also determine all equilibrium points
and discuss their stability. This study improves and surpasses results about many
forms of systems of difference equations such as the ones studied in [24, 16, 35, 37].
The generalization is obtained by keeping the order of this system, namely 2q, as
an arbitrary parameter.

In the next section we introduce some basic definitions and primary results that
will be needed in later sections. In Section 3, we obtain the solution expressions of
system (1.1). In Section 4, the equilibrium points are determined and their stability
is investigated. In Section 5, we present a detailed study for the convergence of the
solutions of System (1.1). Numerical examples are given in Section 6 to illustrate
the analytical results.

2. Preliminaries

A system of two difference equations of order k consists of two equations of the
form

xn+1 = F (xn, xn−1, ..., xn−(k−1), yn, yn−1, ..., yn−(l−1)),
yn+1 = G(xn, xn−1, ..., xn−(k−1), yn, yn−1, ..., yn−(l−1)),

n = 0, 1, · · · , (2.1)

where

F = F (u0, u1, ..., uk−1, , v0, v1, ..., vl−1)

and

G = G(u0, u1, ..., uk−1, , v0, v1, ..., vl−1)

are functions that map some set Ik+l into I. The set I is usually an interval of
real numbers, or a union of intervals. A solution of System (2.1) is a sequence
Xn = (xn, yn)n≥−k+1 that satisfies System (2.1) for all n ≥ 0.

Definition 1. A point (x̄, ȳ) ∈ R×R is called an equilibrium point of System (2.1),
if x̄ = F (x̄, x̄, ..., x̄, ȳ, ȳ, ..., ȳ), and ȳ = G(x̄, x̄, ..., x̄, ȳ, ȳ, ..., ȳ).

Definition 2. Let (x̄, ȳ) be an equilibrium point of System (2.1). Then

(1) (x̄, ȳ) is called locally stable if, for every ε > 0, there exists δ > 0 such that,
for any initial condition (xi, yi) ∈ R

2, (i = −k, ..., 0, j = −l, ..., 0), with
∑0

i=−k |xi − x̄| < δ,
∑0

i=−l |yi − ȳ| < δ, we have |xn − x̄| < ε, |yn − ȳ| < ε

for all n ≥ 0. If (x̄, ȳ) is not locally stable then it is called unstable.
(2) (x̄, ȳ) is called attractor if limn(xn, yn) = (x̄, ȳ) for any initial conditions

(xi, yi) ∈ R
2, (i = −k, ..., 0, j = −l, ..., 0).

(3) If (x̄, ȳ) is both stable and attractor then it is called asymptotically stable.

Definition 3. Let (x̄, ȳ) be an equilibrium point of the vector map

H(F, xn, ..., xn−k, G, yn, ..., yn−l),

where F and G are continuously differentiable functions at (x̄, ȳ). Then the lin-
earized system of (2.1) about (x̄, ȳ) is

Xn+1 = H(Xn) = H(x̄, ȳ) ·Xn, (2.2)

where H(x̄, ȳ) is the Jacobian matrix of the System (2.1) about (x̄, ȳ) and Xn =
(xn, ..., xn−k, yn, ..., yn−l).



DYNAMICAL STUDY OF A CLASS OF SYSTEMS OF DIFFERENCE EQUATIONS 33

Lemma 2.1. Let H be the Jacobian matrix of a system of difference equations
Xn+1 = H(Xn), n = 0, 1, · · · about an equilibrium point X̄. Then we have

(1) If all eigenvalues of H lie inside the open unit disk, then X is locally asymp-
totically stable.

(2) If one of the eigenvalues of H lie outside the closed unit disk, then X is
unstable.

Definition 4. Let H be the Jacobian matrix of a system of difference equations
Xn+1 = H(Xn), n = 0, 1, · · · about an equilibrium point X, and let Λ be the set of
all eigenvalues of H. Then

(1) X is said to be hyperbolic if |λ| 6= 1 for all λ ∈ Λ, otherwise it is called
nonhyperbolic;

(2) X is called saddle if there are two eigenvalues λ1, λ2 ∈ Λ such that |λ1| < 1
and |λ2| > 1;

(3) X is called repeller if |λ| > 1 for all λ ∈ Λ.

3. Solution Expressions

In this section, we give the solution expressions for System (1.1).

Theorem 3.1. Let (xn, yn)n≥−2q+1 be a sequence given by System (1.1), then for
each r ∈ {2q − 1, 2q − 2, ..., q} and for all n ≥ 0, we have

x2qn−r = a−r

n−1
∏

p=1

S2p

n−1
∏

p=0

S2p+1

, (3.1)

y2qn−r = b−r

n−1
∏

p=1

T2p

n−1
∏

p=0

T2p+1

, (3.2)

x2qn−r+q = a−r+q

n−1
∏

p=0

(

T2p+1

T2p+2

)

, (3.3)

y2qn−r+q = b−r+q

n−1
∏

p=0

(

S2p+1

S2p+2

)

, (3.4)

where, for each non negative integer l,

Sl = Al +Ba−rb−r+q

l−1
∑

k=0

Ak, and Tl = Al +Bb−ra−r+q

l−1
∑

k=0

Ak. (3.5)

Proof. We prove this result by induction on n. It is evident that the results hold
for n = 0. Let n ≥ 0 be an integer, and suppose that the equations (3.1), (3.2),
(3.3), (3.4) hold for all non-negative integers k ≤ n. We shall now prove that they
hold for the step n+ 1.

x2q(n+1)−r =
x2qn−r

A+Bx2qn−ry2qn−r+q
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=
a−r

(

∏n−1
p=1 S2p

)/(

∏n−1
p=0 S2p+1

)

A+Bb−r+qa−r

∏n−1
p=0

(

S2p+1

S2p+2

)(

∏n−1
p=1 S2p

)/(

∏n−1
p=0 S2p+1

)

=
a−r

∏n−1
p=1 S2p

∏n
p=1 S2p

A
∏n

p=1 S2p

∏n−1
p=0 S2p+1 +Ba−rb−r+q

∏n−1
p=0 S2p+1

∏n−1
p=1 S2p

=
a−r

∏n
p=1 S2p

(

AS2n +Ba−rb−r+q

)

∏n−1
p=0 S2p+1

=
a−r

∏n
p=1 S2p

(

A
(

A2n +Ba−rb−r+q

∑2n−1
k=0 Ak

)

+Ba−rb−r+q

)

∏n−1
p=0 S2p+1

=
a−r

∏n
p=1 S2p

∏n
p=0 S2p+1

Similarly,

y2q(n+1)−r =
y2qn−r

A+By2qn−rx2qn−r+q

=
b−r

(

∏n−1
p=1 T2p

)/(

∏n−1
p=0 T2p+1

)

A+Ba−r+qb−r

∏n−1
p=0

(

T2p+1

T2p+2

)(

∏n−1
p=1 T2p

)/(

∏n−1
p=0 T2p+1

)

=
b−r

∏n−1
p=1 T2p

∏n
p=1 T2p

A
∏n

p=1 T2p

∏n−1
p=0 T2p+1 +Bb−ra−r+q

∏n−1
p=0 T2p+1

∏n−1
p=1 T2p

=
b−r

∏n
p=1 T2p

(

AT2n +Bb−ra−r+q

)

∏n−1
p=0 T2p+1

=
b−r

∏n
p=1 T2p

(

A
(

A2n +Bb−ra−r+q

∑2n−1
k=0 Ak

)

+Bb−ra−r+q

)

∏n−1
p=0 T2p+1

=
b−r

∏n
p=1 T2p

∏n
p=0 T2p+1

.

Now we confirm that (3.3) holds for n+ 1.

x2q(n+1)−r+q =
x2qn−r+q

A+By2qn−r+2qx2qn−r−q

=
x2qn−r+q

A+By2q(n+1)−rx2qn−r−q

=
a−r+q

∏n−1
p=0

(

T2p+1

T2p+2

)

A+Bb−ra−r+q

∏n−1
p=0

(

T2p+1

T2p+2

)(

∏n
p=1 T2p

)/(

∏n
p=0 T2p+1

)

=
a−r+q

∏n−1
p=0 T2p+1

(

∏n−1
p=0 T2p+1

)(

AT2n+1

∏n−1
p=0 T2p+2 +Bb−ra−r+q

∏n
p=1 T2p)

)/(

∏n
p=0 T2p+1

)
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=
a−r+q

∏n
p=0 T2p+1

AT2n+1

∏n
p=1 T2p +Bb−ra−r+q

∏n
p=1 T2p

=
a−r+q

∏n
p=0 T2p+1

(

AT2n+1 +Bb−ra−r+q

)

∏n
p=1 T2p

=
a−r+q

∏n
p=0 T2p+1

(

A
(

A2n+1 +Bb−ra−r+q

∑2n
k=0 A

k
)

+Bb−ra−r+q

)

∏n
p=1 T2p

=
a−r+q

∏n
p=0 T2p+1

T2n+2

∏n
p=1 T2p

.

By similarity we obtain identity (3.4). �

Next, we obtain simplified expressions of Eq. (3.1) , (3.2), (3.3) and (3.4) when
A = 1 and A 6= 1, which will be used in the next section

Corollary 3.2. Let (xn, yn)n≥−2q+1 be a sequence defined by System (1.1). If
A = 1, then for each r ∈ {2q − 1, 2q − 2, ..., q},

x2qn−r = a−r

n−1
∏

p=1

(1 + 2pBa−rb−r+q)

n−1
∏

p=0

(1 + (2p+ 1)Ba−rb−r+q)

, (3.6)

y2qn−r = b−r

n−1
∏

p=1

(1 + 2pBb−ra−r+q)

n−1
∏

p=0

(1 + (2p+ 1)Bb−ra−r+q)

, (3.7)

and for each s ∈ {q − 1, q − 2, ..., 0},

x2qn−s = a−s

n−1
∏

p=0

(

1 + (2p+ 1)Ba−sb−s−q

1 + (2p+ 2)Ba−sb−s−q

)

. (3.8)

y2qn−s = b−s

n−1
∏

p=0

(

1 + (2p+ 1)Bb−sa−s−q

1 + (2p+ 2)Bb−sa−s−q

)

. (3.9)

Corollary 3.3. Let (xn, yn)n≥−2q+1 be a sequence defined by the equation (1.1)
with A 6= 1. Then for r ∈ {2q − 1, 2q − 2, ..., q},

x2qn−r = a−r(1−A)

n−1
∏

p=1

(

Ba−rb−r+q − (A− 1 +Ba−rb−r+q)A
2p
)

n−1
∏

p=0

(

Ba−rb−r+q − (A− 1 +Ba−rb−r+q)A
2p+1

)

, (3.10)
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y2qn−r = b−r(1 −A)

n−1
∏

p=1

(

Bb−ra−r+q − (A− 1 +Bb−ra−r+q)A
2p
)

n−1
∏

p=0

(

Bb−ra−r+q − (A− 1 +Bb−ra−r+q)A
2p+1

)

, (3.11)

and for s ∈ {q − 1, q − 2, ..., 0},

x2qn−s = a−s

n−1
∏

p=1

(

Bb−s−qa−s − (A− 1 +Bb−s−qa−s)A
2p+1

Bb−s−qa−s − (A− 1 +Bb−s−qa−s)A2p

)

. (3.12)

y2qn−s = b−s

n−1
∏

p=1

(

Ba−s−qb−s − (A− 1 +Ba−s−qb−s)A
2p+1

Ba−s−qb−s − (A− 1 +Ba−s−qb−s)A2p

)

. (3.13)

Proof. Since |A| 6= 1 we get that for any integer l,

l−1
∑

k=0

Ak =
1−Al

1−A
.

Substituting this in Eq. (3.5) yields

Sl =
Ba−rb−r+q − (A− 1 +Ba−rb−r+q)A

l

1−A
, Tl =

Bb−ra−r+q − (A− 1 +Bb−ra−r+q)A
l

1−A
.

Then the result follows by substituting these expressions in Eqs. (3.1), (3.2), (3.3),
and (3.4). �

4. Analysis of the equilibrium points

We start this section by the following theorem which determines the equilibrium
points of System (1.1).

Theorem 4.1. Let (xn, yn)n≥−2q+1 be a solution of System (1.1).

(1) If A = 1, then the equilibrium points of System (1.1) are (s, 0), (0, t),
s, t ∈ R.

(2) If A 6= 1, then the equilibrium points of System (1.1) are (0, 0) ,
(

r, 1−A
Br

)

,
r ∈ R

∗.

Proof. Let (x, y) be an equilibrium point of System (1.1). Then we have

x(A+Bx y − 1) = 0 and y(A+Bxy − 1) = 0.

If A = 1, then we get Bx2 y = 0 and Bx y2 = 0, which yields x = 0 or y = 0. Thus
the equilibrium points of System (1.1) are (s, 0) and (0, t), s, t ∈ R. Suppose A 6= 1.
If x = 0, then we get y(A − 1) = 0. Since A 6= 1, y = 0, and hence we obtain the
equilibrum point (0, 0). Assume x 6= 0. Then A+Bxy− 1 = 0, which implies that
x = r and y = 1−A

Br where r can be any nonzero real number. �

To construct the linearized form of the nonlinear System (1.1), we consider the
transformation

(xn, . . . , xn−2q+1, yn, . . . , yn−2q+1) 7−→ (f, . . . , f2q−1, g, . . . , g2q−1) (4.1)

where

f =
xn−2q+1

A+Bxn−2q+1yn−q+1
, g =

yn−2q+1

A+Byn−2q+1xn−q+1
,
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fi = xn−i+1, gi = yn−i+1, i = 1, · · · , 2q − 1.

The Jacobian matrix about an equilibrium point (x̄, ȳ) under this transformation
is the 4q × 4q matrix H(x̄, ȳ) = [hij ] whose entries are given by

h1,2q = h2q,4q =
A

(A+Bx̄ȳ)2
, h1,3q =

−Bx̄2

(A+Bx̄ȳ)2
, h2q+1,q =

−Bȳ2

(A+Bx̄ȳ)2
,

hi,i−1 = h2q+i,2q+i−1 = 1 , i = 2, . . . , 2q,

and hij = 0 otherwise. Let α = A
(A+Bx̄ȳ)2 , ρ = −Bx̄2

(A+Bx̄ȳ)2 , σ = −Bȳ2

(A+Bx̄ȳ)2 , and D

and C(ω) be the q × q matrices of the forms

D =











−λ 0 · · · 0
1 −λ · · · 0
...

. . .
. . .

...
0 · · · 1 −λ











, C(ω) =











0 · · · 0 ω

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0











Then H − λI can be written in the form of the 4× 4 block matrix

H − λI =









D C(α) C(ρ) O

O D O O

C(σ) O D C(α)
O O O D









Now with some tedious calculations we get that the characteristic polynomial of
the Jacobian matrix is

p(λ) = λ4q − (2α+ β)λ2q + α2, (4.2)

where

α =
A

(A+Bx̄ȳ)2
, β = ρσ =

B2x̄2ȳ2

(A+Bx̄ȳ)4
(4.3)

Theorem 4.2. The following are true about the equilibrium points of System (1.1).

(1) The equilibrium point (0, 0) is
(a) locally asymptotically stable when |A| > 1;
(b) nonhyperbolic when |A| = 1;
(c) repeller and unstable when |A| < 1;

(2) All equilibrium points other than (0, 0) are nonhyperbolic.

Proof. (1) By substituting (x̄, ȳ) = (0, 0) in (4.3), we get α = 1
A , β = 0. So the

characteristic equation (4.2) of the Jacobian matrix of System (1.1) about (0, 0)
can be written as

λ4q −
2

A
λ2q +

1

A2
=

(

λ2q −
1

A

)2

= 0. (4.4)

Hence the roots of Eq. (4.4) satisfy |λ| = | 1A |1/2q. If |A| > 1 then all roots of Eq.
(4.4) lie inside the open unit disk, which implies that (0, 0) is locally asymptoti-
cally stable. If |A| = 1, then all eigenvalues satisfy |λ| = 1, which yields (0, 0) is
nonhyperbolic. If |A| < 1 then all roots of Eq. (4.4) lie outside the open unit disk,
which implies (0, 0) is repeller and unstable.

(2) If A = 1, then by Theorem (4.1), the equilibrium points of System (1.1) are
(s, 0), (0, t), s, t ∈ R. For each one of these points we have α = 1 and β = 0.
Thus all roots of Eq. (4.4) satisfy |λ| = 1, which implies that each one of these
equilibrium points is nonhyperbolic. If A 6= 1, then the equilibrium points other
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than (0, 0) are
(

r, 1−A
Br

)

, r ∈ R. Substituting (x̄, ȳ) =
(

r, 1−A
Br

)

in (4.3) yields

α = A, and β = (1 − A)2. Then from (4.2) we get that λ4q − (A2 + 1)λ2q +
A2 =

(

λ2q −A2
) (

λ2q − 1
)

= 0. So some eigenvalues satisfy |λ| = 1, and hence

(x̄, ȳ) =
(

r, 1−A
Br

)

is nonhyperbolic. �

5. Convergence

In this section, we study the asymptotic behavior of the solutions of System
(1.1).

Theorem 5.1. Let (xn, yn)n≥−2q+1 be a solution of System (1.1). If |A| < 1, then
for each r ∈ {0, 1, ..., 2q − 1}, the subsequence (x2qn−r , y2qn−r)n≥0 converges.

Proof. We divide the proof into two cases.
Case 1: r ∈ {2q − 1, ..., q}.
Since |A| 6= 1, from Corollary (3.3), we get

x2qn−r = a−r(1 −A)

∏n−1
p=1

(

Ba−rb−r+q − (A− 1 +Ba−rb−r+q)A
2p
)

∏n−1
p=0 (Ba−rb−r+q − (A− 1 +Ba−rb−r+q)A2p+1)

,

which can be written as

x2qn−r =
a−r

Ba−rb−r+q +A

n−1
∏

p=1

1− αA2p

1− αA2p+1
,

where α =
A−1+Ba

−rb−r+q

Ba
−rb−r+q

. If A − 1 + Ba−rb−r+q = 0, then α = 0. This yields

x2qn−r = a−r, for all n ≥ 0, i.e. (x2qn−r)n≥0 is constant. Now assume A − 1 +

Ba−rb−r+q 6= 0. Then, the Taylor expansion of 1−αA2p

1−αA2p+1 gives that

1− αA2p

1− αA2p+1
= 1 + α(A− 1)A2p + o(A2p),

which yields 1−αA2p

1−αA2p+1 ∼ 1 + α(A − 1)A2p. Now, depending on the sign of α,

we can choose an integer N sufficiently large so that either 1−αA2p

1−αA2p+1 > 1, for all

p ≥ N , or 0 < 1−αA2p

1−αA2p+1 < 1, for all p ≥ N . Since
∏

p≥1

(

1 + α(A − 1)A2p
)

con-

verges, by equivalence criterion it follows that
∏

p≥1
1−αA2p

1−αA2p+1 converges. Therefore

(x2qn−r)n≥0 converges. Using a very similar argument we obtain that (y2qn−r)n≥0

converges.
Case 2: s ∈ {q − 1, ..., 0}.

By Eq. (3.12) we get

x2qn−s = a−s

n−1
∏

p=1

(

Bb−s−qa−s − (A− 1 +Bb−s−qa−s)A
2p+1

Bb−s−qa−s − (A− 1 +Bb−s−qa−s)A2p

)

. (5.1)

If A − 1 + Bb−s−qa−s = 0, then again (x2qn−s)n≥0 is constant, and hence it
converges. Now assume A− 1 +Bb−s−qa−s 6= 0. Then Eq. (5.1) can be written as

x2qn−s = a−s

n−1
∏

p=1

1− βA2p+1

1− βA2p
,
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where β =
A−1+Bb

−s−qa−s

Bb
−s−qa−s

. Similar to the argument in Case 1, we obtain that

1−βA2p+1

1−βA2p ∼ 1 + β(1 − A)A2p. Also depending on the sign of β, we can find an

integer N so that either 1−βA2p+1

1−βA2p > 1, for all p ≥ N , or 0 < 1−βA2p+1

1−βA2p < 1,

for all p ≥ N . Since
∏

p≥1

(

1 + β(1 −A)A2p
)

converges, by equivalence criterion
∏

p≥1
1−βA2p+1

1−βA2p converges, and hence the subsequence (x2qn−s)n≥0 converges. �

Theorem 5.2. Let (xn, yn)n≥−2q+1 be a solution of the equation (1.1). If A = −1,
then the followings hold:

(1) For each r = 2q−1, 2q−2, ..., q, the subsequence (x2qn−r , y2qn−r) converges
if and only if both a−rb−r+q and b−ra−r+q belong to

(

−∞,min

(

0,
2

B

))

∪

(

max

(

0,
2

B

)

,∞

)

∪

{

2

B

}

.

(2) For each r = q − 1, q − 2, ..., 0, the subsequence (x2qn−r , y2qn−r) converges
if and only if both a−r−qb−r and b−r−qa−r belong to

(

min

(

0,
2

B

)

,max

(

0,
2

B

))

∪

{

2

B

}

.

Proof.
1) Let r ∈ {2q− 1, 2q− 2, ..., q}. Then by substituting A = −1 in Equations (3.10)
and (3.11), we get

x2qn−r =
a−r

(Ba−rb−r+q − 1)n
, y2qn−r =

b−r

(Bb−ra−r+q − 1)n
.

Therefore, (x2qn−r)n converges if and only if |Ba−rb−r+q − 1| > 1 or Ba−rb−r+q −
1 = 1 if and only if a−rb−r+q ∈

(

−∞,min(0, 2
B )
)

∪
(

max(0, 2
B ),∞

)

∪{ 2
B }. Similarly,

(y2qn−r)n converges if and only if |Bb−ra−r+q − 1| > 1 or Bb−ra−r+q − 1 = 1 if
and only if b−ra−r+q ∈

(

−∞,min(0, 2
B )
)

∪
(

max(0, 2
B ),∞

)

∪ { 2
B }.

2) Let r ∈ {q − 1, q − 2, ..., 0}. Then by substituting A = −1 in Equations (3.12)
and (3.13), yields

x2qn−r = a−r(Ba−r−qb−r − 1)n−1 , y2qn−r = a−r(Bb−r−qa−r − 1)n−1.

So (x2qn−r , y2qn−r)n converges if and only if both a−r−qb−r and b−r−qa−r belong

to
(

min(0, 2
B ),max(0, 2

B )
)

∪ { 2
B }. �

Theorem 5.3. Let (xn, yn)n≥−2q+1 be a solution of System (1.1). If A = 1, then
the sequence (xn, yn)n≥−2q+1 converges to (0, 0).

Proof. Let r ∈ {2q − 1, 2q − 2, ..., q}. From Corollary (3.2), we get

x2qn−r =
a−r

1 +Ba−rb−r+q

n−1
∏

p=1

(

1−
Ba−rb−r+q

1 + (2p+ 1)Ba−rb−r+q

)

,

y2qn−r =
b−r

1 +Bb−ra−r+q

n−1
∏

p=1

(

1−
Bb−ra−r+q

1 + (2p+ 1)Bb−ra−r+q

)

,

which can be written as

x2qn−r =
a−r

1 +Ba−rb−r+q
exp

(

n−1
∑

p=1

lnVp

)

,
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y2qn−r =
b−r

1 +Bb−ra−r+q
exp

(

n−1
∑

p=1

lnUp

)

,

where Vp = 1−
Ba

−rb−r+q

1+(2p+1)Ba
−rb−r+q

and Up = 1−
Bb

−ra−r+q

1+(2p+1)Bb
−ra−r+q

. Now,

lim
p−→∞

lnVp

1− Vp
= ∞ and

∑

p≥1

(1− Vp) =
∑

p≥1

(

Ba−rb−r+q

1 + (2p+ 1)Ba−rb−r+q

)

,

which is divergent. Moreover, There exists N ∈ N such that lnVp < 0 for all
p ≥ N . Hence

∑

p≥1 lnVp diverges to −∞. Thus the subsequence (x2qn−r)

converges to zero. Similarly we deduce that
∑

p≥1 lnUp diverges to −∞, which

yields (y2qn−r) converges to zero. Using similar argument we can show that for
all r = q − 1, q − 2, ..., 0, the subsequence (x2qn−r , y2qn−r)n≥0 converges to (0, 0).
Therefore the whole sequence (xn, yn)n≥−2q+1 converges to (0, 0). �

Theorem 5.4. Let (xn, yn)n≥−2q+1 be a solution of System (1.1). If |A| > 1,
then for each r ∈ {2q− 1, 2q− 2, ..., 0}, the subsequence (x2qn−r , y2qn−r) converges.
Moreover, for each r ∈ {2q−1, 2q−2, ..., q}, one of the following statements is true

(1) If A−1+Ba−rb−r+q = 0, then the subsequences (x2qn−r)n≥0 and (y2qn−r+q)n≥0

are constants.
(2) If A−1+Bb−ra−r+q = 0, then the subsequences (y2qn−r)n≥0 and (x2qn−r+q)n≥0

are constants.
(3) If A−1+Ba−rb−r+q 6= 0, then the subsequences (x2qn−r)n≥0 and (y2qn−r+q)n≥0

converge to zero.
(4) If A−1+Bb−ra−r+q 6= 0, then the subsequences (y2qn−r)n≥0 and (x2qn−r+q)n≥0

converge to zero.

Proof. Let r ∈ {2q−1, 2q−2, ..., q}. We will only show the convergence of the subse-
quences (x2qn−r , y2qn−r)n≥0. The convergence of the subsequence (x2qn−r+q , y2qn−r+q)q≥0

can be established using a similar argument.
If A − 1 + Ba−rb−r+q = 0, then the subsequence (x2qn−r)n≥0 is constant equal
a−r, and the subsequence (y2qn−r+q)n≥0 is constant equal b−r+q. Similarly if
A−1+Bb−ra−r+q = 0 then (y2qn−r)n≥0 is constant equal to b−r and (x2qn−r+q)n≥0

is constant equal to a−r+q. Assume A−1+Ba−rb−r+q 6= 0 and A−1+Bb−ra−r+q 6=
0. So we can write Equations (3.10) and (3.12) as

x2qn−r =
a−r

(Ba−rb−r+q +A)An−1

n−1
∏

p=1

1− 1
αA2p

1− 1
αA2p+1

,

and

y2qn−r =
b−r

(Bb−ra−r+q +A)An−1

n−1
∏

p=1

1− 1
βA2p

1− 1
βA2p+1

,

where α =
A− 1 +Ba−rb−r+q

Ba−rb−r+q
and β =

A− 1 +Bb−ra−r+q

Bb−ra−r+q
. Since A1−n con-

verges to zero, it suffices to show that

n−1
∏

p=1

(

1−
1

αA2p

)

/

(

1−
1

αA2p+1

)

and

n−1
∏

p=1

(

1−
1

βA2p

)

/

(

1−
1

βA2p+1

)
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converge. Using the Taylor expansion of
(

1− 1
αA2p

) / (

1− 1
αA2p+1

)

we obtain that
(

1−
1

αA2p

)

/

(

1−
1

αA2p+1

)

∼ 1 +
1

α
(
1

A
− 1)

1

A2p
.

Now there exists N ∈ N such that
(

1− 1
αA2p

) / (

1− 1
αA2p+1

)

> 1, for all p ≥ N , or

0 <
(

1− 1
αA2p

) / (

1− 1
αA2p+1

)

< 1, for all p ≥ N . Since
∏

p≥1

(

1 + 1
α (

1
A − 1) 1

A2p

)

converges, by equivalence criterion
∏

p≥1

(

1− 1
αA2p

) / (

1− 1
αA2p+1

)

converges. Sim-

ilarly, we deduce that
∏n−1

p=1

(

1− 1
βA2p

)

/

(

1− 1
βA2p+1

)

converges. This complete

the proof.
�

6. Numerical simulation

(1) The case |A| < 1, is studied using the parameter values q = 2, A = 1
2 ,

B = −3, and the initial data a−3 = 3, a−2 = −2, a−1 = −4, a0 = −2,
b−3 = 4, b−2 = −5, b−1 = 5, b0 = −1. In Figure 1, it is shown that the
subsequences (x4n−i, y4n−i), i = 0, 1, 2, 3 converge and the whole sequence
(xn, yn) is bounded, which is coherent with Theorem 5.1.
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Figure 1. The Case |A| < 1

(2) The case A = −1, is investigated using the parameter values q = 1, A = −1,
B = −2, and the initial data a−1 = −1, a0 = −3, b−1 = 1, b0 = 4. In Figure
2, we notice that the subsequences (x2n−1, y2n−1)n converge, however the
subsequences (x2n, y2n)n diverge to infinity. This is justified analytically in
the proof of Theorem 5.2. The sequences (xn) and (yn) are unbounded.

(3) The case A = 1, is studied using the parameter values q = 3, A = 1, B = 4,
and the initial data a−5 = 3, a−4 = −2, a−3 = −4, a−2 = −2, a−1 = 5,
a0 = 1, b−5 = 4, b−4 = −5, b−3 = 5, b−2 = −1, b−1 = −4, b0 = −2. In
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Figure 2. The Case A = −1

Figure 3, it is clear that the solution converges to zero. This is justified
analytically in the proof of Theorem 5.3.
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Figure 3. The Case A = 1

(4) Figure 4 illustrates the case A > 1 using the parameter values q = 2,
A = −3, B = 1, and the initial data a−3 = 3, a−2 = 1, a−1 = −2, a0 = 3,
b−3 = 5, b−2 = 4, b−1 = −1, b0 = 4. Since A− 1 +Ba−2b0 = 0, the subse-
quences (x4n−2)n and (y4n)n are constants. However A−1+Ba−3b−1, A−
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1 + Bb−3a−1, A − 1 + Bb−2a0 are all nonzero. So all of the subsequences
(x4n−3), (x4n−1), (x4n), (y4n−3), (y4n−2), and (y4n−1) converge to zero.
These observations are coherent with the result in Theorem 5.4.

Figure 4. The Case |A| > 1.

7. Conclusion

We have presented a complete study of a large class of systems of rational differ-
ence equations with arbitrary parameters and initial conditions, namely the system

xn+1 =
xn−2q+1

A+Bxn−q+1yn−2q+1
, yn+1 =

yn−2q+1

A+Byn−q+1xn−2q+1
,

where A and B are arbitrary parameters and q is an arbitrary non-negative integer.
The local and global stability of the equilibrium points of this system have been in-
vestigated. A detailed analytical study of the convergence of the solutions including
their dependence on parameters and initial conditions has been presented. The lo-
cal and global stability of the equilibrium points have been investigated. Numerical
simulations have been done to confirm the correctness of the analytical results.
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