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INERTIAL ITERATIVE METHODS FOR GENERAL QUASI

VARIATIONAL INEQUALITIES AND DYNAMICAL SYSTEMS

SAUDIA JABEEN, MUHAMMAD ASLAM NOOR AND KHALIDA INAYAT NOOR

Abstract. In this paper, we consider the technique of inertial methods for
solving a class of general quasi-variational inequalities. We associate a dy-

namical system with general quasi variational inequalities. This equivalent

formulation is used to prove that these dynamical systems converge asymp-
totically to the unique solution of general quasi-variational inequalities. We

suggest and investigate a new class of inertial iterative methods for solving the
general quasi-variational inequalities. Convergence analysis of these iterative

methods is analyzed under some appropriate conditions. Several interesting

special cases are obtained as applications of the results. The ideas and tech-
niques of this paper may inspire further research.

1. Introduction

Quasi variational inequalities were introduced and studied by Bensoussan and
Lions [9] in impulse control problems. It is a well-known result that the set in-
volved in the these inequalities depends upon the solution explicitly or implicitly.
If the involved set does not depend on the solution, then this inequality reduces to
the variational inequality, the beginning of which can be followed back to Stam-
pacchia [34]. Variational inequalities and quasi variational inequalities provide us
a unified framework to study various interrelated and unrelated problems which
emerge in various branches of applied and pure sciences. However quasi varia-
tional inequalities are more difficult and challenging as compared with variational
inequalities. It is still a difficult task to propose some effective strategies for solving
quasi variational inequalities. The most common way for solving quasi-variational
inequalities is to show that the these inequalities are equivalent to the fixed point
problems. This alternative equivalent formulation was used to suggest some pro-
jection type methods for solving the quasi-variational inequalities; see [19] and
references therein. Noor [21] used this fixed point formulation to suggest and in-
vestigate the implicit dynamical system for quasi variational inequality. For more
details, see [18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31] and the references therein.

We want to mention that all the works carried out in this direction assumed that
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the fundamental set is a convex set. In many applications, the underlying set may
not be a convex set. In such situation, the set may be made convex set with respect
to an arbitrary function. Motivated by these facts, Noor [22] introduced the general
convex sets and general convex functions involving an arbitrary function ψ. Noor
[22] and Cristescu et al [10] have studied the basic properties of ψ-convex sets.
Noor [23] has proved that the minimum value of a differentiable general convex
function on the general convex set can be characterized by a type of variational
inequalities, which is called the general variational inequality. Recently, projection
operator techniques have been used to study several dynamical systems associated
with variational inequalities, which is due to Dupuis and Nagurney [11], Friesz et
al [12] and Noor [20]. The dynamical approach is more attractive because of their
wide applicability, flexibility and numerical efficiency. In this method, the prob-
lem of variational inequality is reformulated as an initial value problem. It enables
us to study the asymptotic stability of unique solutions to variational inequality
problems. There are two types of the projected dynamical systems. The first cate-
gory is attributed to Dupuis and Nagurney [11], which is known as local projected
dynamical systems, while the second category is attributed to Friesz et al [12], is
called global projected dynamical systems. In the field of continuous optimization,
inertial-type algorithms have attracted much attention in recent years due to their
convergence. The idea comes from the field of second-order dissipative dynamical
system [6, 5]. The results show that the inertial term can accelerate the conver-
gence speed of existing algorithms, see [1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 17, 32, 33] and
reference therein.

Motivated by the ongoing research activities in this direction, we consider a new
class of quasi-variational inequalities involving two operators, called the general
quasi variational inequality. This class contains the classical quasi-variational in-
equalities and general variational inequalities as special cases. We consider the
dynamical system associated with general quasi-variational inequality and study
the asymptotically stability of the trajectory to the solution. Discretizing the dy-
namical system, we introduce several continuous inertial-type iterative methods for
solving general quasi variational inequalities and related optimization problems.
Convergence of these proposed methods is investigated under some appropriate
conditions. As applications of the main results, some special cases are discussed.
It is an interesting problem to implement these methods and compare with other
techniques

2. Basic Definitions and Results

Let a real Hilbert space H with norm ‖ · ‖ and inner product 〈·, ·〉. Let K be any
convex closed set in H.

Defintion 2.1. [22] A set Kψ in H is called a general convex set, if there exists an
arbitrary function ψ, such that

(1− t)p+ t ψ(q) ∈ Kψ, ∀ p, q ∈ H : p, ψ (q) ∈ Kψ, t ∈ [0, 1].

Clearly every convex set is general convex, but converse is not true. For the prop-
erties of general convex sets, see Noor [22] and Cristescu et al [7].
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Defintion 2.2. [22] A function F is called general convex function with respect to
an arbitrary function ψ, if

F ((1− t)p+ t ψ (q)) ≤ (1− t)F (p) + tF (ψ(q)), ∀ p, ψ (q) ∈ Kψ, t ∈ [0, 1].

The general convex functions were introduced by Noor [22]. Noor [22] proved
that the minimum p ∈ H, ψ(p) ∈ Kψ of the differentiable general convex functions
F can be characterized by a class of variational inequities of the form:

〈F
′
(p), ψ(q)− p〉 ≥ 0. ∀ q ∈ H : ψ(q) ∈ Kψ, (2.1)

which is known as general variational inequalities.

In many important applications, the inequality of the type (2.1) may not arise as
a result of optimality conditions and the underlying set is a set-valued convex set.
These facts motivated us to consider the more general quasi-variational inequality,
which includes the inequalities of the type (2.1). To be more precise, we consider
the following problem:

Let K : H −→ H be a set-valued mapping, which for any element p ∈ H,
associates a closed and convex set K(p) ⊂ H. For the given two nonlinear operators
T , ψ : H −→ H, find p ∈ H : ψ (p) ∈ K (p) , such that

〈 ρ T p+ p− ψ (p) , ψ (q)− p 〉 ≥ 0, ∀ q ∈ H : ψ (q) ∈ K (p) , (2.2)

where ρ > 0 is a constant. Inequality (2.2) is called general quasi-variational in-
equality involving two operators, which was introduced and studied by Noor [22, 23].

Now we present some special cases of problem (2.2).

I. If p = ψ(p), then problem (2.2) is equivalent to find p ∈ H : ψ (p) ∈ K (p)
such that

〈 T (ψ(p)), ψ (q)− ψ(p) 〉 ≥ 0, ∀ q ∈ H : ψ (q) ∈ K (p) , (2.3)

which is known as general quasi-variational inequality involving two non-
linear operators, see [29].

II. If ψ(p) = p, then problem (2.2) is equivalent to find p ∈ H : p ∈ K (p)
such that

〈 T p , ψ (q)− p 〉 ≥ 0, ∀ q ∈ H : ψ (q) ∈ K (p) , (2.4)

which is called a general quasi-variational inequality.
III. For ψ = I , problem (2.2) is equivalent to find p ∈ K(p) such that

〈 T p , q − p 〉 ≥ 0, ∀ q ∈ K (p) , (2.5)

this problem is called quasi-variational inequality, which was introduced by
Bensoussan and Lions, see [9].

IV. If K (p) = K, closed convex set and ψ = I, then problem (2.2) is equivalent
to finding p ∈ H : ψ(p) ∈ K this

〈 T p , ψ (q)− ψ(p) 〉 ≥ 0, ∀ q ∈ H : ψ (q) ∈ K, (2.6)

which is called a general variational inequality, which was introduced by Noor [19].
For the applications, numerical methods and other aspects of general variational
inequalities, see Noor[25, 26] and the references therein.
We need following basic definitions and lemmas to prove our results.
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Defintion 2.3. For a constant ξ1 > 0, a nonlinear operator T : H −→ H is said
to be strongly monotone, if

〈 T p− T q , p− q 〉 ≥ ξ1 ‖ p− q ‖2, ∀ p, q ∈ H. (2.7)

Defintion 2.4. For a constant η1 > 0, a nonlinear operator T : H −→ H is called
Lipschitz continuous, if

‖ T p− T q ‖ ≤ η1 ‖ p− q ‖, ∀ p, q ∈ H. (2.8)

From (2.7) and (2.8), it can be noted that ξ1 ≤ η1.

Lemma 2.5. [29] For a given w ∈ H, p ∈ K (p) , satisfies the inequality

〈p− w, q − p〉 ≥ 0, ∀ q ∈ K (p) ,

if and only if,

p = ΠK(p) [w] ,

where ΠK(p) is the implicit projection of H onto the closed convex-valued set K (p)
in H.

Assumption 2.6. [21]. The implicit projection operator PK(p) is not nonexpansive
but satisfies the condition

‖ ΠK(p) [ω]−ΠK(q) [ω] ‖ ≤ υ ‖ p− q ‖ ∀ p, q , ω ∈ H, (2.9)

where υ > 0, is a constant.

Lemma 2.7. [35]. Consider a sequence of non-negative real numbers {%n}, which
satisfy the inequality:

%n+1 ≤ (1−Υn)%n + Υn σn + ςn, ∀n ≥ 1,

where

i. {Υn} ⊂ [ 0, 1] ,
∞∑
n= 1

Υn =∞;

ii. lim supσn ≤ 0;

iii. ςn ≥ 0 (n ≥ 1),
∞∑
n= 1

ςn <∞.

Then, %n −→ 0 as n −→∞.

Lemma 2.8. [22]. Let K (p) be a closed and convex-valued set in H. Then p ∈ H :
ψ(p) ∈ K(p) is the solution of problem (2.2), if and only if,

p = ΠK(p) [ψ (p)− ρT (p)] , (2.10)

where ΠK(p) is the implicit projection of H onto the closed and convex-valued set
K (p) in H and ρ > 0 is a constant.

We define a mapping F(p) associated with (2.10) as:

F(p) = ΠK(p) [ψ (p)− ρT (p)] . (2.11)

The following theorem provides the sufficient conditions, under which the mapping
defined by (2.11), is a contraction mapping. Thus there exists a solution of the
inequality (2.2).
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Theorem 2.9. Let the operators T , ψ : H −→ H be strongly monotone with
constant ξ1 > 0, ξ2 > 0 and Lipschitz continuous with constant η1 > 0, η2 > 0,
respectively. If Assumption P holds and ρ > 0 satisfies the condition∣∣∣∣ ρ− ξ1

η2
1

∣∣∣∣ <
√
ξ2
1 − η2

1 κ (2− κ)

η2
1

ξ1 > η1

√
κ(2− κ), κ < 1, (2.12)

where

κ = υ +
√

1− 2 ξ2 + η2
2 ,

then there exists a solution p ∈ H : ψ(p) ∈ K(p), which satisfies the inequality
(2.2).

Proof. See [31] and reference therein. �

We now discuss some special of Theorem 2.1.
Special cases.

i. For ψ = I, Theorem 2.1 provides the existence of a solution for inequality
(2.5).

ii. If K(p) = K and ψ = I , then from Theorem 2.1, we can find the existence
of a solution for variational inequality.

iii. If K(p) = K, closed convex set and ψ 6= I, then Theorem 2.1 gives the
existence of a solution for inequality (2.6).

3. Dynamical System

In this section, we study the basic properties of dynamical systems and investi-
gate the asymptotically convergence of the system.

Firstly, we define the residue vector R(p) as:

R(p) = p − ΠK(p) [ψ (p)− ρT (p)] . (3.1)

It can be observed from Lemma 2.3 that problem (2.2) has solution p ∈ H : ψ(p) ∈
K(p), if and only if p ∈ H : ψ(p) ∈ K(p) is a zero of the equation

R(p) = 0.

Remark. Equation (2.10) can be written in the following equivalent form

p = (1− a(t))p+ a(t)ΠK(p) [ψ(p)− ρT (p)], (3.2)

where 0 < a(t) ≤ 1, t ≥ 0.

Consider the dynamical system associated with (2.2) as

d p

d t
= −λR(p)

= λ
(
−a (t) p (t) + a(t)ΠK(p(t)) [ψ(p(t))− ρT (p(t)) ]

)
, p(t0) = p0, (3.3)

where λ > 0 , a(t) > 0 and ρ > 0 are parameters.

Note that, if
d p

d t
= 0, then p is the solution of (2.2) and vice versa.

Special cases. Here we discuss some special cases of (3.3):

i. For a(t) = 1 and ψ = I, dynamical system (3.3) reduces to continuous
gradient dynamical system [15].
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ii. If we take K(p) = K, a(t) = 1 and ψ = I, dynamical system associated
with (3.1) reduces to continuous gradient dynamical system [1].

iii. For K(p) = K and ψ = I, dynamical system (3.3) reduces to gradient-type
projection method [17].

We now discuss the existence and uniqueness of dynamical system (3.3).

Theorem 3.1. Let that the operators T , ψ : H −→ H are Lipschitz continuous
with constant η1 > 0, η2 > 0 respectively. If Assumption (2.6) holds, then for
arbitrary initial point p0 ∈ H, the dynamical system (3.3) has a unique continuous
solution p(t) for all t ≥ 0.

Proof. Let

F (p, t) = λ
(
−a (t) p (t) + a(t) ΠK(p(t)) [ψ(p(t))− ρT (p(t)) ]

)
.

Firstly, we have to show that F (p, t) is Lipschitz continuous. Using (2.6) and
Lipschitz continuity of operators T , ψ with constants η1 > 0, η2 > 0, respectively.
For p1 6= p2, consider

‖ F (p1, t)− F (p2, t) ‖ = λ ‖ −a(t)p1 + a(t)ΠK(p1)[ψ(p1)− ρT p1 ]

+ a(t)p2 − a(t)ΠK(p2)[ψ(p2)− ρT p2 ] ‖
≤ λ a(t) ‖ p1 − p2 ‖ +λ a(t) ‖ ΠK(p1)[ψ(p1)− ρT p1 ]−

ΠK(p2)[ψ(p2)− ρT p2 ] ‖
≤ λ a(t) ‖ p1 − p2 ‖ +λ a(t) ‖ ΠK(p1)[ψ(p1)− ρT p1]−

ΠK(p1)[ψ(p2)− ρT p2 ] ‖ +λ a(t) ‖ ΠK(p1)[ψ(p2)− ρT p2 ]−
ΠK(p2)[ψ(p2)− ρT p2 ] ‖
≤ λ a(t) ‖ p1 − p2 ‖ +λ a(t) ‖ ψ(p1)− ρT p1 − ψ(p2) + ρT p2 ‖

+ λ a(t) υ ‖ p1 − p2 ‖
≤ λ (1 + η2 + ρ η1 + υ) a(t) ‖ p1 − p2 ‖,

From this, it follows that F (p, .) is Lipschitz continuous for all p ∈ H and dy-
namical system (3.3), for arbitrary initial point p0, has a unique solution, in interval
t0 ≤ t < T1 with initial condition p(t0) = p0. Let its maximal interval of existence
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be
[
t0,T1

)
. We show that T1 =∞. Consider∣∣∣∣∣∣d p

d t

∣∣∣∣∣∣ = λ a (t) ‖ ΠK(p) [ψ (p)− ρT p ] − p ‖

= λ a (t) ‖ ΠK(p) [ψ (p)− ρT p ]−ΠK(p) [ψ (p)]

+ ΠK(p) [ψ (p)]−ΠK(p?) [ψ (p?)] + ΠK(p?) [ψ (p?)]− p ‖

≤ λ a (t)
[
‖ ΠK(p) [ψ (p)− ρT p ]−ΠK(p) [ψ (p)] ‖

+ ‖ ΠK(p) [ψ (p)]−ΠK(p) [ψ (p?)] ‖

+ ‖ ΠK(p) [ψ (p?)]−ΠK(p?) [ψ (p?)] ‖ + ‖ ΠK(p?) [ψ (p?)] ‖ + ‖ p ‖
]

= λ a (t)
[
ρ η1 ‖ p ‖ +

(
η2 + υ

)
‖ p− p? ‖ + ‖ ΠK(p?) [ψ (p?)] ‖ + ‖ p ‖

]
≤ λ a (t)

[
ρ η1 ‖ p ‖ +(η2 + υ)

(
‖ p ‖ + ‖ p? ‖

)
+ ‖ ΠK(p?) [ψ (p?)] ‖ + ‖ p ‖

]
= λ a (t) (ρ η1 + η2 + υ + 1) ‖ p ‖

+ λ a (t)
(

(η2 + υ) ‖ p? ‖ + ‖ ΠK(p?) [ψ (p?)] ‖
)
, (3.4)

where we have used the Assumption (2.6), Lipschitz continuity of operator T and
ψ with constant η1 > 0, η2 > 0. respectively.
Integrating (3.4) from t0 to t, we have

‖ p(t) ‖ − ‖ p(t0) ‖ ≤ c1

t∫
t0

1 ds + c2

t∫
t0

‖ p(s) ‖ ds

≤ c1(t− t0) + c2

t∫
t0

‖ p(s) ‖ ds,

Using Gronwall Lemma [12] , we have

‖ p(t) ‖ ≤
(
‖ p(t0) ‖ +c1(t− t0)

)
+ c2

t∫
t0

‖ p(s) ‖ ds

≤
(
‖ p(t0) ‖ +c1(t− t0)

)
ec2(t0−t), t ∈

[
t0, T

)
,

where

c1 = λ a (t)
(

(η2 + υ) ‖ p? ‖ + ‖ ΠK(p?) [ψ (p?)] ‖
)
,

c2 = a (t) (ρ η1 + η2 + υ + 1).

Consequently, solution p(t) is bounded on
[
t0, ∞

)
. Thus T =∞. �

We now investigate the asymptotically stability of the trajectory to the solution
of dynamical system (3.3) with λ = 1.

Theorem 3.2. Let the following assumptions be satisfied:

i. The operators T , ψ : H −→ H be strongly monotone with constant ξ1 >
0, ξ1 > 0 and Lipschitz continuous with constant η1 > 0, η2 > 0 respec-
tively.

ii. Assumption (2.6) and (2.12) hold.
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iii. Parameter a(t) ∈ C ( [ 0,∞ )) and ρ > 0 satisfy

0 < a(t) ≤ 1, t ≥ 0,

∞∫
0

a(ζ) dζ =∞,

∣∣∣∣ρ− ξ1
η2

1

∣∣∣∣ <
√
ξ2
1 − η2

1 κ (2− κ)

η2
1

, ξ1 > η1

√
κ(2− κ), κ < 1, (3.5)

where

κ = υ +
√

1− 2 ξ2 + η2
2 .

Then, for every initial approximation p0 ∈ H, trajectory p(t), t ≥ 0 defined by
method (3.3). converges to the unique solution p? ∈ K(p?) of problem (2.2) with
convergence rate:

‖ p(t)− p? ‖≤ e
∞∫
0

Ω(ζ) dζ
‖ p0 − p? ‖,

where

Ω(t) = −1

2
a(t) +

1

2
a(t)

(
κ+

√
1− 2 ρ ξ1 + ρ2 η2

1

)2

.

Proof. Since all the conditions from Theorem 2.1 are fulfilled , so unique solution
p? ∈ K(p?) exists. We now define the Lyapunov function as

L(t) =
1

2
‖ p(t)− p? ‖2.

For convergence, we have to show that L(t) −→ 0 as t −→∞ .
Now,

dL

d t
=
〈
p(t)− p? , d p

d t

〉
. (3.6)
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From Remark(3.2), (3.3), and (3.6), we have

dL

d t
=
〈
p(t)− p? ,−a (t) p (t) + a(t)ΠK(p(t)) [ψ(p(t))− ρT (p(t)) ]

〉
=
〈

( p(t)− p? ) + a(t) p? − a(t)ΠK(p?) [ψ(p?)− ρT (p?)] ,

: −a(t) p(t) + a(t)ΠK(p(t)) [ψ(p)− ρ T p]
〉

=
1

2
‖ (1− a(t)) ( p(t)− p? )

+ a(t)
(
ΠK(p(t)) [ψ(p(t))− ρT p(t)]−ΠK(p?) [ψ(p?)− ρT p?]

)
‖2

− 1

2
‖ ( p(t)− p? ) + a(t) p? − a(t)ΠK(p?) [ψ(p?)− ρT (p?)] ‖2

− 1

2
‖ −a(t) p(t) + a(t) ΠK(p(t)) [ψ(p(t))− ρT p(t)] ‖2

≤ 1

2
‖ (1− a(t)) ( p(t)− p? )

+ a(t)
(
ΠK(p(t)) [ψ(p(t))− ρT p(t)]−ΠK(p?) [ψ(p?)− ρT p?]

)
‖2

− 1

2
‖ p(t)− p? ‖2

=
1

2
(1− a(t))

2 ‖ p(t)− p? ‖2

+
1

2
a2(t) ‖ ΠK(p(t)) [ψ(p(t))− ρT p(t)]−ΠK(p?) [ψ(p?)− ρT p?] ‖2

+ a(t) (1− a(t))
〈
p(t)− p?,ΠK(p(t)) [ψ(p(t))− ρT p(t)]−ΠK(p?) [ψ(p?)− ρT p?]

〉
− 1

2
‖ p(t)− p? ‖2

= − 1

2
a(t) ‖ p(t)− p? ‖2

+
1

2
a(t) ‖ ΠK(p(t)) [ψ(p(t))− ρT p(t)]−ΠK(p?) [ψ(p?)− ρT p?] ‖2, (3.7)

we have used the relation 2
〈
δ, µ

〉
=‖ δ + µ ‖2 − ‖ δ ‖2 − ‖ µ ‖2, ∀ δ, µ ∈ H.

Using Assumption (2.6), strongly monotonicity and Lipschitz continuity of
operators T and ψ, we get

‖ ΠK(p(t)) [ψ(p(t))− ρT p(t)]−ΠK(p?) [ψ(p?)− ρT p?] ‖
≤‖ ΠK(p(t)) [ψ(p(t))− ρT p(t)]−ΠK(p(t)) [ψ(p?)− ρT p?]

+ ‖ ΠK(p(t)) [ψ(p?)− ρT p?]−ΠK(p?) [ψ(p?)− ρT p?] ‖
≤‖ [ψ(p(t))− ρT p(t)]− [ψ(p?)− ρT p?] ‖

+ υ ‖ p(t)− p? ‖
≤‖ p(t)− p? − (ψ(p(t)− ψ(p?)) ‖ + ‖ p(t)− p? − ρ (T p(t)− T p?) ‖

+ υ ‖ p(t)− p? ‖

≤
(
υ +

√
1− 2 ξ2 + η2

2 +
√

1− 2 ρ ξ1 + ρ2 η2
1

)
‖ p(t)− p? ‖ . (3.8)
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From (3.7) and (3.8), we have

dL

d t
≤ − 1

2
a(t) ‖ p(t)− p? ‖2

+
1

2
a(t)

(
υ +

√
1− 2 ξ2 + η2

2 +
√

1− 2 ρ ξ1 + ρ2 η2
1

)2

‖ p(t)− p? ‖2

≤ 1

2

[
−a(t) + a(t)

(
κ+

√
1− 2ρ ξ1 + ρ2 η2

1

)2
]
‖ p(t)− p? ‖2

=
1

2
Ω(t) ‖ p(t)− p? ‖2, (3.9)

Consequently, we obtain the following estimate

‖ p(t)− p? ‖≤ e
∞∫
0

Ω(ζ) dζ
‖ p0 − p? ‖,

where

Ω(ζ) = −1

2
a(ζ) +

1

2
a(ζ)

(
κ+

√
1− 2ρ ξ1 + ρ2 η2

1

)2

.

Since

∞∫
0

a(ζ)d ζ =∞ and κ+
√

1− 2ρ ξ1 + ρ2 η2
1 < 1, we have

∞∫
0

Ω(ζ) d ζ = −∞,

thus e

∞∫
0

Ω (ζ) dζ
= 0.

It follows that the trajectory p(t) converges asymptotically to unique solution p?

satisfies the inequality (2.2), the desired result. �

For ψ = I, one can obtain the result of [17]. The above result is quite different
from the result studied in [17].

4. Iterative Methods

In this section, we suggest some inertial type methods for solving general quasi
variational inequalities. Discretizing dynamical system (3.3) by using forward dif-
ference scheme, we have

pn+1 − pn
h

= −αn(t) pn + αn(t) ΠK(pn) [ψ(pn)− ρT pn ] ,

where 0 < αn(t) ≤ 1, and h is the step size.
We now introduce an iterative scheme by taking step size h = 1 and αn(t) = αn.

Algorithm 1. For given p0 ∈ H : ψ(p0) ∈ K(p), compute pn+1 through iterative
scheme

pn+1 = (1− αn)pn + αn ΠK(pn) [ψ(pn)− ρT (pn)] , n = 0, 1, · · ·
where 0 ≤ αn ≤ 1 and ρ > 0 are parameters, which is called Mann iterative
process.

Again discretizing dynamical system (3.3)by using forward difference scheme, we
have the following iterative scheme
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Algorithm 2. For given p0 ∈ H : ψ(p0) ∈ K(p), compute pn+1 by the iterative
scheme

pn+1 = (1− αn)pn + αn ΠK(pn) [ψ(pn)− ρT (pn+1)] , n = 0, 1, · · ·
where 0 ≤ αn ≤ 1 and ρ > 0 are parameters.

This method is an implicit method and can be viewed as analogues to the ex-
tragradient method of Korpelevich [14]. To implement Algorithm 2, we use the
inertial-type predictor and corrector technique.

Algorithm 3. For given p0, p1 ∈ H : ψ(p0), ψ(p1) ∈ K(p), compute pn+1 by the
iterative scheme

wn = pn + Θn (pn − pn−1) ,

pn+1 = (1− αn)pn + αn ΠK(pn) [ψ(pn)− ρT (wn)] , n = 1, 2, · · ·
where 0 ≤ αn ≤ 1 and ρ > 0 are parameters.

Algorithm 4. For given p0 ∈ H : ψ(p0) ∈ K(p), compute pn+1 by the iterative
scheme

pn+1 = (1− αn)pn+1 + αn ΠK(pn+1) [ψ(pn+1)− ρT (pn+1)] , n = 0, 1, · · ·
where 0 ≤ αn ≤ 1 and ρ > 0 are parameters.

For αn) = 1 and K(p) = K, the convex set, then Algorithm 4 is due to Noor[26].
Algorithm 4 is an implicit method. To implement this method, we use the inertial-
type predictor and corrector technique. Consequently, Algorithm 4 can be written
in the following form.

Algorithm 5. For given p0, p1 ∈ H : ψ(p0), ψ(p1) ∈ K(p), compute pn+1 through
iterative scheme

wn = pn + Θn (pn − pn−1) ,

pn+1 = (1− αn)wn + αn ΠK(wn) [ψ(wn)− ρT (wn)] , n = 1, 2, · · ·
where 0 ≤ αn, Θn ≤ 1 and ρ > 0 are parameters.

If we take αn = 1, Algorithm 5 reduces to a new inertial-type iterative scheme
for solving inequality (2.2).

Algorithm 6. For given p0, p1 ∈ H : ψ(p0), ψ(p1) ∈ K(p), compute pn+1 through
iterative scheme

wn = pn + Θn (pn − pn−1) ,

pn+1 = ΠK(wn) [ψ(wn)− ρT (wn)] , n = 1, 2, · · ·
where 0 ≤ Θn ≤ 1 and ρ > 0 are parameters.

For ψ = I, Algorithm 5 collapses to the following new method for solving in-
equality (2.5).

Algorithm 7. [33] For given p0, p1 ∈ H, compute pn+1 through iterative scheme

wn = pn + Θn (pn − pn−1) ,

pn+1 = (1− αn)wn + αn ΠK(wn) [wn − ρT (wn)] , n = 1, 2, · · ·
where 0 ≤ αn, Θn ≤ 1 and ρ > 0 are parameters.
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The advantage of these methods is that only one projection operator is used.
We now introduce a three-step inertial-projection iterative method for solving the
general quasi variational inequality (2.2).

Algorithm 8. For given p0, p1 ∈ H : ψ(p0), ψ(p1) ∈ K(p), compute pn+1 through
iterative scheme

wn = pn + Θn (pn − pn−1) , (4.1)

yn = (1− γn)wn + γn ΠK(wn) [ψ(wn)− ρT (wn)] , (4.2)

zn = (1− βn)yn + βn ΠK(yn) [ψ(yn)− ρT (yn)] , (4.3)

un+1 = (1− αn)zn + αn ΠK(zn) [ψ(zn)− ρT (zn)] , n = 1, 2, · · · (4.4)

where 0 ≤ αn, βn, γn, Θn ≤ 1 and ρ > 0 are parameters.

If we take K(p) = K, closed convex set, then Algorithm 8 reduces to a new
inertial-type iterative scheme for solving general variational inequality.

Algorithm 9. For given p0 ∈ H : ψ(p0) ∈ K, compute pn+1 through iterative
scheme

wn = pn + Θn (pn − pn−1) ,

yn = (1− γn)pn + γn ΠK [ψ(pn)− ρT (pn)] ,

zn = (1− βn)yn + βn ΠK [ψ(yn)− ρT (yn)] ,

pn+1 = (1− αn)zn + αn ΠK [ψ(zn)− ρT (zn)] , n = 1, 2, · · ·

where 0 ≤ αn, βn, γn, Θn ≤ 1 and ρ > 0 are parameters.

For different and suitable choice of suitable operators and spaces, one can obtain
new and previous iterative schemes for solving inequality (2.2) and related problems.

We now analyze convergence analysis for Algorithm 8 under some appropriate
conditions.

Theorem 4.1. Let the operators T , ψ : H −→ H be strongly monotone with
constants ξ1 > 0, ξ2 > 0 and Lipschitz continuous with constants η1 > 0, η2 > 0
respectively.
Let 0 ≤ Θn, αn, βn, γn ≤ 1, for all n ≥ 1 such that

∞∑
n= 1

αn =∞,
∞∑
n=1

Θn ‖ pn − pn−1 ‖<∞.

If Assumption P holds and ρ > 0 satisfies (2.12). Then pn+1, an approximate
solution obtained through the iterative scheme defined in Algorithm 8 converges to
unique solution p? ∈ K(p?) of problem (2.2).

Proof. Since all the conditions of Theorem 2.1 are satisfied, so p? ∈ H : ψ(p?) ∈
K(p?) is a solution of inequality (2.2). Then from Lemma 2.3, we have

p? = (1− αn)p? + αn ΠK(p?) [ψ(p?)− ρT (p?)] , (4.5)

= (1− βn)p? + βn ΠK(p?) [ψ(p?)− ρT (p?)] , (4.6)

= (1− γn)p? + γn ΠK(p?) [ψ(p?)− ρT (p?)] , (4.7)

where 0 ≤ αn, βn, γn ≤ 1, are constants.
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Using Assumption (2.6), from (3.8), (4.4) and (4.5), we have

‖ pn+1 − p? ‖ =‖
(
(1− αn)zn + αn ΠK(zn) [ψ(zn)− ρT (zn)]

)
−
(
(1− αn)p? + αn ΠK(p?) [ψ(p?)− ρT (p?)]

)
‖

≤ (1− αn) ‖ zn − p? ‖ +αn ‖ ΠK(zn) [ψ(zn)− ρT zn]−ΠK(p?) [ψ(p?)− ρT p?] ‖
≤ (1− αn) ‖ zn − p? ‖ +αn ‖ ΠK(zn) [ψ(zn)− ρT zn]−ΠK(zn) [ψ(p?)− ρT p?] ‖

+ αn ‖ ΠK(zn) [ψ(p?)− ρT p?]−ΠK(p?) [ψ(p?)− ρT p?] ‖
≤ (1− αn) ‖ zn − p? ‖ +αn ‖ [ψ(zn)− ρT zn]− [ψ(p?)− ρT p?] ‖ +αnυ ‖ zn − p? ‖

≤ (1− αn) ‖ zn − p? ‖ +αn

(
υ +

√
1− 2 ξ2 + η2

2 +
√

1− 2ρ ξ1 + ρ2 η2
1

)
‖ zn − p? ‖

= (1− αn) ‖ zn − p? ‖ +αn

(
κ +

√
1− 2ρ ξ1 + ρ2 η2

1

)
‖ zn − p? ‖

=
[
1− αn(1− ϑ)

]
‖ zn − p? ‖ . (4.8)

Similarly, from (4.3) and (4.6), we have

‖ zn − p? ‖ = ‖
(
(1− βn)yn + βn ΠK(yn) [ψ(yn)− ρT (yn)]

)
−
(
(1− βn)p? + βn ΠK(p?) [ψ(p?)− ρT (p?)]

)
‖

≤ (1− βn) ‖ yn − p? ‖ +βn ϑ ‖ yn − p? ‖
=
[
1− βn(1− ϑ)

]
‖ yn − p? ‖

≤‖ yn − p? ‖ . (4.9)

From (4.2) and (4.7), we have

‖ yn − p? ‖ = ‖
(
(1− γn)wn + γn ΠK(wn) [ψ(wn)− ρT (wn)]

)
−
(
(1− γn)p? + γn ΠK(p?) [ψ(p?)− ρT (p?)]

)
‖

=
[
1− γn(1− ϑ)

]
‖ wn − p? ‖

≤‖ wn − p? ‖ . (4.10)

Now, from (4.1), we have

‖ wn − p? ‖ = ‖ pn − p? + Θn (pn − pn−1) ‖
≤‖ pn − p? ‖ +Θn ‖ pn − pn−1 ‖ . (4.11)

From (4.8), (4.9), (4.10), and (4.11), we have

‖ pn+1 − p? ‖ ≤
[
1− αn(1− ϑ)

][
‖ pn − p? ‖ +Θn ‖ pn − pn−1 ‖

]
≤
[
1− αn(1− ϑ)

]
‖ pn − p? ‖ +Θn ‖ pn − pn−1 ‖ .

From (2.12), we have ϑ < 1. Since

∞∑
n=1

Θn ‖ pn − pn−1 ‖<∞, using Lemma 2.2,

we get that
pn −→ p?, n −→ ∞. Hence the sequence {pn} obtained from the Algorithm 8
converges to a unique solution p? ∈ K(p?) satisfying the inequality (2.2), which is
the desired result. �

(I). If K(p) = K, then following result can be obtained from Theorem 4.1.
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Theorem 4.2. Let the operators T , ψ : H −→ H be strongly monotone with
constants ξ1 > 0, ξ2 > 0 and Lipschitz continuous with constants η1 > 0, η2 > 0
respectively.
Let 0 ≤ Θn, αn, βn, γn ≤ 1, for all n ≥ 1 such that

∞∑
n= 1

αn =∞,
∞∑
n=1

Θn ‖ pn − pn−1 ‖<∞.

If ρ > 0 satisfies the condition∣∣∣∣ ρ− ξ1
η2

1

∣∣∣∣ <
√
ξ2
1 − η2

1 κ (2− κ)

η2
1

ξ1 > η1

√
κ(2− κ), κ < 1,

where

κ =
√

1− 2 ξ2 + η2
2 ,

Then pn+1, an approximate solution obtained through the iterative scheme defined
in Algorithm 9 converges to unique solution p? ∈ K of problem (2.6).

(II).If we take ψ = I, then following result can be obtained from Theorem 4.1.

Theorem 4.3. Let the operators T : H −→ H be strongly monotone with con-
stants ξ > 0, and Lipschitz continuous with constants η > 0 respectively.
Let 0 ≤ Θn, αn, βn, γn ≤ 1, for all n ≥ 1 such that

∞∑
n= 1

αn =∞,
∞∑
n=1

Θn ‖ pn − pn−1 ‖<∞.

If ρ > 0 satisfies the condition∣∣∣∣ ρ− ξ

η2

∣∣∣∣ <
√
ξ2 − η2 υ (2− υ)

η2
ξ > η

√
υ(2− υ), υ < 1.

Then an approximate solution pn+1 obtain from

wn = pn + Θn (pn − pn−1) ,

yn = (1− γn)wn + γn ΠK(wn) [wn − ρT (wn)] ,

zn = (1− βn)yn + βn ΠK(yn) [ yn − ρT (yn) ] ,

un+1 = (1− αn)zn + αn ΠK(zn) [ zn − ρT (zn)] , n = 1, 2, · · ·

converges to unique solution p? ∈ K(p?) of problem (2.5).

Conclusion

In this article, we have introduced a dynamical system and studied the unique
existence of the solutions of dynamical system associated with general quasi vari-
ational inequalities. We have developed a continuous three-step inertial method
for solving quasi variational inequalities. We have estimated the convergence rate
of the proposed method. We have proved that the approximate solution obtained
by the inertial projection iterative schemes converges to exact solution. It is an
interesting problem to compare the efficiency of the proposed methods with other
known methods. Results obtained from the current study may stimulate future
research in this area.



28 S, JABEEB, M. A. NOOR, K. I. NOOR

Acknowledgments. The authors would like to thank the Rector, COMSATS
University Islamabad, Islamabad, Pakistan for providing excellent academic and
research environment. Authors are grateful to the referees for their valuable and
constructive comments.

Competing interests. The authors declare that they have no competing interests.

References

[1] F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algo-

rithm for maximal monotone operators in Hilbert space, SIAM J. Optim. 14 (2003), 773-782
[2] F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators

via discretization of a nonlinear oscillator with damping, Set-Valued Anal. 9 (2001), 3-11 ..

[3] A. S. Antipin, Minimization of convex functions on convex sets by means of differential
equations, Diff. Equat. 30(9)(1994), 1365-1375.

[4] A. S. Antipin, M. Jacimovic and N. Mijajlovic, Extra gradient method for solving quasi
variational inequalities, Optimization. 1 (2018), 103-112.

[5] H. Attouch and M. O. Czarnecki, Asymtotic control and stabilization of nonlinear oscillators

with non-isolated equilibria, J. Diff. Equ, 179 (2002), 278-31.
[6] H. Attouch, X. Goudon and P. Redont, The heavy ball with friction.I. The continuous dy-

namical system, Commun. Contemp. Math. 2 (2000), 1-34 .

[7] M. Avriel,Solution of certain nonlinear programs involving r-convex functions, J. Opt. The-
ory Appl. 11(2) (1973), 159-174.

[8] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse

problems, SIAM J. Imaging Sci. 2 (2009), 183-202.
[9] A. Bensoussan and J. L. Lions,Application des inequalities variationnelles en control eten

stochastique, Dunod, Paris (1978).

[10] G. Cristescu and M. Gaianu, Shape properties of Noors convex sets, Proceed. of the Twelfth
Symposium of Mathematics and its applications, Timisoara, (2009), 1-13.

[11] J. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res.
44 (1993), 7-42.

[12] T. L. Friesz, D. Bernstein, N. J. Mehta, R. L. Tobin and S. Ganjalizadeh, Day-to-day dynamic

network disequilibria and idealized traveler information systems, Oper. Res. 42 (1994), 1120-
1136.

[13] M. Kocvara and J. V. Outrata,On a class of quasi-variational inequalities, Optim. Methods

Softw. 5 (1995), 275-295.
[14] G. M. Korpelevich, The extra gradient method for finding saddle points and other problems,

Ekonomika Mat. Metody 12 (1976), 747-756 .

[15] M. Jacimovic and N. Mijajlovic, On a continuous gradient-type method for solving quasi-
variational inequalities, Proc. Montenegrin Acad. Sci Arts 19 (2011), 16-27.

[16] P.E. Mainge, Regularized and inertial algorithms for common fixed points of nonlinear oper-

ators, J. Math. Anal. Appl. 344 (2008), 876-887.
[17] N. Mijajlovic, J. Milojica and M. A. Noor, Gradient-type projection methods for quasi-

variational inequalities, Optim. Letters. 13 (2019), 1885-1896.

[18] M. A. Noor, K. I. Noor and A. G. Khan, Dynamical system for quasi-variational inequalities,
Annals Funct. Anal. (6(1)) (2015), 193-209.

[19] M. A. Noor, General variational inequalities, App1. Math. Lett.1 (1988), 119-122.
[20] M. A. Noor, A Wiener-Hopf dynamical system for variational inequalities, Nem Zea1and J.

Math. 31 (2002), 173-182.

[21] M. A. Noor, Implicit dynamical systems and quasi variational inequalities, Appl.
Math.Comput. 134 (2003), 69-81.

[22] M. A. Noor,Differentiable non-convex functions and general variational inequalities, Appl.
Math.Comput. 199 (2008), 623-630.

[23] M. A. Noor, On a class of general quasi-variational inequalities, J. Adv. Math Stud. 1 (2008),
75-86 .

[24] M. A. Noor, K. I. Noor and E. Al-Said, Iterative methods for solving general quasi-variational
inequalities, Optim Lett 4 (2010), 513-530.



29

[25] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal.

Appl. 251 (2000), 217-229.

[26] M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput.
152 (2004), 199-277.

[27] M. A. Noor, K. I. Noor and A. G. Khan, Three step iterative algorithms for solving class of

quasi variational inequalities, Afrika Math. (26(7-8) (2015), 1519-1530.
[28] M. A. Noor, A. G. Khan , K. I. Noor and A. Pervez, Gauss-Seidel type algorithms for a class

of variational inequalities, Filomat, 32(2) (2018), 395407

[29] M. A. Noor, Quasi variational inequalities, App1. Math. Lett. 1 (1988), 367-370.
[30] M. A. Noor, On general Quasi variational inequalities, J. King Saud University-Science. 24

(2012), 81-88.

[31] M. A. Noor, An iterative scheme for class of quasi variational inequalities, J. Math. Anal.
Appl. 110 (1985), 463-468.

[32] B. T. Polyak, Some methods of speeding up the convergence of iterative methods, Zh. Vychisl.
Mat. Mat. Fiz. 4 (1964), 791-803.

[33] Y. Shehu, A. Gibali and S. Sagratella, Inertial projection-type method for solving

quasi-variational inequalities in real Hilbert space, J. Optim. Theory Appl. (2019).
https://doi.org/10.1007/s10957-019-

[34] G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, C. R. Acad.

Sci.Paris 258 (1964) , 4413-4416 .
[35] H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc. 66 (2002), 240-256

Saudia Jabeen

Mathematics Department, COMSATS University, Park Road, Islamabad, Pakistan
E-mail address: saudiajbeen@gmail.com

Muhammad Aslam Noor Noor

Mathematics Department, COMSATS University, Park Road, Islamabad, Pakistan
E-mail address: noormaslam@gmail.com

Khalida Inayat Noor
Mathematics Department, COMSATS University, Park Road, Islamabad, Pakistan

E-mail address: khalidan@gmail.com


