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GENERALIZED OSTROWSKI INTEGRAL INEQUALITY WITH
WEIGHTS FOR SECOND ORDER DIFFERENTIABLE
MAPPINGS

NAZIA IRSHAD, ASIF R. KHAN, AND MUHAMMAD AWAIS SHAIKH

ABSTRACT. We have proved a generalized integral inequality of Ostrowski’s
type using weights with parameters for differentiable mapping whose second
order derivatives are bounded and first order derivatives are absolutely con-
tinuous. Further, we obtained number of new results as special cases. We also
stated applications of our work in Numerical Quadrature rules and Probability
Theory.

1. INTRODUCTION

A famous inequality known as Ostrowski inequality was revealed by Ukrainian
Mathematician Alexandar Markowich Ostrowski in 1938. It states that [17]:

Proposition 1.1. Let f: I C R — R be a differentiable mapping on 1° (19 is the
interior of 1) and let a,b € 1° with a < b. If f' : (a,b) — R is bounded on (a,b),

i.e.,
[f'loe = sup [f'(t)| < o0,

te(a,b)
then the following inequality holds
1P 1 (z—fb)?
-— Ddt| < | =+ 2" (b— dips
fla) = 5= [ 10| < |+ =5 | 6= alF

YV x € [a,b]. The constant i is sharp in the sense that it cannot be replaced by a
smaller one.

Ostrowski’s inequality estimates the absolute deviation of functional value form
its integral mean. It has number of applications in Probability Theory and Numer-
ical Integration. It also deals with Special Means.

In 1976, Milovanovi¢ and Pecari¢ proved generalized Ostrowski’s inequality for
n-time differentiable mappings [I5] from which we reproduce the case of second
order differentiable mappings [I5 p. 470].
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Proposition 1.2. Let g : [a,b] = R be a second order differentiable mapping such
that ¢ : (a,b) — R is bounded on (a,b). Then the inequality holds.

—a a — X b
;{g(x)jdx )g(b)+(b )g(b)] _bia/a o(t)dt

vV x € [a,b].
In year 1999, Cerone et.al. in [I] proved the following inequality.

Proposition 1.3. Under the supposition of Proposition following inequality

holds
@)~ (s ) g0 5 [ ot

< [(b;4a>2+;<x—a;b)2 (b—a)®

1 . < 1 0o-
g oo < == Ilg"l
vV x € [a,b].
In the same year, Dragomir et.al. [3] proved the following result.

Proposition 1.4. Under the supposition of Proposition following inequality

holds

2
(b - a)2 = a-2&-b 1 1 " (b - a)2 "
< — — < — .
< ) T P e P

V€ lab].

In [2], Dragomir et. al, stated an Ostrowski type inequality which is as under:

Proposition 1.5. Let g : [a,b] — R be a mapping whose first order derivative is
absolutely continuous on [a,b] and assume that the second order derivative g” €
Lo [a,b]. Then the following inequality holds

/abg(ﬂ -3 {g(x) + g(a);g(b)} -0+ 50 (m ) b> 7

2 2

1 a+b (b—a)?
<¢"” — |z — 1.1
> Hg ”oo <3 ’l‘ D) + 48 ( )

Now onward we assume that o = a + )\b*?a and 8 = b — )\b*?a where A is a
parameter such that A € [0, 1].

3

vV x € [a,b].

Zafar and Mir generalized aforementioned result in [22] which is stated as under:
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Proposition 1.6. Under the assumptions of Proposition[I.5, we have the inequality

b
bia/a g(t)dt_%[(1_)‘)(g(x)+g(a+b—x))+(1+/\)

(90 _ 1y (- ) i) 5 0 - )|
1

1

V € [a, B], where U(A) = (1 — \)[2(1 — A\)2 — 1]+ 2X and X € [0,1].

"

9

a+b3
T —
2

<]

(1.2)

Pecari¢ and Savié¢ [18] introduced 1st weighted Ostrowski inequality in 1983.
Due to importance and significance of weighted Ostrowski’s inequality, in the recent
years, researchers are working continuously on this inequality in order to get better
bounds. For recent work related to the topic we refer the reader following articles
[51, (61, [7], 18, [, [10] [13] 14l 12} 20, 21].

We would use weights and parameters in to improve results stated by Zafar
and Mir in [22]. We also plan to state some applications in Numerical Integration
and Probability Theory. The weighted Peano kernels approach with parameters
and weight is proved helpful to generalized Ostrwsoki type inequalities.

Present paper is arranged in the following manner: The first section is based on
preliminaries where as the second section states new results involving weights with
parameters in inequality here weights used are probability density function.
In the final section we have stated some of the applications in composite quadrature
rule and Probability Theory.

2. MAIN RESULTS

Theorem 2.1. Under the assumptions of Proposition we have the inequality
for x € [, B]

b
/ g(t)w(t)dt — B(g(a)w(a) + g(b)w (b))

+/jw<t>dt(9<a+b—w> Hollatboa)(e—4))

b
_ / (@) (t—A)w’(t)dt]
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< % Mﬁ(x—t)[(am—x)—t}w(t)dt

+2 /L:M(x — 1) [(a - t}w(t)dt

—/a(t—a)(t—b)w(t)dt—/ﬁ (t—a)(t—b)w(t)dt] (2.1)

where w : [a,b] — [0,00) is a probability density function, i.e., it is a positive

b
b b—

integrable function satisfying / w(t)dt=1, A= @t and B = ¢
Proof. Tt is easy to see that

a+b

- B

f(z) / w(t)dt+ fla+b—x) / w(t)dt
o atb

2

b a
:/ w(t)f(t)dt-i—f(a)/ w(t)dt
b b
b w(t)d P, (z,t)f (t)d .
#ﬂ)é (at+ [ PGe0r ) (2.2)

V z € [a,p], provided that f is absolutely continuous on [a,b] and the kernel
P, : [, f] x [a,b] = R is given by:

¢
/w(u)du, it ¢ela,xl,

t
P,(z,t) = /+ w(u)du, if te(z,a+b-—1,

o

~

/w(u)du, if te(a+b—uz,b,
B

Let us put

) = (2= "52) o).

a+b
2

in (2.2) we get
a+b

(x— a;b) (g’(w)/a 2

= /abw(t) <t - a;b> g (tdi " ; e (g'(a) :W(t)dt —9'(b) /;w(t)dt>

4 | Pu(at) {g’(t) + (t ¢ ; b) g”(t)} dt. (2.3)

a

w(t)dt —g'(a+b—1) /ﬁ w(t)dt)
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Using integration by parts, we have

b —a
[ (1= ) et @i = "5 lta)ea) + 9(0)0)]

also

/P (2,1)g dt—g(b)/ (t)dt—g(a)/:w(t)dt

oy 5 b
+g(x) / w(t)dt + gla+b—x) / w(t)dt — / g(t)w(t)dt. (2.5)

a+b

2

Now using equations (2.4)) and . in ., we get

a+b

(-3) (gw

b—a

= 75 (o)) +9(0)e(b) +.90) [ wlt)it —ofe) | ity

/ w(t)dt) +g(@) /a T et

b
B
sttt - | ") (1= 57 )ty
t.

w(t)dt —g'(a+b—x) /i w(t)dt)

2
b

Rl <g'<a> WD)t — g

/
g(aerfo:)/

A (v
i w(t)dt — 2/:
/ab Po(a,t) [t - “;Lb> g (t)d

or we can write it as

+
+

X (g(a+b—x)+(x—a;b>g’(a+b—x))
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Y x € [«, 8] which gives us

b —a
[ st - 5  gla)e(@) + g(bo)

- /aiw(t)dt (g(a+bx)+g’(a+bx) (x a;rb»
—|—;/abg(t) (t— a;rb> W (t)dt| = ;/awa(:c,t) <t— a;rb> g (t)dt

1 [t a+b
<3 [ 1Rolle- 5l a (2.6

But

[l 0fa < 1o [Pl 0 e

Now we define

b
1:/ Pw(gc,t)|’t— a+b’dt
o 2

t
/a;rﬂ w(u)du

which in turn becomes

R t at+b—x
I = / /w(u)du”t—a;b'dt—l—/

+/: /ﬂtw(u)dth— a;b’dt.

Now, we have only one case: Due to symmetry either x € [a, “TH’} anda+b—zx €

[%rb,ﬂ] orz € [“T*b,ﬂ] and a+b—z € [a, %rb]v we obtain

pe [ ) (55 s ([ st (52 =)
/;;b </tn;ﬁw(u)du) (ta;b>dt+ C:b OE(/ )
o ([ )

/Bb</;w(u)du) <ta;rb>dt.

b
-

2

+
X
+
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Using integration by parts and after some simplification we finally get

- [/jw(t)dt ((azb)x_@«;> _/j((a;b)t _tj) w(t)dt
+/:<( ;b)t_t;) ()dt—f—/bﬁ((a;b)t—t;)w(t)dt
A (o D[ (555
+ (/a ()dt+/ﬂ ()dt) “Qb] (2.8)

Ve lpfl
After further simplification of (2.8)) and using inequality (2.6)) we get our required
result. (]

Special Case 1. If we put w(t) = 72— in 1) then we get

[ ottt = 5 [+ Mo(@) + 90) = Mg'(@ + 5 ®)

—(1=X)(9(z) - g (@) (x—A) +gla+b—2)+ g (a+b—z)(z - A))} ‘

||94||oo [Lﬁ(x—t){(a+b—x)—t}dt

+2/:b m(x—t)[(am—x)—t}dt

IN

o b
+/a (t—a)(t—b)dt%—/ﬂ (t—a)(t—b)dt] (2.9)

Remark 2.2. If we put A =0, then & = a and 8 =b in (2.1)), then we get:

b
(/g@w@ﬁ*B@wM@Hw@W®D

A
_% Va w(t)dt(9(z) — ¢'(z) (z — A))

b
+/ wt)dt(g(a+b—z)—g(a+b—2)(x—A))

A

b
—/gw@—mwww

b
”94”00 [/ (@ —8)[(a+b— ) — u(t)dt

+2 /A (z—A)[(a+b—2x)— t]w(t)dt] (2.10)
at+b—x
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Remark 2.3. If we put z = “7“7 i then we get

Remark 2.4. If we put w(t) = ﬁ in 1| then we get

/ab g(t)dt — B(g(a) + g(b)) — (b— a)g <a+ b> |

2 2
19" | /b a+b)?

< 19 lleo t— =2 at.
=4, 2

(2.11)

(2.12)

If we put the midpoint = = ‘ITH’ in , then we get the better estimate result

from midpoint, so from inequality in main theorem, we have

b
/ g(t)w(t)dt — B(g(a)w(a) + g(b)w (b))

» ( : ”) / eyt / g - ) w’(t)dt]

e

B
/(A—t)%(t)dt—i—/ (t = a)(t — b)w(t)dt

a

e
- 4

b
+/ﬁ (t—a)(t— b)w(t)dt}

(2.13)
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Special Case 2. If we put w(t) = 32 in (2.10), then we get the midpoint rule
which gives us the better estimate.

/a " o)t

2 [(20(a) +(0) + gla+b— ) ~ g'(a+b—x)(x — A)]

19"l oo
~4(b—a)

b
/ (x—t)[(a+b—x)—t]dt

A

+2/ (x —A)[(a+b—2z)—t)dt
a+b—x

Remark 2.5. Let A =0, then a = a and 8 =b in (2.11)), we get the inequality

b 1 b
[ sttt - Blgtawuta) + g0)o(®) - 5 [ g(o)t - w0y

_ 19"l

(2.14)

/b(A —t)2w(t)dt

Special Case 4. If we put w(t) = ﬁ in lj then we get the midpoint rule
which gives us the better estimate.

b
/g@wa@wwww»

Remark 2.6. Let A\ =1, then a = = ‘ITH’ in || we get the inequality

b
/ g(t)w(t)dt — B(g(a)w(a) + g(b)w (b))

b a
—1[mm/“w@ﬁ—gwy/cwwﬁ

2 A A

B <g’(a) /Aaw(t)dt—g’(b)/A w(t)dt)

b
/g@amwm4

< ”g/;”‘x’ Vab(t —a)(t — b)w(t)dt] (2.15)

Special Case 5. If we put w(t) = ﬁ in 1) then we get perturbed trapezoid
inequality which gives us the better estimate for ||.||s norm.

b 2
[ ottt =7 (gl + 96 + 5 (6@ + 4 0)

2
g lla =0
- 24
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3. APPLICATIONS IN NUMERICAL INTEGRATION

Let I, :a =20 <21 < ... < Tp_1 < x, = b be a division of the interval
[a,b], hie = @pq1 — T, a < & < Pr, where ay = zp + A B, B =z — A L,
ke€{0,...,n—1}, also A = L;’““, By = h—;

Consider the general quadrature formula where

bglonen) [ wdt - go) [ wio

k

-5 () [ w(tydt =/ ) [ i)

k

Ag
—1—/ w(t)dt(g(zr) — g’ (21) (6 — Ak))

k

B
+/ w(t)dt(g(xr + Thr1 — &) — 9 (Tr + 2o — &) (& — Ak))

Ak

_ /:+ (t - Ak)w’(t)dt}

Theorem 3.1. Under the assumptions of Proposition[L.5], we have

(3.1)

b
/ (Ow(t)dt = Qlg, g". 1) + R(g, 9" 1)

where Q(g,9", I,) is defined in and the remainder satisfies the estimates

[R(g, 9" In )I

||g HOO Z [/ (& — ) ((zr + zp41 — &) — Hw(t)dt

/ (t — Epsn) (T + Thon — €) — w(t)dt

/ (t — &)t — Epr1)w(t)dt + /;Hl (t — &) (t — Eprr)w(t)dt

k

(3.2)
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Proof. We may apply inequality (2.1) on [zk, zg11],

b
Rig.g" 1) = [ a0l — 5 2Bulg(on)ulen) + glou(m)

+9(xxt1) /mk+1 w(t)dt — g(zk) /:k w(t)dt

B k

B, (g'm) / w(t)dt —  (zs1) /B w(t)dt)

Ag
+/ w(t)dt(g(zr) — g (xr) (& — Ar))

Ay

_ /m :Hl(t _ Ak)w’(t)dt} .

Summing the above inequality over k from 0 to n — 1, we get

B
+/ w(t)dt(g(zr + Ther — &) — 9 (Tr + Trg1 — &) (Ex — Ar))

11

n—1 ﬁfk+1 1 n—1
Rlog" 1) =Y [ S0t =3 3 2BilgConu(n) + o)
1=0

i=0 YTk

bylon) [ wla - glan) / "ty

k

-1 (o/an) [ (e =/ (i) | i)

k

+ [ w0tglen) - o (006 - A)

B8
"'/A wt)dt(g(xk + p+1 — &) — 9 (T + 21 — &) (& — Ar))

- /:+1 (t— Ak)w’(t)dt}

According to (2.1, we have

|R(g,9",1 )I

||g ||°° Z l/ &k — ) ((zk + zp41 — &) — Hw(t)dt

w2 f ak(t — ) ((on + s — ) — o)t + [ Y et — ()

+ /::kﬂ(t — &)t — §k+1)w(t)dt]
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4. APPLICATION TO PROBABILITY DENSITY FUNCTION

From [8], suppose X be a continuous random variable with function of probability
density: ¢ : [a,b] — R4 and the cumulative distribution function G : [a,b] —
[0,1],4.e,

Gz) = / Cotdt, ze Bl C [

and E,(X)= /b tg(t)w(t)dt,

is the weighted expectation of the random variable X on the interval [a; b]. Now we
state main theorem of this section.

Theorem 4.1. Under the assumption of Proposition [L.5| we have

bo(b) — Eu(z) — / Gt

b A
—— w(b w(t)d G(z) —glx)(x — A w(t)d
2B<>+/ﬁ ()t + (G(x) — gla) >>/a (1)t
B
+(G(a+b—x)+G’(a+b—x)(x—A))/ w(t)dt
A
- / " GO — Ay (1)t
<||9/||°°l/ﬂ(gg—t)[(a+b—x)—t}w(t)dt
<
A
+2/a+bz(x - [(a+ b—a)— t}w(t)dt
o b
—a)(t —bw(t)d —a)(t —bw(t)d 4.
+/@<t )t ><t>t+/ﬁ<t )t ><t>t] (1.1)

for all x € [a, b].

Proof. Put g = G in (2.1]) we get (4.1) by simply using following identities

b b
/ Gt)w(t)dt = bo(b) — Bu(X) — / 1G(t)w () dt
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